Fisher et al Cerebral Microbleeds in the Elderly 2783 Downloaded from by guest on August 15, 2017 exposed to a secondar

Similar documents
2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11


_念3)医療2009_夏.indd

日本職業・災害医学会会誌第51巻第5号



Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

udc-2.dvi

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

<95DB8C9288E397C389C88A E696E6462>

10-渡部芳栄.indd

Experimental and Clinical Studies of Pregnant Hypertension Takashi SHIMAZU Department of Obstetrics and Gynecology, Osaka City University Medical Scho


NINJAL Research Papers No.8


Therapy for Asthenopia in Cases of Convergence Insufficiency Hiroko TAKASAKI, C.O.J., Nobuko INAGAMI, C.O.J., and Kayoko TAKENAWA, C.O.J.. Orthoptic c

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

untitled

ñ{ï 01-65


GPGPU

The Journal of the Japan Academy of Nursing Administration and Policies Vol 7, No 2, pp 19 _ 30, 2004 Survey on Counseling Services Performed by Nursi


untitled

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

untitled

vegetable state in our series. On the other hand, the clinical course of eight patients without rebleeding was uneventful. Table 1 Spontaneous intrace

日本職業・災害医学会会誌第51巻第1号

Table 1 Muscle weight (g) and those ratio (%) in M. quadriceps femoris Table 2 Cross-sectional area (mm2) and those ratio (%) in M, quadriceps femoris

Ear Res Jpn Morphological Sutudy of the Effect of acute Hypertension and Hypotension on the Permeability of Blood Vessels of vestibular Organs

.\...pwd

49-4 ™ñ„¾ Œ]„”†i4†j


研究紀要52号(よこ)人間科学☆/1.垂沢

浜松医科大学紀要

STUDIES ON THE RELATION BETWEEN LATE DUMPING SYNDROME AND GLUCAGON RESPONCES TO GLUCOSE Taisuke MATSUI The First Department of Surgery, Nara Medical U

) 2) , , ) 1 2 Q1 / Q2 Q Q4 /// Q5 Q6 3,4 Q7 5, Q8 HP Q9 Q10 13 Q11

untitled

Clinical Study of Effect of Intrathecal Use of Alpha-tocopherol on Chronic Vasospasm Hirotoshi Sano, Motoi Shoda, Youko Kato, Kazuhiro Katada, Youichi

Juntendo Medical Journal

日本消化器外科学会雑誌第25巻第11号

56 pp , 2005 * ******* *** ** CA CAMA


ABSTRACT The movement to increase the adult literacy rate in Nepal has been growing since democratization in In recent years, about 300,000 peop

日本職業・災害医学会会誌第54巻第6号

Fig. 1 Trends of TB incidence rates for all forms and smear-positive pulmonary TB in Kawasaki City and Japan. Incidence=newly notified cases of all fo

日本感性工学会論文誌


Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

日本消化器外科学会雑誌第29巻第9号

8 The Bulletin of Meiji University of Integrative Medicine API II 61 ASO X 11 7 X-4 6 X m 5 X-2 4 X 3 9 X 11 7 API 0.84 ASO X 1 1 MR-angio


Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

21 Effects of background stimuli by changing speed color matching color stimulus


Key words: Antibodies to Leptospira, Tokyo, Uveitis

Fig. 1 Clinical findings and extent of inflammation area in female urethrocystitis Fig. 2 Classification and distribution of female patients with blad

Relationship between Men's Commuting Clothes and their Awareness toward Work Setsuko Yajiri*, Tomoko Takaoka**, Machiko Morita*** and Shigeo Kobayashi

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

2 94

<95DB8C9288E397C389C88A E696E6462>

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i


The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

0801391,繊維学会ファイバ12月号/報文-01-西川

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of


J Life Sci Res 2014; 12: Osaka Prefecture University Journal of Life Science Research Online ISSN

Yamagata Journal of Health Sciences, Vol. 16, 2013 Tamio KEITOKU 1 2 Katsuko TANNO 3 Kiyoko ARIMA 4 Noboru CHIBA 1 Abstract The present study aimed to

Human Welfare 8‐1☆/5.林

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t


J. Jpn. Acad. Nurs. Sci., Vol.25, No.1, pp.13-22, 2005 Decision Making under the Uncertainty; Process of Decision from Diagnosis to Preventive- Operat

7 2000b 2000b 2000b A Vol 8, No 2,

indd

Perspective-Taking Perspective-Taking.... Vol. No.

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

) 5 Lawton QOL 4 4 QOL Lawton 4) Philadelphia Geriatric Center Affect Rating ScaleARS ARS QOL 5) HDS R

前頭蓋底の再建術式の標準化と外傷への応用

*.E (..).R

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Phonetic Perception and Phonemic Percepition

24 Depth scaling of binocular stereopsis by observer s own movements

Core Ethics Vol.


[ ]藤原武男

1 1 tf-idf tf-idf i

Soundcell Method(SCM)による高齢者の認知機能評価の可能性

Key words : Adverse reactions, Egg allergy, IgG antibody, Mills allergy, FAST

process of understanding everyday language is similar, finally as far as word production is concerned, individual variations seem to be greater at an


(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

IR0036_62-3.indb

1..FEM FEM 3. 4.



: , , % ,299 9, , % ,

) ,

Transcription:

Downloaded from http://stroke.ahajournals.org/ by guest on August 15, 2017 Cerebral Microbleeds in the Elderly A Pathological Analysis Mark Fisher, MD; Samuel French, MD; Ping Ji, MD; Ronald C. Kim, MD Background and Purpose Cerebral microbleeds in the elderly are routinely identified by brain MRI. The purpose of this study was to better characterize the pathological basis of microbleeds. Methods We studied postmortem brain specimens of 33 individuals with no clinical history of stroke and with an age range of 71 to 105 years. Cerebral microbleeds were identified by presence of hemosiderin (iron), identified by routine histochemistry and Prussian blue stain. Cellular localization of iron (in macrophages and pericytes) was studied by immunohistochemistry for smooth muscle actin, CD68, and, in selected cases, electron microscopy. Presence of -amyloid was analyzed using immunohistochemistry for epitope 6E10. Results Cerebral microbleeds were present in 22 cases and occurred at capillary, small artery, and arteriolar levels. Presence of microbleeds occurred independent of amyloid deposition at site of microbleeds. Although most subjects had hypertension, microbleeds were present with and without hypertension. Putamen was the site of microbleeds in all but 1 case; 1 microbleed was in subcortical white matter of occipital lobe. Most capillary microbleeds involved macrophages, but the 2 microbleeds studied by electron microscopy demonstrated pericyte involvement. Conclusions These findings indicate that cerebral microbleeds are common in elderly brain and can occur at the capillary level. (Stroke. 2010;41:2782-2785.) Key Words: amyloid angiopathy blood brain barrier hemorrhage, intracerebral hemosiderin hypertension phagocytosis Increasing reliance on MRI of stroke patients has emphasized substantial prevalence and significance of cerebral microbleeds in the aging population. MRI using state-of-theart gradient-echo sequences has demonstrated cerebral microbleeds in 18% of individuals between ages 60 to 69 years and in 38% of individuals older than age 80. 1 Moreover, presence of cerebral microbleeds appears to increase risk of warfarin-associated intracerebral hemorrhage 80-fold, 2 and use of platelet aggregation inhibitors is associated with presence of microbleeds. 3 These findings underscore the importance of cerebral microbleeds. Despite their importance, cerebral microbleeds have received only limited attention in pathological analyses. Recent work has examined in detail cerebral microbleeds in cerebral amyloid angiopathy, 4 demonstrating strong correlation between microbleeds in postmortem brain tissue and MRI lesions. The consensus view is that microbleeds of lobar location reflect underlying cerebral amyloid angiopathy, whereas deep subcortical microbleeds indicate hypertensive vasculopathy. 1,5 8 The purpose of the present study was to expand our knowledge of the pathology of cerebral microbleeds in the aging brain. Our focus was the vascular abnormalities underlying cerebral microbleeds, including vessel type, presence of associated amyloid angiopathy, and range of cellular involvement in the microbleeds themselves. Materials and Methods The investigation consisted of 2 studies of brain tissue from elderly subjects. Initial survey study consisted of 12 subjects who underwent autopsy between January 2006 and December 2008 with no clinical diagnosis of cerebrovascular disease and were selected consecutively by the Department of Pathology, Harbor-UCLA Medical Center. Portions of subcortical white matter from frontal, parietal, occipital, and temporal lobes were sampled. Selected portions of brains were first fixed in 10% buffered formalin solution for 2 weeks, and then cut serially in 1.0 cm slices. To detect hemosiderin/iron, slices were immersion-stained using Prussian blue method. Slices (4 m thick) were selected for paraffin embedding, sectioning (20 to 40 per brain), and hematoxylin and eosin staining. To detect pericytes, macrophages, and amyloid deposition, detection kits based on immunohistochemistry were used according to the manufacturers protocols. Specifically, to detect pericytes of cerebral capillaries, a mouse monoclonal antibody against human -smooth muscle actin (Sigma-Aldrich) was used. To detect macrophages, mouse monoclonal antibody against human CD68 (Dako North America) was used, and mouse monoclonal antibody against human -amyloid epitope 6E10 (Covance) was used for amyloid detection. Antigen retrieval was performed by using 10 mmol/l sodium citrate (ph 6.0) at 95 C for 15 minutes. Slides were first incubated with primary antibodies at 1:2000 dilution for 30 minutes at room temperature. Slides were then incubated with a biotinylated secondary antibody. Staining was performed by using Cell and Tissue Staining Kit (R&D System) according to the manufacturer s instruction. The slides were counterstained with hematoxylin and photographed by using a light microscope. Negative control samples were Received June 14, 2010; accepted September 2, 2010. From the Departments of Neurology, Anatomy, and Neurobiology, and Pathology & Laboratory Medicine (M.F.), University of California, Irvine, Calif; Department of Pathology (S.F.), Harbor-UCLA Medical Center, Torrance, Calif; Department of Pathology (P.J.), Harbor-UCLA Medical Center, Torrance, Calif; Department of Pathology & Laboratory Medicine and Neurology (R.C.K.), University of California, Irvine, Calif. Correspondence to Mark Fisher, MD, UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Room 121, Orange, CA 92868. E-mail mfisher@uci.edu 2010 American Heart Association, Inc. Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.110.593657 2782

Fisher et al Cerebral Microbleeds in the Elderly 2783 Downloaded from http://stroke.ahajournals.org/ by guest on August 15, 2017 exposed to a secondary antibody with a similar IgG isotype (Cell Signaling) to the primary antibody. For electron microscopy, tissues positive for Prussian blue staining of capillaries were selected and first fixed in 2.5% glutaraldehyde and emersion-fixed in osmium tetroxide, and then embedded in plastic. These sections were examined by using an electron microscope (Hitachi 600) according to the manufacturer s instruction. Follow-up study focused on basal ganglia and cortical tissue, material obtained from the University of California Irvine Alzheimer Disease Research Center, and from The 90 Study. Blocks of lenticular nucleus from 21 subjects (who had died during the eighth, ninth, tenth, and eleventh decades of life) taken at the level of the mammillary bodies from brains that had been fixed for 2 weeks in 4% paraformaldehyde were embedded in paraffin and sectioned at 8 m. In addition to hematoxylin and eosin and Prussian blue stains, immunostains using mouse antihuman -amyloid protein diluted 1:10 000 (6E10; Covance), rabbit antihuman -synuclein diluted 1:3000 (Chemicon), mouse antihuman CD68 (clone KP1) diluted 1:400 (Dako), mouse antihuman smooth muscle actin (clone 1A4) diluted 1:100 (Dako), and rabbit antihuman tau diluted 1:3000 (Dako) were performed using 3-amino-9- ethylcarbazole substrate chromogen (Dako). Braak staging was performed as previously described. 9 Briefly, neurofibrillary tangles were assessed semiquantitatively (0 to ) within 6 cerebral neocortical regions along with CA1 of the hippocampus, subiculum, entorhinal transentorhinal region, and amygdala; tangle severity was scored on a scale of I to VI. Microbleeds were quantified (for follow-up study only) within the microscope field encompassed by a 2 objective; the mid putamen at the level of the mammillary bodies was examined, and the number of capillary and noncapillary channels bounded by 1 hemosiderin deposits were counted. From these counts, the number of vessels per square centimeter (capillary density) was calculated. Unpaired Student t tests and Pearson correlation were used to further evaluate microbleed scores; P 0.05 was considered significant. Results In the initial study, the age of subjects ranged from 71 to 92 years and mean age was 79.3 years; 3 were male and 9 were female. Microbleeds were found in 2 subjects and were located in subcortical white matter of occipital lobe and in putamen. In these subjects, iron was present in capillary wall at the ablumenal endothelial surface at the site of location of capillary pericytes (Figure 1). Electron microscopy of these microbleeds demonstrated iron in pericytes immediately adjacent to endothelial tight junction (Figure 2). Vascular -amyloid deposition was not encountered at the sites of iron deposition. Nine of the 12 subjects had history of hypertension, including the 2 with microbleeds (Table). In the follow-up study, age of subjects ranged from 77 to 105 years and mean age was 93.4 years; 4 were male and 17 were female. Postmortem interval ranged from 3 to 21 hours (mean, 6.3 hours). Thirteen subjects had history of hypertension and 6 were without hypertension history. In 2 subjects, hypertension history was uncertain; 1 of these subjects was not hypertensive at final reading. Microbleeds were seen within putamen in 20 of 21 subjects, including all subjects without history of hypertension. Iron was observed predominantly within macrophages adjacent to small arteries, arterioles, and particularly capillaries (Figure 3); it was also seen to be deposited free in the tissue. In most instances, it was distributed widely within the putamen. One subject (subject 31) had evidence of cerebral amyloid angiopathy involving vessels remote from the microbleeds. For the remainder, -amyloid protein deposition was observed within diffuse and neuritic plaques, but not within the walls of Figure 1. Occipital lobe, subcortical white matter. A, Capillary with hemosiderin; hematoxylin and eosin and Prussian blue (original magnification 520). B and C, Capillary with hemosiderin; hematoxylin and eosin and Prussian blue (original magnification 520). D, The -smooth muscle actin immunostain of capillary. Immunoreactivity is adjacent to ablumenal surface of endothelium, where pericytes are located (original magnification 520). involved capillaries or arterioles. The vast majority of vessels involved in these microbleeds were capillaries, and microbleed score (capillary density) is listed in the Table. There was no significant difference in microbleed score for males vs females and for subjects with and without hypertension, and there was no significant association between age and microbleed score and between microbleed score and postmortem interval (data not shown). Discussion We found frequent evidence of cerebral microbleeds in the aging brain, often with capillary involvement. The majority Figure 2. Electron microscopy of capillary in subcortical white matter, stained for iron (Prussian blue). Pericyte, attached to capillary wall and surrounded by basement membrane, contains dense deposits of iron. Tight junction of endothelial cell (red arrows) is immediately adjacent to pericyte. Also shown are basal lamina (green arrow), endothelium (blue arrow), hemosiderin in pericyte (white asterisk), red blood cell (yellow #), and blood vessel lumen (red arrowhead). Original magnification 15 000.

2784 Stroke December 2010 Downloaded from http://stroke.ahajournals.org/ by guest on August 15, 2017 Table. Cerebral Microbleeds: Clinical and Pathological Characteristics Patient Age Gender HTN BP MB Braak Score MB Score 1 86 F Y 130/70 N 2 79 F Y 124/70 N 3 71 F Y 153/70 N 4 73 F Y 134/82 N 5 72 M Y 131/86 N 6 80 F Y 134/63 Y 7 78 M Y 132/82 N 8 71 F Y 127/82 N 9 77 F Y 166/87 Y 10 87 F N 111/72 N 11 80 F N 107/43 N 12 84 M N 140/70 N 13 84 F N 129/86 Y V 159 14 77 F N UNK Y VI 44 15 77 F UNK 132/80 Y VI 26 16 100 F Y 105/60 Y II 152 17 104 F N 124/65 Y V 159 18 83 F N 120/70 Y V 111 19 102 F Y 138/64 Y III 89 20 94 F N 130/55 Y VI 244 21 88 M Y 118/70 Y VI 85 22 96 F Y 135/70 Y VI 130 23 91 F Y 160/76 Y IV 81 24 79 M UNK UNK Y VI 30 25 91 F Y UNK Y II 111 26 97 M Y 145/80 Y II 448 27 102 F Y 129/74 Y II 56 28 94 M Y 150/90 N I 0 29 105 F N 120/60 Y I 152 30 103 F Y 80/50 Y II 67 31 99 F Y 158/64 Y II 322 32 96 F Y 110/70 Y II 89 33 100 F Y 198/78 Y II 193 BP indicates blood pressure; F, female; HTN, hypertension; M, male; MB, microbleeds; N, no; UNK, unknown; Y, yes. Initial study: patients 1 12; follow-up study: patients 13 33. of the microbleeds occurred in putamen. The microbleeds occurred in vessels without amyloid deposition and microbleeds occurred in presence and in absence of hypertension. Moreover, blood brain barrier pericytes in addition to brain macrophages appeared to have a role in microbleeds. Iron uptake into brain is complex and may occur as a consequence of hemorrhage and by receptor-mediated endocytosis of transferrin-bound iron. 10,11 The latter occurs at endothelial cells of the blood brain barrier and results in tissue iron distribution principally in oligodendrocytes. 10,11 This is a well-described and age-related process that does not, however, include phagocytosis or inflammation. 10 13 The neurovascular unit of the blood brain barrier consists of endothelial cells in close approximation to pericytes, separated only by basement membrane. 14 16 In addition, macrophages are known to be found adjacent to neurovascular unit, either in Figure 3. Pericapillary deposition of hemosiderin (brown) within macrophage (red) in putamen, using CD68 immunostain. Original magnification 600. residence or as cells migrating to that site. 17 It is therefore not surprising that both cell types appear to have a role in microbleeds. Erythrophagocytosis is a well-described feature of macrophages, 18 and Prussian blue stains of hemosiderin iron show punctuate staining similar to what was observed in the current study 19 (Figure 1). Previous work has shown macrophage involvement in cerebral microbleeds. 4,6 Pericytes are also known to have phagocytic function, 14,20 and erythrophagocytosis has been observed in systemic pericytes. 21,22 Red blood cells may pass through endothelial junctions in systemic capillaries, resulting in petechial hemorrhages. 23 This is common in thrombocytopenia, along with other hemorrhagic diatheses. It is noteworthy that brain hemorrhage is rare in thrombocytopenia, 24 and this is likely attributable to structural and functional properties of the blood brain barrier that can prevent local hemorrhage. Presence of tight endothelial junctions in the neurovascular unit is one likely component of the brain s armamentarium against hemorrhage. Opening of the endothelial junctions to allow passage of red blood cells might represent age-related changes in barrier function; the latter has been described in cerebral white matter disease of aging with downregulation of blood brain barrier efflux transporter p-glycoprotein. 25 Pericytes are known to be preferentially located adjacent to tight junctions of the blood brain barrier and have been localized adjacent to histamine-induced gaps between endothelial cells. 14 This location is ideally suited for a gatekeeper function of pericytes, in which these cells scavenge and phagocytose red cells that are able to pass the barrier between adjacent endothelial cells. In this scenario, macrophages adjacent to the neurovascular unit would be able to act as secondary scavengers for those red blood cells that are able to bypass pericytes and enter brain parenchyma (Figure 4). Our study is not designed to provide pathological correlations to MRI findings of cerebral microbleeds. This represents a limitation of the present study because our findings indicate microbleeds primarily in basal ganglia location, whereas MRI studies show microbleeds more frequently in lobar site compared to deep brain regions. 1 MRI is known to overestimate the size of microbleeds (the blooming effect ), with MRI diameter on average 150% of pathological lesions; 4 nevertheless, MRI may not be sensitive to the

Fisher et al Cerebral Microbleeds in the Elderly 2785 Disclosures M.F. has received support from Boehringer-Ingelheim (speakers bureau, honoraria, research grants), Neurobiological Technologies (research grant), Otsuka Pharmaceutical (research grant, honoraria), and the Shanbrom Foundation (research gifts). Downloaded from http://stroke.ahajournals.org/ by guest on August 15, 2017 Figure 4. Proposed mechanism for extravasation of red blood cells from brain capillaries. Opening of tight junction allows for pericyte erythrophagocytosis, with adjacent macrophage available as alternative or secondary site for phagocytosis. relatively small microbleed findings of the current study. Other limitations of our study include absence of younger brains and predominance of female subjects. These represent potential future directions of research, along with cognitive function to which pathological features may be correlated. Moreover, it should be noted that the 2 studies described herein were not conducted identically. The initial study focused primarily on subcortical white matter, whereas the second study focused on cortex and basal ganglia. In conclusion, cerebral microbleeds appear to be common in aging brain, occur at the capillary level, and are particularly prevalent in the putamen. Both pericytes and macrophages at the neurovascular unit seem to play a role modulating microhemorrhage. Microbleeds occurred both in the presence and absence of hypertension, and amyloid deposition was not found at site of microbleeds. This suggests that amyloid and hypertension may not necessarily be required for cerebral microbleeds in the aging brain. Further pathological investigations may determine the relationship between cerebral microbleeds as described herein and vasculopathic amyloid deposition and hypertension. Acknowledgments The authors thank Cheryl Cotman for her medical illustrations. Sources of Funding Supported by NIH RO1 NS20989 (M.F.), NIH/NIAAA8116 and Alcohol Research Center Morphology Core NIH 19911 (S.F.), and NIA RO1AG21055, the Al and Trish Nichols Chair in Clinical Neuroscience, ADRC P50 AG16573, and P50 AG000658 (R.C.K.). References 1. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008;70:1208 1214. 2. Lee SH, Ryu WS, Roh JK. Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology. 2009;72:171 176. 3. Vernooij MW, Haag MD, van der Lugt A, Hofman A, Krestin GP, Stricker BH, Breteler MM. Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol. 2009;66:714 720. 4. Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C, Vinters HV, Haacke EM, Holshouser B, Kido D, Kirsch WM: Correlation of hypointensities in suspectibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a post-mortem MRI study. Acta Neuropathol. 2009 Nov 25 [Epub ahead of print]. 5. Greenberg SM. Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology. 1998;51:690 694. 6. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999;20:637 642. 7. Greenberg SM, Nandigam RN, Delgado P, Betensky RA, Rosand J, Viswanathan A, Frosch MP, Smith EE. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke. 2009;40:2382 2386. 8. Rosenblum WI. Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal. Acta Neuropathol. 2008;116:361 369. 9. Braak H, Braak E. Staging of Alzheimer s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271 278; discussion 278 284. 10. Connor JR, Menzies SL, St Martin SM, Mufson EJ. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brain. J Neurosci Res. 1990;27:595 611. 11. Bradbury MW. Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem. 1997;69:443 454. 12. Rouault TA, Cooperman S. Brain iron metabolism. Semin Pediatr Neurol. 2006;13:142 148. 13. Kim DW, Lee HN, Song JE, Jung KJ, Yang WM, Kwon K, Jeon GS, Lee YH, Chung CK, Cho SS. Expression of transferrin binding protein in the capillaries of the brain in the developing chick embryo. Neurochem Res. 2008;33:2288 2293. 14. Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs. 2001;169:1 11. 15. Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008;14:1581 1593. 16. Fisher M. Pericyte signaling in the neurovascular unit. Stroke. 2009; 40(Suppl 1):S13 S15. 17. Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004;75:388 397. 18. Bratosin D, Mazurier J, Slomianny C, Aminoff D, Montreuil J. Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages. Cytometry. 1997;30:269 274. 19. Epstein CE, Elidemir O, Colasurdo GN, Fan LL. Time course of hemosiderin production by alveolar macrophages in murine model. Chest. 2001;120:2013 2020. 20. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular pericytes express macrophage-like function, cell surface integrin M, and macrophage marker ED-2. Microvascular Res. 1996;52:127 142. 21. Bonerandi JJ, Bourdet D, Privat Y, Temime P. Kaposi s disease: Ultrastructural study of 4 cases. Ann Dermatol Syphilligr (Paris). 1975;102:499 506. 22. Schenk P. Erythrophagocytosis in Kaposi s sarcoma in acquired immune deficiency syndrome. ORL. 1986;48:167 173. 23. Nachman RL, Rafii S. Platelets, petechiae, and preservation of the vascular wall. N Engl J Med. 2008;359:1261 1270. 24. Butros LJ, Bussel JB. Intracranial hemorrhage in immune thrombocytopenic purpura: a retrospective analysis. J Pediatr Hematol Oncol. 2003;25:660 664. 25. Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities. Neurology. 2008;71:804 811.

Cerebral Microbleeds in the Elderly: A Pathological Analysis Mark Fisher, Samuel French, Ping Ji and Ronald C. Kim Downloaded from http://stroke.ahajournals.org/ by guest on August 15, 2017 Stroke. 2010;41:2782-2785; originally published online October 28, 2010; doi: 10.1161/STROKEAHA.110.593657 Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright 2010 American Heart Association, Inc. All rights reserved. Print ISSN: 0039-2499. Online ISSN: 1524-4628 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://stroke.ahajournals.org/content/41/12/2782 Data Supplement (unedited) at: http://stroke.ahajournals.org/content/suppl/2012/03/12/strokeaha.110.593657.dc1 http://stroke.ahajournals.org/content/suppl/2013/10/02/strokeaha.110.593657.dc2 Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Stroke is online at: http://stroke.ahajournals.org//subscriptions/

Microhemorragias cerebrales en el anciano Un análisis anatomopatológico Mark Fisher, MD; Samuel French, MD; Ping Ji, MD; Ronald C. Kim, MD Antecedentes y objetivo Las microhemorragias cerebrales en los ancianos se identifican habitualmente en la RM craneal. El objetivo de este estudio fue caracterizar mejor el fundamento anatomopatológico de las microhemorragias. Métodos Estudiamos muestras de cerebro postmortem de 33 individuos sin antecedentes clínicos de ictus y de edades comprendidas entre 71 y 105 años. Las microhemorragias cerebrales se identificaron por la presencia de hemosiderina (hierro), que se detectó mediante histoquímica estándar y tinción con azul Prusia. La localización celular del hierro (en macrófagos y pericitos) se estudió mediante inmunohistoquímica para actina de músculo liso, CD68 y, en casos seleccionados, microscopia electrónica. La presencia de β-amiloide se analizó mediante inmunohistoquímica para el epítopo 6E10. Resultados Se identificaron microhemorragias cerebrales en 22 casos, localizadas a nivel capilar, de arterias pequeñas o de arteriolas. La presencia de microhemorragias fue independiente del depósito de amiloide en el lugar en el que éstas se producían. Aunque la mayoría de los pacientes tenían hipertensión arterial, las microhemorragias estaban presentes con hipertensión arterial y sin ella. El putamen fue la localización de las microhemorragias en todos los casos excepto uno; 1 microhemorragia se encontraba en la sustancia blanca subcortical del lóbulo occipital. La mayor parte de las microhemorragias capilares contenían macrófagos, pero en 2 microhemorragias estudiadas mediante microscopía electrónica había intervención pericitaria. Conclusiones Estos resultados indican que las microhemorragias cerebrales son frecuentes en el cerebro del anciano y pueden producirse a nivel capilar. (Traducido del inglés: Cerebral Microbleeds in the Elderly: A Pathological Analysis. Stroke. 2010;41: 2782-3785.) Palabras clave: amyloid angiopathy n blood brain barrier n hemorrhage, intracerebral n hemosiderin n hypertension n phagocytosis El uso creciente de la RM en los pacientes con ictus ha resaltado la notable prevalencia e importancia de las microhemorragias cerebrales en la población anciana. La RM con el empleo de las secuencias modernas de gradiente-eco ha mostrado la presencia de microhemorragias cerebrales en un 18% de los individuos de entre 60 y 69 años y en el 38% de los de más de 80 años 1. Además, la presencia de microhemorragias cerebrales parece aumentar el riesgo de las hemorragias intracerebrales asociadas al uso de warfarina en > 80 veces 2, y el uso de antiagregantes plaquetarios se asocia a la presencia de microhemorragias 3. Estos resultados subrayan la importancia de las microhemorragias cerebrales. A pesar de ello, en los análisis anatomopatológicos se les ha prestado tan solo una atención limitada. En estudios recientes se han examinado detalladamente las microhemorragias en la angiopatía amiloide cerebral 4, y se ha demostrado una intensa correlación entre las microhemorragias en el tejido cerebral postmortem y las lesiones observadas en la RM. La opinión de consenso es que las microhemorragias de localización lobular reflejan una angiopatía amiloide cerebral subyacente, mientras que las microhemorragias subcorticales profundas indican una vasculopatía hipertensiva 1,5-8. El objetivo del presente estudio fue ampliar nuestros conocimientos sobre la anatomía patológica de las microhemorragias cerebrales en el cerebro del anciano. Nos centramos en las anomalías vasculares subyacentes en las microhemorragias cerebrales, incluido el tipo de vaso, la presencia de angiopatía amiloide asociada y la variedad de células involucradas en las propias microhemorragias. Material y métodos La investigación consistió en 2 estudios de tejido cerebral de individuos ancianos. El estudio inicial se realizó en 12 individuos a los que se practicó la autopsia entre enero de 2006 y diciembre de 2008, sin diagnóstico clínico de enfermedad cerebrovascular, y que fueron seleccionados de forma consecutiva por el Departamento de Anatomía Patológica del Harbor-UCLA Medical Center. Se obtuvieron muestras de sustancia blanca subcortical de los lóbulos frontal, parietal, occipital y temporal. Los fragmentos de tejido cerebral se fi- Recibido el 14 de junio de 2010; aceptado el 2 de septiembre de 2010. Departments of Neurology, Anatomy, and Neurobiology, and Pathology & Laboratory Medicine (M.F.), University of California, Irvine, Calif; Department of Pathology (S.F.), Harbor-UCLA Medical Center, Torrance, Calif; Department of Pathology (P.J.), Harbor-UCLA Medical Center, Torrance, Calif; Department of Pathology & Laboratory Medicine and Neurology (R.C.K.), University of California, Irvine, Calif. Remitir la correspondencia a Mark Fisher, MD, UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Room 121, Orange, CA 92868. E-mail mfisher@uci.edu 2010 American Heart Association, Inc. Stroke está disponible en http://www.stroke.ahajournals.org 19 DOI: 10.1161/STROKEAHA.110.593657

20 Stroke Abril 2011 Figura 1. Lóbulo occipital, sustancia blanca subcortical. A, capilar con hemosiderina; hematoxilina y eosina y azul Prusia (aumentos originales x520). B y C, capilar con hemosiderina; hematoxilina y eosina y azul Prusia (aumentos originales x520). D, inmunotinción de actina de músculo liso α del capilar. La inmunorreactividad es adyacente a la superficie endotelial abluminal, en donde están situados los pericitos (aumentos originales x520). jaron primero en una solución de formol tamponado al 10% durante 2 semanas, y luego se realizaron cortes seriados en preparaciones de 1,0 cm. Para la detección de hemosiderina/ hierro, las preparaciones se tiñeron mediante inmersión utilizando el método de azul Prusia. Se seleccionaron preparaciones (de 4 µm de grosor) para la inclusión en parafina, el corte (20 a 40 por cerebro) y la tinción con hematoxilina y eosina. Para la detección de pericitos, macrófagos y depósito de amiloide, se utilizaron kits de inmunohistoquímica según los protocolos establecidos por los fabricantes. Concretamente, para la detección de pericitos de los capilares cerebrales, se utilizó un anticuerpo monoclonal de ratón contra la actina de musculo liso α humana (Sigma-Aldrich). Para la detección de los macrófagos, se utilizó anticuerpo monoclonal de ratón contra el CD68 humano (Dako North America), y anticuerpo monoclonal de ratón contra epítopo de β-amiloide 6E10 humano (Covance) para la detección de amiloide. La recuperación de antígeno se realizó con el empleo de 10 mmol/l de citrato sódico (ph 6,0) a 95 C durante 15 minutos. Las preparaciones se incubaron primero con anticuerpos primarios a una dilución de 1:2.000 durante 30 minutos a temperatura ambiente. A continuación se incubaron con un anticuerpo secundario biotinilado. La tinción se realizó con el empleo del Cell and Tissue Staining Kit (R&D System) según las instrucciones del fabricante. Se aplicó una contratinción con hematoxilina y se fotografiaron con un microscopio óptico. Las muestras de control negativas se expusieron a un anticuerpo secundario con un isotipo IgG similar (Cell Signaling) al del anticuerpo primario. Para la microscopía electrónica, se seleccionaron los tejidos con tinción positiva de azul Prusia de los capilares, y se fijaron primero en glutaraldehído al 2,5% y luego se fijaron por emersión en tetraóxido de osmio, y a continuación se incluyeron en plástico. Estos cortes se examinaron al microscopio electrónico (Hitachi 600) según las instrucciones del fabricante. El estudio de seguimiento se centró en los ganglios basales y el tejido cortical, utilizando material procedente del University of California Irvine Alzheimer Disease Research Center, y del 90+ Study. Se utilizaron bloques del núcleo lenticular de 21 individuos (que habían fallecido en la octava, novena décima y undécima décadas de vida) obtenidos a nivel de los cuerpos mamilares de cerebros que habían sido fijados durante 2 semanas en paraformaldehído al 4% y se incluyeron en parafina para realizar cortes a 8 µm. Además de las tinciones de hematoxilina y eosina y de azul Prusia, se realizaron inmunotinciones con el empleo de proteína β-amiloide antihumana de ratón a una dilución de 1:10.000 (6E10; Covance), α-sinucleína antihumana de conejo a dilución de 1:3.000 (Chemicon), CD68 antihumano de ratón (clon KP1) a dilución de 1:400 (Dako), actina de músculo liso antihumana de ratón (clon 1A4) a dilución de 1:100 (Dako), y tau antihumana de conejo a dilución de 1:3.000 (Dako), utilizando el substrato cromógeno 3-amino-9-etilcarbazol (Dako). Se determinó el estadio de Braak según el método anteriormente descrito 9. De forma resumida, los ovillos neurofibrilares se evaluaron semicuantitativamente (0 a +++) en 6 regiones de neocórtex cerebral junto con la CA1 del hipocampo, el subículo, la región entorrinal-transentorrinal y las amígdalas; la intensidad de los ovillos se puntuó en una escala de I a VI. Se cuantificaron las microhemorragias (para el estudio de seguimiento solamente) en el campo microscópico abarcado por un objetivo de 2x; se examinó la parte media del putamen a nivel de los cuerpos mamilares, y se determinó el número de capilares y conductos no capilares limitados por 1 depósitos de hemosiderina. A partir de estos recuentos, se calculó el número de Figura 2. Microscopía electrónica de la sustancia blanca subcortical, con tinción para el hierro (azul Prusia). Pericito, unido a la pared capilar y rodeado por la membrana basal, que contiene depósitos densos de hierro. Unión estrecha de la célula endotelial (flechas rojas) inmediatamente adyacente al pericito. Se muestran también la lámina basal (flecha verde), el endotelio (flecha azul), la hemosiderina en el pericito (asterisco blanco), los hematíes (# amarillo) y la luz del vaso sanguíneo (punta de flecha roja). Aumentos originales x15.000.

Fisher y cols. Microhemorragias cerebrales en el anciano 21 Tabla. Microhemorragias cerebrales: características clínicas y anatomopatológicas Paciente Edad Sexo HTA PA MH Puntuación de Braak Puntuación MH 1 86 F S 130/70 N 2 79 F S 124/70 N 3 71 F S 153/70 N 4 73 F S 134/82 N 5 72 M S 131/86 N 6 80 F S 134/63 S 7 78 M S 132/82 N 8 71 F S 127/82 N 9 77 F S 166/87 S 10 87 F N 111/72 N 11 80 F N 107/43 N 12 84 M N 140/70 N 13 84 F N 129/86 S V 159 14 77 F N DESC S VI 44 15 77 F DESC 132/80 S VI 26 16 100 F S 105/60 S II 152 17 104 F N 124/65 S V 159 18 83 F N 120/70 S V 111 19 102 F S 138/64 S III 89 20 94 F N 130/55 S VI 244 21 88 M S 118/70 S VI 85 22 96 F S 135/70 S VI 130 23 91 F S 160/76 S IV 81 24 79 M DESC DESC S VI 30 25 91 F S DESC S II 111 26 97 M S 145/80 S II 448 27 102 F S 129/74 S II 56 28 94 M S 150/90 N I 0 29 105 F N 120/60 S I 152 30 103 F S 80/50 S II 67 31 99 F S 158/64 S II 322 32 96 F S 110/70 S II 89 33 100 F S 198/78 S II 193 PA indica presión arterial; F, mujeres; HTA, hipertensión arterial; M, varones; MH, microhemorragias; N, no; DESC, desconocido; S, sí. Estudio inicial: pacientes 1 12; estudio de seguimiento: pacientes 13 33. vasos por centímetro cuadrado (densidad capilar). Se utilizaron pruebas de t de Student y correlaciones de Pearson para determinar las puntuaciones de microhemorragias; se consideró significativo un valor de p < 0,05. Figura 3. Depósito pericapilar de hemosiderina (marrón) en el interior del macrófago (rojo) en el putamen, mediante inmunotinción de CD68. Aumentos originales x600. Resultados En el estudio inicial, la edad de los sujetos oscilaba entre 71 y 92 años, y la media era de 79,3 años; 3 eran varones y 9 mujeres. Se observaron microhemorragias en 2 sujetos, localizadas en la sustancia blanca subcortical del lóbulo occipital y en el putamen. En estos sujetos, había presencia de hierro en la pared capilar de la superficie endotelial abluminal en el lugar en el que se encontraban los pericitos capilares (Figura 1). La microscopía electrónica de estas microhemorragias mostró la presencia de hierro en los pericitos inmediatamente adyacentes a la unión estrecha endotelial (Figura 2). No se observó un depósito de β-amiloide vascular en los lugares de depósito de hierro. Nueve de los 12 sujetos tenían antecedentes de hipertensión arterial, incluidos los 2 con microhemorragias (Tabla). En el estudio de seguimiento, la edad de los sujetos osciló entre 77 y 105 años y la media fue de 93,4 años; había 4 varones y 17 mujeres. El intervalo de tiempo postmortem oscilaba entre 3 y 21 horas (media, 6,3 horas). Trece sujetos tenían antecedentes de hipertensión arterial y en 6 no había antecedentes hipertensivos. En 2 sujetos, los antecedentes de hipertensión arterial no estaban claros; 1 de ellos no tenía hipertensión arterial en la lectura final. Se observaron microhemorragias en el putamen en 20 de 21 sujetos, incluidos todos los que no tenían antecedentes de hipertensión arterial. La presencia de hierro se observó predominantemente en el interior de los macrófagos adyacentes a arterias pequeñas, arteriolas y, especialmente, capilares (Figura 3); se observó también como depósito libre en el tejido. En la mayor parte de los casos, tenía una distribución amplia en el interior del putamen. Un sujeto (número 31) presentaba signos de angiopatía amiloide cerebral que afectaba a vasos alejados de las microhemorragias. En los demás, se observó un depósito de proteína β-amiloide en placas difusas y neuríticas, pero no en el interior de las paredes de los capilares y arteriolas afectados. La inmensa mayoría de los vasos afectados por estas microhemorragias eran capilares, y en la Tabla se indica la puntuación de microhemorragia (densidad capilar). No hubo diferencias significativas en la puntuación de microhemorragia de los varones en comparación con las mujeres, ni en los sujetos con hipertensión arterial en comparación con los que no la tenían, y no se observó una asociación significativa entre la edad y la puntuación de microhemorragia ni entre ésta y el intervalo postmortem (datos no presentados). Discusión Observamos signos frecuentes de microhemorragias cerebrales en el cerebro del anciano, a menudo con afectación capilar. La mayoría de las microhemorragias se produjeron en el putamen. Afectaron a vasos sin depósito de amiloide y se dieron en presencia y en ausencia de hipertensión arterial. Por otra parte, los pericitos de la barrera hematoencefálica, además de los macrófagos cerebrales parecían intervenir en las microhemorragias.

22 Stroke Abril 2011 Figura 4. Mecanismo propuesto para la extravasación de los hematíes de los capilares cerebrales. La apertura de la unión estrecha permite la eritrofagocitosis pericitaria, y los macrófagos adyacentes constituyen una localización alternativa o secundaria para la fagocitosis. La captación de hierro en el cerebro es compleja y puede producirse como consecuencia de una hemorragia y por una endocitosis de hierro ligado a transferrina, mediada por receptores 10,11. Esto último se produce en las células endoteliales de la barrera hematoencefálica y conduce a una distribución del hierro tisular principalmente en los oligodendrocitos 10,11. Este es un proceso bien descrito y relacionado con la edad que, sin embargo, no incluye fagocitosis ni inflamación 10-13. La unidad neurovascular de la barrera hematoencefálica está formada por células endoteliales en estrecha proximidad con pericitos, separados tan solo por la membrana basal 14-16. Además, se sabe que los macrófagos se encuentran adyacentes a la unidad neurovascular, de forma residente o como células que migran a ese lugar 17. Así pues, no es de extrañar que ambos tipos de células parezcan tener un papel en las microhemorragias. La eritrofagocitosis es una característica bien descrita de los macrófagos 18, y el azul Prusia que tiñe el hierro de hemosiderina muestra una tinción puntiforme similar a la que se observó en el presente estudio 19 (Figura 1). Estudios anteriores han mostrado la intervención de los macrófagos en las microhemorragias cerebrales 4,6. Se sabe también que los pericitos tienen una función fagocitaria 14,20, y se ha observado una eritrofagocitosis en pericitos sistémicos 21,22. Los hematíes pueden pasar por las uniones endoteliales de los capilares sistémicos, dando lugar a hemorragias petequiales 23. Esto es frecuente en la trombocitopenia, junto con otras diátesis hemorrágicas. Es de destacar que la hemorragia cerebral es infrecuente en la trombocitopenia 24, y esto es atribuible probablemente a las propiedades estructurales y funcionales de la barrera hematoencefálica que pueden prevenir la hemorragia local. La presencia de uniones endoteliales estrechas en la unidad neurovascular es un componente probable de la defensa de que dispone el cerebro frente a la hemorragia. La apertura de las uniones endoteliales para permitir el paso de hematíes podría corresponder a cambios de la función de la barrera relacionados con la edad; esto último se ha descrito en la enfermedad de la sustancia blanca cerebral del envejecimiento con regulación negativa de la salida por la barrera hematoencefálica del transportador glucoproteína p 25. Se sabe que los pericitos se localizan preferentemente en una zona adyacente a las uniones estrechas de la barrera hematoencefálica y se han identificado en zonas adyacentes a espacios inducidos por la histamina entre las células endoteliales 14. Esta localización es idónea para una función de portero de los pericitos, en la que estas células eliminan y fagocitan los hematíes que son capaces de atravesar la barrera por entre células endoteliales adyacentes. En este escenario, los macrófagos adyacentes a la unidad neurovascular serían capaces de actuar como eliminadores secundarios de los hematíes capaces de evitar a los pericitos y penetrar en el parénquima cerebral (Figura 4). Nuestro estudio no se diseñó para determinar correlaciones anatomopatológicas de las observaciones de microhemorragias cerebrales en la RM. Esto constituye una limitación del estudio, puesto que nuestras observaciones indican microhemorragias principalmente en localizaciones de los ganglios basales, mientras que los estudios de RM muestran microhemorragias con mayor frecuencia en una localización lobular, en comparación con las regiones cerebrales más profundas 1. Se sabe que la RM sobrevalora el tamaño de las microhemorragias ( efecto blooming ), de tal manera que el diámetro en la RM es, en promedio, > 150% del de las lesiones anatomopatológicas 4 ; no obstante, la RM puede no ser sensible a los signos de microhemorragias relativamente pequeñas del presente estudio. Otras limitaciones de nuestro estudio son la ausencia de cerebros de individuos de menor edad y el predominio de mujeres. Éstas son posibles vías futuras de investigación, junto con las de la función cognitiva con la que pueden estar correlacionadas estas características anatomopatológicas. Además, debe recordarse que los 2 estudios descritos aquí no se realizaron de forma idéntica. El estudio inicial se centró fundamentalmente en la sustancia blanca subcortical, mientras que el segundo estudio se centró en la corteza y los ganglios basales. En resumen, las microhemorragias cerebrales parecen ser frecuentes en el cerebro del anciano, se producen a nivel capilar y son especialmente prevalentes en el putamen. Tanto los pericitos como los macrófagos de la unidad neurovascular parecen desempeñar un papel en la modulación de la microhemorragia. Las microhemorragias se produjeron tanto en presencia como en ausencia de hipertensión arterial, y no se observó depósito de amiloide en el lugar en el que se encontraban. Esto sugiere que amiloide e hipertensión arterial pueden no ser necesariamente imprescindibles para que se produzcan las microhemorragias cerebrales en el cerebro del anciano. Es posible que en nuevas investigaciones anatomopatológicas pueda determinarse la relación entre las microhemorragias cerebrales como se han descrito aquí y la vasculopatía por depósito de amiloide y la hipertensión arterial.

Fisher y cols. Microhemorragias cerebrales en el anciano 23 Agradecimientos Los autores expresan su agradecimiento a Cheryl Cotman por las ilustraciones médicas. Fuentes de financiación Financiado por NIH RO1 NS20989 (M.F.), NIH/NIAAA8116 y Alcohol Research Center Morphology Core NIH 19911 (S.F.), y NIA RO1AG21055, Al and Trish Nichols Chair in Clinical Neuroscience, ADRC P50 AG16573, y P50 AG000658 (R.C.K.). Declaraciones M.F. ha recibido financiación de Boehringer-Ingelheim (panel de conferenciantes, honorarios, subvenciones de investigación), Neurobiological Technologies (subvención de investigación), Otsuka Pharmaceutical (subvención de investigación, honorarios) y la Shanbrom Foundation (donaciones para investigación). Bibliografía 1. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008;70:1208 1214. 2. Lee SH, Ryu WS, Roh JK. Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology. 2009;72:171 176. 3. Vernooij MW, Haag MD, van der Lugt A, Hofman A, Krestin GP, Stricker BH, Breteler MM. Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol. 2009;66:714 720. 4. Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C, Vinters HV, Haacke EM, Holshouser B, Kido D, Kirsch WM: Correlation of hypointensities in suspectibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a post-mortem MRI study. Acta Neuropathol. 2009 Nov 25 [Epub ahead of print]. 5. Greenberg SM. Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology. 1998;51:690 694. 6. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999;20:637 642. 7. Greenberg SM, Nandigam RN, Delgado P, Betensky RA, Rosand J, Viswanathan A, Frosch MP, Smith EE. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke. 2009;40:2382 2386. 8. Rosenblum WI. Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal. Acta Neuropathol. 2008;116:361 369. 9. Braak H, Braak E. Staging of Alzheimer s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271 278; discussion 278 284. 10. Connor JR, Menzies SL, St Martin SM, Mufson EJ. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brain. J Neurosci Res. 1990;27:595 611. 11. Bradbury MW. Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem. 1997;69:443 454. 12. Rouault TA, Cooperman S. Brain iron metabolism. Semin Pediatr Neurol. 2006;13:142 148. 13. Kim DW, Lee HN, Song JE, Jung KJ, Yang WM, Kwon K, Jeon GS, Lee YH, Chung CK, Cho SS. Expression of transferrin binding protein in the capillaries of the brain in the developing chick embryo. Neurochem Res. 2008;33:2288 2293. 14. Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs. 2001;169:1 11. 15. Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008;14:1581 1593. 16. Fisher M. Pericyte signaling in the neurovascular unit. Stroke. 2009; 40(Suppl 1):S13 S15. 17. Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004;75:388 397. 18. Bratosin D, Mazurier J, Slomianny C, Aminoff D, Montreuil J. Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages. Cytometry. 1997;30:269 274. 19. Epstein CE, Elidemir O, Colasurdo GN, Fan LL. Time course of hemosiderin production by alveolar macrophages in murine model. Chest. 2001;120:2013 2020. 20. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular pericytes express macrophage-like function, cell surface integrin M, and macrophage marker ED-2. Microvascular Res. 1996;52:127 142. 21. Bonerandi JJ, Bourdet D, Privat Y, Temime P. Kaposi s disease: Ultrastructural study of 4 cases. Ann Dermatol Syphilligr (Paris). 1975;102:499 506. 22. Schenk P. Erythrophagocytosis in Kaposi s sarcoma in acquired immune deficiency syndrome. ORL. 1986;48:167 173. 23. Nachman RL, Rafii S. Platelets, petechiae, and preservation of the vascular wall. N Engl J Med. 2008;359:1261 1270. 24. Butros LJ, Bussel JB. Intracranial hemorrhage in immune thrombocytopenic purpura: a retrospective analysis. J Pediatr Hematol Oncol. 2003;25:660 664. 25. Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities. Neurology. 2008;71:804 811.

10 Stroke Vol. 5, No. 4 Full Article Cerebral Microbleeds in the Elderly A Pathological Analysis Mark Fisher, MD 1 ; Samuel French, MD 2 ; Ping Ji, MD 3 ; Ronald C. Kim, MD 4 1 Departments of Neurology, Anatomy, and Neurobiology, and Pathology & Laboratory Medicine, University of California, Irvine, Calif; 2 Department of Pathology, Harbor-UCLA Medical Center, Torrance, Calif; 3 Department of Pathology, Harbor-UCLA Medical Center, Torrance, Calif; 4 Department of Pathology & Laboratory Medicine and Neurology, University of California, Irvine, Calif. β Stroke 2010; 41: 2782-2785 μ α β

11 μ β α β

12 Stroke Vol. 5, No. 4 β

13

14 Stroke Vol. 5, No. 4 References 1. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008;70:1208 1214. 2. Lee SH, Ryu WS, Roh JK. Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology. 2009;72:171 176. 3. Vernooij MW, Haag MD, van der Lugt A, Hofman A, Krestin GP, Stricker BH, Breteler MM. Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol. 2009;66:714 720. 4. Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C, Vinters HV, Haacke EM, Holshouser B, Kido D, Kirsch WM: Correlation of hypointensities in suspectibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a post-mortem MRI study. Acta Neuropathol. 2009 Nov 25 [Epub ahead of print]. 5. Greenberg SM. Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology. 1998;51:690 694. 6. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999;20:637 642. 7. Greenberg SM, Nandigam RN, Delgado P, Betensky RA, Rosand J, Viswanathan A, Frosch MP, Smith EE. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke. 2009;40:2382 2386. 8. Rosenblum WI. Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal. Acta Neuropathol. 2008;116:361 369. 9. Braak H, Braak E. Staging of Alzheimer s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271 278; discussion 278 284. 10. Connor JR, Menzies SL, St Martin SM, Mufson EJ. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brain. J Neurosci Res. 1990;27:595 611. 11. Bradbury MW. Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem. 1997;69:443 454. 12. Rouault TA, Cooperman S. Brain iron metabolism. Semin Pediatr Neurol. 2006;13:142 148. 13. Kim DW, Lee HN, Song JE, Jung KJ, Yang WM, Kwon K, Jeon GS, Lee YH, Chung CK, Cho SS. Expression of transferrin binding protein in the capillaries of the brain in the developing chick embryo. Neurochem Res. 2008;33:2288 2293. 14. Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs. 2001;169:1 11. 15. Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008;14:1581 1593. 16. Fisher M. Pericyte signaling in the neurovascular unit. Stroke. 2009; 40(Suppl 1):S13 S15. 17. Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004;75:388 397. 18. Bratosin D, Mazurier J, Slomianny C, Aminoff D, Montreuil J. Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages. Cytometry. 1997;30:269 274. 19. Epstein CE, Elidemir O, Colasurdo GN, Fan LL. Time course of hemosiderin production by alveolar macrophages in murine model. Chest. 2001;120:2013 2020. 20. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular pericytes express macrophage-like function, cell surface integrin M, and macrophage marker ED-2. Microvascular Res. 1996;52:127 142. 21. Bonerandi JJ, Bourdet D, Privat Y, Temime P. Kaposi s disease: Ultrastructural study of 4 cases. Ann Dermatol Syphilligr (Paris). 1975;102:499 506. 22. Schenk P. Erythrophagocytosis in Kaposi s sarcoma in acquired immune deficiency syndrome. ORL. 1986;48:167 173. 23. Nachman RL, Rafii S. Platelets, petechiae, and preservation of the vascular wall. N Engl J Med. 2008;359:1261 1270. 24. Butros LJ, Bussel JB. Intracranial hemorrhage in immune thrombocytopenic purpura: a retrospective analysis. J Pediatr Hematol Oncol. 2003;25:660 664. 25. Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities. Neurology. 2008;71:804 811.