17_19

Similar documents
Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Manoeuvring Performance of the Fishing Boat Modified by a Bulge by Yasuo Yoshimura, Member Shiro Suzuki Ning Ma, Member Yoshiyuki Kajiwara Summary Fis

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

kiyo5_1-masuzawa.indd


Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap


Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Study on Velocity Dependence of Breaking Component in Ice Resistance. Part 1 Experimental Evidence of Velocity Dependence of Breaking Component in I

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

28 Horizontal angle correction using straight line detection in an equirectangular image

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

tnbp59-21_Web:P2/ky132379509610002944

Steel Construction Vol. 6 No. 22(June 1999) Engineering

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me


IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

特-3.indd

特-2.indd

0801391,繊維学会ファイバ12月号/報文-01-西川

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S


Journal of Textile Engineering, Vol.53, No.5, pp

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -


渡辺(2309)_渡辺(2309)

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

JFE.dvi

先端社会研究 ★5★号/4.山崎

29 Short-time prediction of time series data for binary option trade

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)


原稿.indd

修士論文

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic

FA

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

untitled

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2


Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

24 Depth scaling of binocular stereopsis by observer s own movements

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

IP IIS Construction of Overhead View Images by Estimating Intrinsic and Extrinsic Camera Parameters of Multiple Fish-Eye Cameras Shota Kas

0801297,繊維学会ファイバ11月号/報文-01-青山

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 1 tf-idf tf-idf i

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

人文学部研究年報12号.indb

Fig, 1. Waveform of the short-circuit current peculiar to a metal. Fig. 2. Waveform of arc short-circuit current. 398 T. IEE Japan, Vol. 113-B, No. 4,

Vol. 12 ( ) Mirifusus Evolution of Radiolarian Mirifusus (Marine Plankton) and Mechanical Optimization of Frame Structure Structual Mechanichal

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル

FA FA FA FA FA 5 FA FA 9

日立金属技報 Vol.34

06_学術.indd

202

K02LE indd

Vol.7 No.2 ( ) in mm m/s 40 m/s 20 m/s m/s 20m/s 1999 US ,

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

技術研究報告第26号

所得の水準とばらつきの時系列的推移について-JGSSと政府統計の比較-

大学における原価計算教育の現状と課題

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

浜松医科大学紀要

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

1..FEM FEM 3. 4.

論文9.indd

untitled

Vol.1 No Autumn

人工知能学会研究会資料 SIG-FPAI-B Predicting stock returns based on the time lag in information diffusion through supply chain networks 1 1 Yukinobu HA

untitled

untitled

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

Transcription:

19 横傾斜状態で航行する船の流体力微係数と操縦性 * 正会員 安 川宏紀 正会員 平 田法隆 * Maneuverability and Hydrodynamic Derivatives of Ships Traveling in Heeled Condition by Hironori Yasukawa, Member Noritaka Hirata, Member Summary Oblique towing test and circular motion test with changing heel angle were carried out to capture the hydrodynamic forces acting on ship models of container ship, pure car carrier and ferry. Based on the measured forces, the hydrodynamic derivatives with respect to lateral velocity (v), yaw rate (r) and heel angle (φ) were obtained for surge force, lateral force, yawing moment and roll moment. Using the derivatives obtained, ship maneuverability traveling in heeled condition was discussed based on a linear theory presented in this paper. As a result, we made clear the maneuvering characteristics of heeled ships. When the ship travels in heeled condition to starboard side, she turns to port side. Such characteristic depends on the order of magnitude and the plus(minus) sign of the hydrodynamic derivatives with respect to heel angle, Y φ and N φ. In case of the ferry, the turning strength per unit heel angle was about 1/3 comparing with that per unit rudder angle. There is a trend that the turning performance improves with increasing the heel angle. This is due to the course instability appears with increasing the heel angle. The course stability is deeply related to nonlinear derivatives with respect to heel angle, such as Y vφφ, Y rφφ, N vφφ and N rφφ. 1. 29 11 Hirano and Takashina 1) 2) 3) * 原稿受理 平成 24 24 年 8 月 817 日 17 4) Kim 5) PMM 6) (Circular Motion Test; CMT) Araki 7) ONRT 3 CMT

2 日本船舶海洋工学会論文集第 17 号 213 年 6 月 2. 2. 1 Fig.1 O X Y Z X Y Z 8) o xyz x y z o X x ψ φ x, y u, v z r U u 2 + v 2 β tan 1 ( v/u) δ Table 1 Principal particulars of ship models L (m) 2. 2.35 2.5 B (m).322.445.4 d (m).18.112.17 Volume (m 3 ).479.619.564 C b.691.53.529 x G/L.65.31.212 F n.232.253.284 (a) X (b) x U v β u (C) o r y Fig. 2 Ship models O ψ δ φ o z y Y 2. 3 4 (X) (Y ) (N) (K) X, Y x y N,K z x Fig. 1 Coordinate systems β r φ 2. 2 Table 1 () () 2 2 () L B d 3 Volume C b x G 3 Fig.2 3 Table 1 (F n) β 2 deg 2 deg, 5 deg r.2.2,.1 φ 15, 1, 5, deg 4 x ρ( ), L, d, U 2 2) X v r φ 2 X vvvv Y, N, K 1 +3

横傾斜状態で航行する船の流体力微係数と操縦性 21 r r 2 X = R + X vvv 2 + X vrv r + X vφv φ +X rφr φ + X φφφ 2 + X vvvvv 4 (1) Y = Y vv + Y r r + Y φφ + Y vvvv 3 + Y vvrv 2 r +Y vvφv 2 φ + Y vφφv φ 2 + Y rφφr φ 2 (2) N = N vv + N rr + N φφ + N vvvv 3 + N vvrv 2 r +N vvφv 2 φ + N vφφv φ 2 + N rφφr φ 2 (3) K = K vv + K rr + K φφ + K vvvv 3 + K vvrv 2 r +K vvφv 2 φ + K vφφv φ 2 + K rφφr φ 2 (4) R Y v, Y r 2. 4 Fig.3 (β) (Y ) (N ) (K ) r (φ) Y φ N φ ( ) 3 (2) (4) 3 Y N K β 15, 2 deg φ 15 deg K (, ) (4) K Fig.4 (r ) Y, N β Y r Y φ φ Y N 3 Fig.5 (β) X r β X β X X β> β < 3 Table 2 X vr Y r Table 2 Hydrodynamic derivatives based on midship position X vv.69.99.193 X vr + m y.1791.113.878 X vvvv.4844.3593.485 X vφ.284.433.3 X rφ.292.379.133 X φφ.79.429.88 Y v.2613.285.2439 Y r m x.87.372.364 Y vvv 1.387 1.771 1.5357 Y vvr.6799.336.3947 Y φ.14.11.132 Y vvφ.4765.659.1968 Y vφφ.7328.463.4253 Y rφφ.173.533.127 N v.131.1432.815 N r.375.497.464 N vvv.14.121.169 N vvr.4162.6487.629 N φ.99.124.12 N vvφ.2157.928.2568 N vφφ.713.924.71 N rφφ.694.747.996 K v.83.7.67 K r.62.23.35 K vvv.625.144.278 K vvr.31.231.91 K φ.7.42.23 K vvφ.1196.392.125 K vφφ.659.473.163 K rφφ.478.327.74 2. 5 2. 5. 1 Y φ N φ Table 3 Y φ N φ S175 SR18 LPS -twin 2 -sngl 1 ONRT 2 2 (m ) Fig.6 m v, r, φ Y φ, N φ ( v = r = ) φ Y φ N φ

22 日本船舶海洋工学会論文集第 17 号 213 年 6 月.2.2.2 β = 2(deg) β = 2(deg) β = 2(deg).1.1.1 β = 1(deg) β = 1(deg) β = 1(deg) β = (deg) β = (deg) β = (deg) β = 1(deg) β = 1(deg) β = 1(deg).1.1.1.2 2 15 1 5 5 N.7.6.5.4.3.2.1.1.2.3.4.5 β = 2(deg) β = 2(deg) β = 1(deg) β = (deg).6.7 2 15 1 5 5 K.1.8 β = 1(deg) β = 2(deg) β = 2(deg).2 2 15 1 5 5 N.7.6.5.4.3.2.1.1.2.3 β = 2(deg) β = 1(deg) β = (deg) β = 1(deg).4.5.6 β = 2(deg).7 2 15 1 5 5 K.1.8.2 2 15 1 5 5 N.7.6.5.4.3.2.1.1.2.3.4.5 β = 2(deg) β = 2(deg).6.7 2 15 1 5 5 K.1.8 β = 1(deg) β = (deg) β = 1(deg) β = 2(deg).6.4.2.2.4.6 β = 1(deg) β = 2(deg).8.1 2 15 1 5 5 β = 2(deg) β = 1(deg) β = (deg).6.4.2.2.4.6.8.1 2 15 1 5 5 β = 2(deg) β = 1(deg) (deg) β = 1(deg) β = 2(deg).6.4.2.2.4.6.8.1 2 15 1 5 5 β = 2(deg) β = 1(deg) (deg) β = 1(deg) β = 2(deg) Fig. 3 Lateral force, yaw moment and roll moment coefficients with different drift angles versus heel angle (r = )

横傾斜状態で航行する船の流体力微係数と操縦性 23.2.1.2.1.2.1 r =.2 r =.1 r = r =.1 r =.2.1 r =.2 r =.1 r = r =.1 r =.2.2 2 15 1 5 5 N.2.1 r =.2 r =.1 r = r =.1 r =.2.2 2 15 1 5 5 N.2.1.2 2 15 1 5 5 N.2.1.1.1.1 r =.2 r =.1 r = r =.1 r =.2.2 2 15 1 5 5.1 r =.2 r =.1 r = r =.1 r =.2.2 2 15 1 5 5.1 r =.2 r =.1 r = r =.1 r =.2.2 2 15 1 5 5 Fig. 4 Lateral force and yaw moment coefficients with different non-dimensional yaw rate versus heel angle (β = ) 2 1 1 2.1 2 1 1 2.1 2 1 1 2.1.2.2.2.3.4 X.5 φ = (deg) φ = 5 (deg) φ = 1 (deg) φ = 15 (deg).3.4 X.5 φ = (deg) φ = 5 (deg) φ = 1 (deg) φ = 15 (deg) X.3.4.5 φ = (deg) φ = 5 (deg) φ = 1 (deg) φ = 15 (deg) Fig. 5 Surge force coefficients with different heel angle versus hull drift angle (r = )

24 日本船舶海洋工学会論文集第 17 号 213 年 6 月 Y φ N φ.81,.83 3 4% Y φ, N φ Y φ N φ N φ Table 3 Comparison of Y φ, N φ and z v/d name m Y φ N φ z v/d.223.14.99.59.21.11.124.52.169.132.12.64 H- 1).177..76 S175 2).162.15.3.54 F-LPS 3).211.41.45.69 F- 3).193.3.43.32 -twin 5).189.54 -sngl 5).189.84 ONRT 7).131.5.51 Y φ.2.1 ONRT S175 H F F LPS.1.2.12.14.16.18.2.22.24 m N φ.2.4.6.8.1.12.14 ONRT S175 H F F LPS.16.12.14.16.18.2.22.24 m K Y β K Y K Y z v = K v/y v (5) z v (z v) (L) K Y z v Table 3 z v/d (m ) Fig.8 F- z v/d Fig.8 -sngl z v/d.5.7 z v Y K Fig.7 K.5.4 φ = (deg) φ = 5 (deg).3 φ = 1 (deg) φ = 15 (deg).2 mean.1.1.1.1.2.3 Fig. 6 Comparison of Y φ and N φ versus mass coefficient m Fig. 7 Comparison of K versus Y for various heel angles 2. 5. 2 K Y Fig.7 Y K (φ) 2. 5. 3 Table 2 Table 4 Y vφφ, Y rφφ, N vφφ, N rφφ (φ) Y v, Y r, N v, N r Y vφφ,

横傾斜状態で航行する船の流体力微係数と操縦性 25 z v / d 1.9.8.7.6.5.4.3 S175 sngl twin F LPS.2.12.14.16.18.2.22.24 m Fig. 8 Comparison of z v/d versus mass coefficient m 3. ( ) 3. 1 ( ) m + m x u ( ) m + m y v r = X (6) ( ) m + m y v + ( ) m + m x u r m yα φ z = Y (7) 2, N vφφ, 2 Y rφφ 3 N rφφ 3 Y vvφ, N vvφ Y N v v Y vvφ N vvφ v ( ) 3 Y vvφ N vvφ Table 4 Comparison of nonlinear derivatives related to heel angle Y vφφ.7328.463.4253 N vφφ.713.924.71 Y rφφ.173.533.127 N rφφ.694.747.996 Y vvφ.4765.659.1968 N vvφ.2157.928.2568 ( ) I z + J z ṙ = N G (8) ( ) I x + J x φ m yα z v = K (9) sway-roll u v φ m I x,i z x z m x,m y x y J x,j z x z α z X, Y, N G,K (1) (4) (δ) (v, r ) U (φ ) (7)(8) ( ) m + m y v + ( ) m + m x r = Y φφ + ( ) Y v + Y vφφφ 2 v + ( ) Y r + Y rφφφ 2 r +Y δ cos φ δ (1) ( ) I z + J z ṙ = N φφ + ( N v + N vφφφ) 2 v + ( N r + N rφφφ 2 ) r + N δ cos φ δ (11)

26 日本船舶海洋工学会論文集第 17 号 213 年 6 月 Y δ, N δ φ (Y φφ N φφ ) v r Y vφφ, Y rφφ, N vφφ, N rφφ φ (1)(11) v T 1T 2 r + ( T 1 + T 2) ṙ + r = T 3 δ + S δδ + S φφ (12) T 1T 2 =(m + m y)(i z + J z)/c (13) ] T 1 + T 2 = [(m + m y)n r +(I z + J z)y v /C (14) T 3 =(m + m y)n δ cos φ /C (15) S δ =(Y δ N v Y v N δ) cos φ /C (16) S φ =(Y φn v Y v N φ)/c (17) C = Y v N r (Y r m m x)n v (18) Y v = Y v + Y vφφφ 2 Y r = Y r + Y rφφφ 2 N v = N v + N vφφφ 2 N r = N r + N rφφφ 2 (19) S φ S δ 9) S φ δ ( T 3 = ) t = r = r = (12) [ r =(S φφ + S δδ ) 1 T 1 T 1 T e t /T 2 1 + T ] 2 T 1 T 2 e t /T 2 (2) (2) ( ) T 1,T 2 (13)(14) C 3. 2 Table 1 3 (,, ) 3 Table 5 φ ( ) φ Table 5 Hydrodynamic derivatives on maneuvering for analysis and course stability criterion Y v.3164.3499.291 Y r m x.349.281.576 Y δ.411.546.645 Y φ.14.11.132 Y vφφ.7328.463.4253 Y rφφ.125.447.259 N v.1262.13.936 N r.572.743.52 N δ.219.277.38 N φ.1.126.116 N vφφ.76.838.61 N rφφ.695.738.988 C(φ = ).56.37.46 Table 5 C.25L m y =.126, J z =.9 3. 3 φ 15 deg 2 deg N r Fig.9 Y v, Y r m x, N v, φ (19) Yv, Nr Y r m x, N v Y vφφ, Y rφφ, N vφφ, N rφφ Y v, N r Fig.1 C φ C 1 Yv Nr, C 2 (Yr m m x)n v C C 1 C 2 C 1 C Fig.11,, C

横傾斜状態で航行する船の流体力微係数と操縦性 27 linear derivatives Fig. 9.1.1.2.3.4.5 N v * Y v * Y r * m x 1N r *.6 5 1 15 2 φ (deg) Change of linear derivatives versus heel angle C.2.15.1.5 C(=C 1 C 2 ) C 2 C 1 5 1 15 2 φ (deg) Fig. 1 Change of C and the components C 1 and C 2 versus heel angle ΔC φ = ΔC = 3 ΔC ΔC.5.5.1.15 5 1 15 2 φ (deg) (17) (Y φn v Y v N φ) Y φ, (Y φn v Y v N φ) S δ C φ = S φ S δ S φ 1 S δ 3 3 deg 1 deg Fig.13 T 1,T 2 T 1,T 2 T 1 S φ & S δ 8 6 4 2 2 S δ S φ 4 5 1 15 2 φ (deg) Fig. 12 T 1 & T 2 7 6 5 4 3 2 Change of S φ versus heel angle T 1 1 T 2 5 1 15 2 φ (deg) Fig. 11 Change of ΔC versus heel angle for 3 ships Fig. 13 Change of T 1 and T 2 versus heel angle Fig.12 S φ S δ S φ 4. 3

28 日本船舶海洋工学会論文集第 17 号 213 年 6 月 3 ( ) Y φ, N φ 1/3 Y vφφ, Y rφφ, N vφφ, N rφφ 1) Hirano, M. and Takashina, J. : A Calculation of Ship Turning Motion Taking Coupling Effect due to Heel into Consideration, 59 (198), pp.71-81. 2) 15 (1982), pp.232-244. 3) 2 (26), pp.257-269. 4) 93 (1997), pp.35-46. 5) Kim, Y.-G., Kim, S.-Y., Kim, H.-T., Lee, S.-W. and Yu, B.-S.: Prediction of the Maneuverability of a Large Container Ship with Twin Propellers and Twin Rudders, J. Marine Science and Technology, Vol.12, No.3 (27), pp.13-138. 6), ( ), 19 (25), pp.11-114. 7) Araki, M., Sada-Hosseini, H., Sanada, Y., Tamamoto, K., Umeda, N. and Stern, F.: Estimating Maneuvering Coefficients using System Identification Methods with Experimental, System-Based, and CFD Free-Running Trial Data, Ocean Engineering, 51(212), pp.63-84 8) 173 (1993) pp.29-22. 9) 424 (1964), pp.8-22. 1) 13 (211), pp.11-18. 11),,, 2 2 125 (211) pp.29-219. 12) 146 (1979), pp.229-236. A1. Table 1 3 (,, ) (CMT) ( )

横傾斜状態で航行する船の流体力微係数と操縦性 29.2 2 2.2.2 Y* Y* r =.2 r =.1 r = r =.1 r =.2 N*.5 2 2.5 N*.5 r =.2 r =.1 r = r =.1 r =.2 Fig.A1 CMT CMT 11) Table A1 Table 2 Y v N r 12) 2 2 Fig. A1.2 r =.2 r =.1 r = r =.1 r =.2 2 2.5 r =.2 r =.1 r = r =.1 r =.2 CMT results: lateral force and yawing moment coefficients for and (2)(3) φ = Y = Y vv + Y r r + Y vvvv 3 + Y vvrv 2 r + Y δ δ (A1) Table A1 Hydrodynamic derivatives based on midship position including the effect of propeller and rudder Y v.3164.3499.291 Y r m x.328.355.486 Y vvv 1.3233 1.7978 1.9952 Y vvr.6924.5393.484 Y δ.411.546.645 N v.1241.1226.846 N r.583.763.564 N vvv.1535.284.237 N vvr.587.7573.734 N δ.219.277.38 N = N vv + N rr + N vvvv 3 + N vvrv 2 r + N δδ (A2)