1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

Similar documents
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

Einstein ( ) YITP

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

SUSY DWs


Kaluza-Klein(KK) SO(11) KK 1 2 1

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

CKY CKY CKY 4 Kerr CKY

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

(1) (2) (3) (4) 1

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

YITP50.dvi

main.dvi

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

ssastro2016_shiromizu

Part I Review on correlation functions of the XXZ spin chain (1) H. Bethe(1930): Exact solutions of the one-dimensional Heisenberg model (XXX spin cha

h23w1.dvi

,,..,. 1

all.dvi

4/15 No.

main.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T


nenmatsu5c19_web.key

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

TOP URL 1

〈論文〉興行データベースから「古典芸能」の定義を考える

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

02-量子力学の復習

2



On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

『共形場理論』

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

TOP URL 1

arxiv: v1(astro-ph.co)

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

1 # include < stdio.h> 2 # include < string.h> 3 4 int main (){ 5 char str [222]; 6 scanf ("%s", str ); 7 int n= strlen ( str ); 8 for ( int i=n -2; i

2012専門分科会_new_4.pptx

_Y05…X…`…‘…“†[…h…•

kougiroku7_26.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

2 146

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

奈良大学紀要 46号(よこ)☆/5.横田

TOP URL 1

262 F s PRO A Community Investment and the Role of Non-profit Organizations: Present Conditions in the US, the UK, and Japan Takashi Koseki Abstract 1

PowerPoint Presentation

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Introduction 2 / 43

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

PSCHG000.PS

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

2

Numerical Analysis II, Exam End Term Spring 2017


早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

0406_total.pdf

Microsoft Word - PCM TL-Ed.4.4(特定電気用品適合性検査申込のご案内)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

音響部品アクセサリ本文(AC06)PDF (Page 16)

先端社会研究 ★5★号/4.山崎

24 Depth scaling of binocular stereopsis by observer s own movements

エレクトーンのお客様向けiPhone/iPad接続マニュアル

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

iPhone/iPad接続マニュアル

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

量子物性物理学とトポロジー -- 対称性、量子もつれ、トポロジー --

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論


インターネット接続ガイド v110


重力と宇宙 新しい時空の量子論

浜松医科大学紀要

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :


all.dvi

p _08森.qxd

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

FA

137. Tenancy specific information (a) Amount of deposit paid. (insert amount of deposit paid; in the case of a joint tenancy it should be the total am


all.dvi

Transcription:

Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353.

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = det(e µa ). (e a µ, ω ab µ ) Poincaré cf. Poincaré gauge theory, 3D Chern-Simons gravity, BF gravity, Ashtekar formalism, 1

(Anti) de Sitter Gravity (MMSW Gravity) MacDowell and Mansouri 77, West 78, Stelle and West 79, Fukuyama 83 e µ a ω µ ab multiplet ω µ AB = { ab ωµ if A = a, B = b, a5 ω µ a e µ if b = 5, A, B = 1, 2, 3, 4, 5, a, b = 1, 2, 3, 4. ω µ AB : SO(2, 3)(anti de Sitter ) SO(1, 4)(de Sitter ) SO(1, 3) AdS(dS) gravity 4 SO(2, 3) or SO(1, 4) break Einstein 2

metric g µν Cosmological Constant: Λ 1 l 2 l: SO(2, 3) = negative, SO(1, 4) = positive 3

Weyl, Majorana fermion SO(2, 3), SO(1, 4) Weyl fermion SO(1, 4) Majorana fermion SO(2, 3) Majorana fermion action Kugo, Townsend 82 4D AdS(dS) gravity Weyl, Majorana fermion 4

4D AdS(dS) gravity Weyl, Majorana fermion SO(2, 3) or SO(1, 4) Dirac fermion SO(1, 3) Weyl fermion, SO(1, 3) Majorana fermion 5

2. (Anti) de Sitter Gravity in Four Dimensions 4D spacetime SO(2, 3) or SO(1, 4) ω µab metric compensator field (Higgs ) Z A = Z A (x) σ(x) SO(1, 3) SO(2, 3) (AdS) A field strength R µνab takes the form R µνab = µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb. We construct an SO(2, 3) invariant action 6

AdS Gravity Sgrav = = d 4 xlgrav ( ) [ ( ) d 4 xϵ ABCDE ϵ µνρσ ZA 1 il 16g 2 R µνbc R λρde { (ZF ) ] 2 +σ(x) 1} D µ Z B D ν Z C D ρ Z D D σ Z E, il g is a coupling constant and l is a real constant. The equation of motion for Z A is (Z A ) 2 = l 2. 7

If we take a solution breaking the SO(2, 3) symmetry this breaking derives the vierbein e µa, Z A = (0, 0, 0, 0, il), D µ Z A ( µ δ AB ω µab )Z B = { iωµa5 l e µa ifa = a, 0 ifa = 5, Lgrav takes the Einstein gravity form Lgrav = µ C µ e 16πG ( R + 6l ) 2. Here, µ C µ is the topological Gauss-Bonnet term. G is the gravitational constant derived from 16πG = g 2 l 2. 8

SO(1, 4) (ds) We construct an SO(1, 4) invariant action ds Gravity Sgrav = = d 4 xlgrav ( ) [ ( ) d 4 xϵ ABCDE ϵ µνρσ ZA 1 l 16g 2 R µνbc R λρde { (ZF ) ] 2 +σ(x) 1} D µ Z B D ν Z C D ρ Z D D σ Z E. l The equation of motion for Z A is (Z A ) 2 = l 2. We break the SO(1, 4) group to 9

the local Lorentz group SO(1, 3) as This breaking leads to Z A = (0, 0, 0, 0, l). D µ Z A = ( µ δ AB ω µab )Z B = { ωµa5 l e µa ifa = a. 0 ifa = 5. Lgrav takes the form Lgrav = µ C µ e 16πG ( R 6l ) 2. 10

3. Gamma Matrix Gamma Matrix Γ A SO(1, 3) γ A, SO(2, 3) γ (AdS) A, SO(1, 4) γ (ds) A Dirac (Pauli) basis {Γ A, Γ B } = 2δ AB, Γ A = Γ A. γ T A = { γa if A = 2, 4, 5, γ A if A = 1, 3. 11

4. Dirac Fermion Fukuyama 83 Let ψ be an SO(2, 3)(SO(1, 4)) Dirac fermion. SO(2, 3) (AdS) An SO(2, 3) invariant Dirac spinor action is defined as L Dirac = ϵ ABCDE ϵ µνρσ ψ ( is AB D µ 3! iλ Z A il D µ Z B 4! where S AB 1 4i [γ(ads) A, γ (AdS) B], and λ is a mass. ) ψd ν Z C D ρ Z D D σ Z E ψ ψ γ (AdS) 5γ (AdS) 4 12

By the symmetry breaking Z A = (0, 0, 0, 0, il) from SO(2, 3) to SO(1, 3), L Dirac reduces to the Dirac action in the four-dimensional curved spacetime L Dirac = e ψ ( γ a e µa ) ( D µ + λ ψ, = e ψ 1 ( 2 eµa γ ad µ ) D µ γ a ) + λ ψ, ψ = ψ γ 4. where γ a iγ (AdS) 5γ (AdS) a, γ 5 γ (AdS) 5. γ (AdS) a iγ 5 γ a, γ (AdS) 5 γ 5. 13

SO(1, 4) (ds) In the ds gravity, we consider an SO(1, 4) invariant Dirac spinor action L Dirac = ϵ ABCDE ϵ µνρσ ψ ( Z A D µ l γ(ds) B 3! + λ Z A l D µ Z B 4! ) ψd ν Z C D ρ Z D D σ Z E which is a slightly different form from the SO(2, 3) case. Here, ψ = ψ γ (ds) 4. By the symmetry breaking Z A = (0, 0, 0, 0, l) from SO(1, 4) to SO(1, 3), L Dirac 14

reduces to the Dirac action in the four-dimensional curved spacetime L Dirac = e ψ where ψ = ψ γ 4 and ( γ a e µa ) ( D µ + λ ψ, = e ψ 1 ( 2 eµa γ ad µ ) D µ γ a γ (ds) A γ A. ) + λ ψ, 15

5. Weyl Fermion symmetry 4D Weyl fermion SO(2, 3) SO(1, 4) spinor 1, SO(2,3)(SO(1,4)) covariant 2, chiral projections 1±γ 5 2 operator P ± SO(2, 3) (AdS) Let ψ be an SO(2, 3) Dirac spinor. We introduce a projection operator, P ± 1 2 ( 1 ± ) l2 Z A γ (AdS) A Z 2 il, 16

which is P± 2 = P ± and P + P = 0. We define ψ ± P ± ψ. If we break the SO(2, 3) symmetry Z A = (0, 0, 0, 0, il), P ± reduces to the chiral projections P ± P ± P ± = 1 ± γ(ads) 5 2 = 1 ± γ 5. 2 Then, ψ ± becomes Weyl spinors ψ ± ψ ± ψ ± = P ± ψ, 17

respectively, which have definite chirality. We can construct an SO(2, 3) invariant action by modifying the action for a Dirac fermion, L Weyl = ϵ ABCDE ϵ µνρσ ψ+ ( is AB D µ 3! iλ Z A il D µ Z B 4! ) ψ + D ν Z C D ρ Z D D σ Z E The action becomes a SO(1, 3) massless Weyl fermion action by breaking the symmetry L Weyl = e (γ ψ+ a e µa ) D µ + λ ψ+ = e (γ ψ+ a e µa D ) µ ψ +, 18

SO(1, 4) (ds) Let ψ be an SO(1, 4) Dirac spinor. In the SO(1, 4) case, we introduce P ± 1 2 ( 1 ± l 2 Z A γ (ds) A Z 2 l ), which is P± 2 = P ± and P + P = 0. We define ψ ± P ± ψ. If we break the SO(1, 4) symmetry as Z A = (0, 0, 0, 0, l), 19

P ± reduces to chiral projections P ± P ± P ± = 1 ± γ(ds) 5 2 = 1 ± γ 5. 2 Then ψ ± becomes Weyl fermions ψ ±, ψ ± ψ ± = P ± ψ, respectively, which have definite chirality. We can construct SO(1, 4) invariant action by modifying the Dirac action 20

( L Weyl = ϵ ABCDE ϵ µνρσ Z A D µ ψ+ l γ(ds) B 3! D ν Z C D ρ Z D D σ Z E. + λ Z A l D µ Z B 4! The action becomes an SO(1, 3) massless Weyl fermion action by breaking the symmetry L Weyl = e (γ ψ+ a e µa ) D µ + λ ψ+ = e (γ ψ+ a e µa D ) µ ) ψ + ψ +. 21

6. Majorana Fermion SO(1, 3) 4D Majorana fermion ψ M ψ M = ψ c M C ψ T M, C is the charge conjugation in SO(1, 3). If we take the Dirac (Pauli) basis, C is C = γ 2 γ 4. However, C is not covariant under either SO(2, 3) or SO(1, 4). ψ M is not consistent with the SO(2, 3) (SO(1, 4)) covariance. If a charge conjugation is defined, a Majorana fermion can be defined. 22

Conditions for SO(2, 3) or SO(1, 4) charge conjugation C 1. C 1 γ A C is covariant under the symmetry to be consistent with the action. C 1 γ A C = ±γ T A, is sufficient where the signatures are the same for all A. 2. B defined by Bψ M = C ψ T M must satisfy B B = 1, since a charge conjugation has a Z 2 symmetry. (B = γ 2 for SO(1, 3).) 3. C reduces to C = γ2 γ 4 by breaking the symmetry. 23

SO(2, 3) (AdS) C = γ (AdS) 2γ (AdS) 4. SO(1, 4) (ds) C ( Z A γ (ds) A l + ) Z2 l 2 i γ (ds) 2γ (ds) 4γ (ds) 5. l 2 24

SO(2, 3) (AdS) The SO(2, 3) gamma matrices γ (AdS) A are constructed as γ (AdS) a iγ 5 γ a, γ (AdS) 5 γ 5, From the condition 1, we have two candidates C 1 = γ (AdS) 1γ (AdS) 3γ (AdS) 5, C 2 = γ (AdS) 2γ (AdS) 4. C 2 = γ (AdS) 2γ (AdS) 4 = γ 2 γ 4 is equal to the SO(1, 3) charge conjugation Therefore C 2 satisfies the condition 2 and 3. Note that C = C 2 is not a 25

charge conjugation in the SO(2, 3) representation. fermion ψ M is defined by Therefore AdS Majorana ψ M = C ψ T M = C 2 ψt M. SO(2, 3) invariant AdS Majorana fermion action L Majorana = ϵ ABCDE ϵ µνρσ ψm ( is AB D µ 3! iλ Z A il D µ Z B 4! ) ψ M D ν Z C D ρ Z D D σ Z E Let us investigate the consistency of this action. Substituting ψ M = C 2 ψt M, to 26

the right-hand of the action, we obtain ϵ ABCDE ϵ µνρσ ( ψ T M( C T ) 1) ( is AB D µ 3! iλ Z A il D µ Z B 4! ) ( ) C ψt M D ν Z C D ρ Z D D σ Z E. We can easily check that = L Majorana. Thus, the definition of the charge conjugation is consistent with the action. If we break the SO(2, 3) symmetry by Z A = (0, 0, 0, 0, il), the action reduces to an SO(1, 3) Majorana fermion action in the Einstein gravitational theory in four dimensions L Majorana = e ψ M (γ a e µa ) D µ + λ ψ M. 27

SO(1, 4) (ds) γ (ds) A γ A From the condition 1, we obtain two candidates C 3 γ (ds) 1γ (ds) 3, C 4 γ (ds) 2γ (ds) 4γ (ds) 5. Condition 2 B B = 1: Neither C 3 nor C 4 can be defined as a consistent charge conjugation. 28

Now, we consider a third candidate: C 5 ( Z A γ (ds) A l + ) Z2 l 2 i γ (ds) 2γ (ds) 4γ (ds) 5. l 2 This satisfies the condition 1. Condition 2. B 5B 5 = 1 ( B 5 = ( Z A γ (ds) A l + Condition 3. C 5 γ (ds) 2γ (ds) 4 = γ 2 γ 4 = C. A ds Majorana spinor ) ) Z 2 l 2 i γ (ds) l 2γ (ds) 2 5 ψ M = C 5 ψt M. 29

SO(1, 4) invariant ds Majorana fermion action ( L Majorana = ϵ ABCDE ϵ µνρσ Z A D µ ψm l γ(ds) B 3! + λ Z A l D µ Z B 4! ) ψ M D ν Z C D ρ Z D D σ Z E We can prove the consistency of the action for the charge conjugation C 5 similar to SO(2, 3) case. ϵ ABCDE ϵ µνρσ ( ( ψm(c T T ) 1) Z A D µ l γ(ds) B 3! D ν Z C D ρ Z D D σ Z E. + λ Z A l D µ Z B 4! ) (C ) ψt M 30

We can easily check that = L Majorana. If we break the SO(1, 4) symmetry by Z A = (0, 0, 0, 0, l), the action becomes the Majorana fermion action in the Einstein gravitational theory in four dimensions L Majorana = e ψ M (γ a e µa ) D µ + λ ψ M, 31

7. Summary and Discussion Weyl, Majorana fermion action AdS (ds) Gravity action New mechanism to derive a chiral fermion from a nonchiral fermion Chiral symmetry and chiral anomaly Z A dynamical 32