Similar documents
1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

Surface Chemisty (Fundamentals). III. Masayuki NAKAGAKI Faculty of Pharmaceutical Sciences, Kyoto University (Sakyo-ku, Kyoto)

Structure and Strength of Acid-Base in Aqueous Medium Aritsune KAJI* and Masaru NAKAHARA* * Department of Chemistry, Faculty of Science, Kyoto Univers

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

微粒子合成化学・講義

微粒子合成化学・講義

Caloric Behavior of Chemical Oscillation Reactions Shuko Fujieda (Received December 16, 1996) Chemical oscillation behavior of Belousov- Zhabotinskii

Hideki MATSUOKA: An Introduction to Small-angle Scattering Fundamental aspects of small-angle scattering technique are duly explained from the very ba

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe


X線分析の進歩36 別刷

9) H. SCHMCLZRIED: Z. Elektrochem. 66 (l%1) p ) W. D. KINGERY et al.: J. Am. Chem. Soc., 42 (1959), p ) F. HUND: Z. Phys. Chem., 199 (195

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

Fig. 1 Green glass in blank mold.

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie


Fig. la PL spectra of PSL prepared on Si specimen (p = 1 k Q m) with electrochemical etching in HF solution (26wt %) under galvanostatic conditions of

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko


London -van der Waals Coulomb Fe, Mn


(WP)

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

光学

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio


Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

ロシア人の名前

1272 CHEMOTHERAPY MAR. 1975

T05_Nd-Fe-B磁石.indd

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori

0801391,繊維学会ファイバ12月号/報文-01-西川


Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b


Corrosion Wear of Alloy Tool Steel (SKD 11) Coated with VC and Precipitation Hardening Stainless Steel (SUS 630) in Sodium Chloride Aqueous Solution T

Clay Minerals in the Amakusa Pottery Stones and Some Features of Their Pottery Clays. Surface Charge of Sericite and Dispersion- Coagulation Propertie

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji


Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.


H2O S Šöá ª As Se Cl a, É ècèi (Iron pyrite, FeS2) É µ ÄŠÜ º Ì à Ì è Marcasite (FeS2) y Pyrr


Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Application of Solid Electrolyte Sensors to Hot Corrosion Studies Nobuo Otsuka* *Iron & Steel Research Laboratories, Sumitomo Metal Industries, Ltd. C

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Chart 1.Method for Preparation of 1.25% Indomethacin Inhalation Solution (ph 7.4)

Journal of the Ceramic Society of Japan 103 [2] (1995) Paper Sintering and Grain Growth Rates of Two Spheres with Different Radii Hidehiko TAN

The Japanese Journal of Psychology 1989, Vol. 60, No. 4, Changes of body sensation through muscular relaxation: Using the method of measuring

1) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc., 98, 7414(1976). 2) S. Yoshida, S. Hayano, J. Memb. Sci.,

Surface Morphology for Poly-L-lactide Fibers Subjected to Hydrolysis Suong-Hyu Hyon Institute for Frontier Medical Sciences, Kyoto University 53, Shog

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366

<Measurements of Isobaric Boiling Point Curves at High and Low Pressures> Received on July 12, 1968 ** Kazuo Kojima (Dept. Eng. Chem., Nihon Univ., To

Evaluation of Anisotropy and Preferred Orientation of Carbon and Graphite Materials Yoshihiro Hishiyama Fig.1 Diffraction condition in Fourier space.

š ( š ) ,148,770 3,147,082 1, ,260 1,688 1,688 10,850 10, , ,

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2

Fig. 1 Experimental apparatus.

Fig. 1. Diagram illustrating the method of electrical stimulation for collecting the semen of drake. Table 1. Relationships between the dilution rate

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite


特-4.indd

Microsoft Excelを用いた分子軌道の描画の実習

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

01-C08244-食品の物性 indd

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

Nippon Suisan Gakkaishi 55 (10), (1989) ) Effects of ph and Sodium Chloride on the Water Holding Capacity of Surimi and its Gel Yoshiaki Aka

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

COE

untitled

Fig.1 A location map for the continental ultradeep scientific drilling operations.

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

On the nitrogen cycle and cultivable capacity of fish in the balanced aquarium By Aritsune SAEKI

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

<4D F736F F D2092B28DB882C982C282A282C42E646F63>

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum


Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

.w..01 (1-14)

k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p


On the Detectability of Earthquakes and Crustal Movements in and around the Tohoku District (Northeastern Honshu) (I) Microearthquakes Hiroshi Ismi an


weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and

Transcription:

Akira Watanabe : The Coagulation of Colloidal Powders. The stability of hydrophobic colloids is mainly governed by the magnitude of the potential energy of repulsion due to the superposition of electrical double layers and van der Waals attraction between approaching particles. In the absence of potential barriers, every collision between particles leads to adhesion (rapid coagulation), and in the presence of potential barriers, the probability of collision is decreased, thus leading to slow coagulation. A quantitative theory was given by Reerink and Overbeek to describe the influence of the double layer thickness at constant Stern potential on colloid stability, a situation which occurs when indifferent inorganic electrolytes are added to sols. While, Ottewill, Rastogi and the present author gave a theory which treated the case where the change in the Stern potential occurs due to adsorption. An extended theory of coagulation was also given which treated the general case of changing ionic strength and potential. The experimental verification of the theory thus obtained was carried out by measuring the coagulation kinetics of positively charged silver iodide sols spectrophotometrically. Electrokinetic measurements were also made by using ultramicroelectrophoresis. The agreement between the theory and experiments was very good and a reasonable value of the van der Waals constant was obtained. Experiments were also shown which were carried out by employing the twin dropping mercury electrodes polarized at various potentials in electrolytic solutions. The condition of coalescence of the mercury droplets, i. e. the relation between the ionic strength and the critical potential of coalescence, was proved to be in excellent agreement with the theory of coagulation of colloid particles. Thus, the interaction between finely dispersed particles in hydrophobic colloids is essentially the same as that acting between macroscopic mercury droplets. (Received April, 10, 1964)

Fig.1 The Stern pictures for interfacial electrical double layer, in the presence of small (A), medium (B) and large (C) specific adsorption of oppositely charged ions. + cations ; - anions ; - deficit of cations ; + deficit of anions ; s, the slipping plane for electrokinetic phenomena.

Fig.9 Changes in the potential distribution in the electrical double layer. A, the double layer compression, and B, the Stern potential suppression.

Fig.14 Ċ vs. log concentration of dodecyl surface active agents for positive silver iodide cols. Table1 The adsorption of surface active agents on positive silver iodide sols.

Fig.15 Ċvs. log concentration of electrolytes for silver iodide sols covered with 10-4 M/l STS. La(NO3)3; Ba(N03)2; Ca(N03)2; CdSO4 ; ~ NaNO3. Table2 The counter ion binding of silver iodide sols covered with 10-4 M/l STS. a=100a, Ċ*=-89mv.

Fig.17 optical density vs. time for coagulation of positive silver iodide sols by sodium sulphate. AgI sol: 5 ~10-4M/l, pag 3, a=100a. Na2SO4: 6.67 ~ 10-4, œ 1.00 ~10-3, 1.33 ~10-3, 2.00 ~10-3, œ 3.00 ~10-2M/l.

Fig.19 Log stability vs. log molar concentration for alkyl sulphates. Fig.20 Log stablity vs. log molar concentration for surface active sulphonates. Fig.21 Log stability vs. Ċ curves for surface active sulphonates. --- theoretical curve for A=3 ~10-12erg.

Fig.22 Shift of the free energy minimum due to the Stern layer interaction. Fig. 23 Formation of tetradecyl sulphate salts. A, Electrophoretic mobility U, ƒê/sec/v/cm vs. log molar concentration of added electrolytes. B, Optical density, 90 sec after mixing, vs. log molar concentration of added electrolytes. Th(N03)4, La(N03)3, Ba(N03)2, Ca(N03)2. Fig.24 Formation of dodecyl benzenesulphonate salts. A, Electrophoretic mobility U, ƒê/sec/v/cm vs. log molar concentration of added electrolytes. B, Optical density, 90 sec after mixing, vs. log molar concentration of added electrolytes. Th(N03)4; La(N03)3; Ba(N03)2; Ca (NO3)2; ž MgSO4; CdSO4; ZnSO4; MnSO4.

Fig. 25 Log stability vs. K a curves for AgI sols covered with STS. Ÿ LiNO3 œ U02(NO3)2 Ba(NO3)2 Th(N03)4 ~ NaNO3 CdSO4 Ca(N03)2 La(NO3)3 KN03 ZnSO4 ž MgSO4 MnSO4 Fig.26 The coalescence experiment of mercury droplets. A, B, mercury droplets; C, reference (pool) electrode ; D, choke coil ; F, filter circuit ; P, potentiometer ; R1, R2, resistors ; T1, T2, transformers ;R1, standard variable resistor; Cx, standard variable capacitor; AMP, amplifier; AFO audiofrequency oscillator, 1,000 cps ; SYN, synchroscope ; TDME, twin dropping mercury electrodes.

Fig.28 Critical potential vs. log concentration curves for the coalescence of mercury droplets. A KC1; KF; œ Na2SO4; Zn(NO3)2; La(NO3)3; Th(NO3)4. A, B, the coagulation concentrations for the positive silver iodide sol, ƒä=+130mv ; A', B', the concentrations of mono-and divalent anions, corresponding to the critical potential E+=130mV.

u ² Ì æ Ñ ² è à v æ11šª æ2 Fig.29 Log critical potential vs. log ionic concentration curves for simple inorganic electrolyte solutions. K+ ; - - Na+; Zn++; La+++ ; Th++++ œ ; Cl-; NO3- V SO4--; 1, 2, 3, 4, the absolute values of ionic valencies. log ce=-6log z+ logb" (94) Fig.30 Critical potential vs. log ionic concentration curves for sodium citrate solutions.

Fig.31 The effect of various agents on the coalescence of twin dropping mercury electrodes. Supporting electrolyte, 10-1M/l KCl. Polyvinyl alchol (P=1,400), L Epan (copolymer of ethylene oxide and propylene oxide) ; œ SIDS; Cetylpyridinium chloride; Glycine. 10) D.L. Chapman : Phil. Mag. (6) 25, (1913) 475. 11) L. Gouy : J. Physique (4) 9, (1910) 457 ; Ann. Physique (9) 7, (1917) 129. 12) N. K. Adam : "Physics and Chemistry of Surfaces", 14) D.C. Grahame : Chem. Revs., 41, (1947) 441. 15) R. Parsons : "Modern Aspects of Electrochemistry 1", (ed. by O'M Bockris) Butterworths, London 1) K. J. Mysels : "Introduction to Colloid Chemistry", Interscience, New York (1959). 2) H. R. Kruyt : "Colloid Science 2", Elsevier, Amsterdam (1949). 3) H. R. Kruyt : "Colloid Science 1 ", Elsevier, Amsterdam (1952). 4) M. Smoluchowski : Physik. Z., 17, (1916) 557, Univ., 38 (1960) 158. 31) J. T. Davies, E. K..Rideal : "Interfacial Phenomena", Acad. Press, London (1961). 586. 5) J. Crank: "Mathematics of Diffusion", Oxford Univ. Press, London (1956). 6) A. Einstein: Ann. Physik, 17, (1905) 549 ; 19, (1906) 371. 7) E. A. Guggenheim: "Thermodynamics", North Holland, Amsterdam (1957) 373. 8) O. Stern: Z. Elektrochem., 30, (1924) 508. 9) J. Lyklema: Trans. Faraday Soc., 59, (1963) 418. Oxford Univ. Press, London (1941). 13) J. A. V. Butler : "Elect rocapillarity", Methuen, London (1939) ; "Electrical Phenomena at Interfaces", Methuen, London (1951). (1954). 16) 9218, ±B : Th, 20 (1952) 247, 308, 358, 419. 17) P. Debye, E. Hiickel : Physik. Z., 24, (1923) 184, 305. 18) E. J. Verwey, J. Th. G. Overbeek : "Theory of Stability of Lyophobic Colloids", Elsevier, Amsterdam (1948). 19) A. L. Loeb, J. Th. G. Overbeek, P. H. Wiersema: "The Electrical Double Layer around a Spherica Colloid Particle", M.I.T. Press, Cambridge, Mass. (1960). 20) A. Watanabe : Bull. Inst. Chem. Res., Kyoto Univ., 38, (1960). 235. 21) F. Booth: J. Chem. Phys., 19 (1951) 391, 1327, 651. 22) B. E. Conway, J. O'M Bockris, A. Ammar :, Trans. Faraday Soc., 47, (1951) 756. 23) D.C. Grahame : J. Chem. Phys., 18, (1950) 903. 24) M. Eigen, E. Wicke : Z. Elektrochem., 56, (1952) 551 ; J. Physic. Chem., 58, (1954) 703. 25) V. Freise: Z. Elektrochem., 56, (1952) 822. 26) H. Brodowsky, H. Strehlow : ibid., 63, (1959) 262. 27) n Ó ¹, Ò ŸŽõ, ã c à j: d», 29 (1961) 701, 777. 28) A. Watanabe, F. Tsuji, S. Ueda: Kolloid Z., 191, (1963) 147 ; 193 (1963) 39. 29) R. H. Ottewill, M. C. Rastogi, A. Watanabe : Trans. Faraday Soc., 56, (1960) 854. 30) A. Watanabe: Bull. Inst. Chem. Res., Kyoto

32) A. Watanabe, F. Tsuji, S. Ueda: Proc. 2nd Intern. Congr. Surface Activity, 3, (1957) 94. 33) I. Langmuir : J. Chem. Phys., 6, (1938) 893. 34) F. Booth : Disc. Faraday Soc., 18, (1954) 104. 35) B. V. Derjaguin : ibid., 18, (1954) 85 ; Trans. Faraday Soc., 36, (1940) 203. 36) S. Levine, G. P. Dube : Trans. Faraday Soc., 36, (1940) 215. 37) F. London : Z. Physik, 63, (1930) 245. 38) J. C. Slater, J. G. Kirkwood : Phys. Revs., 37, (1931) 682. 39) J. Th. G. Overbeek, M. J. Sparnaay : Disc. Faraday Soc., 18, (1954) 12. 40) B. V. Derjaguin, A. S. Titijevskaia, I. I. Abricossova, A. D. Malkina : ibid., 18, (1954) 24. 41) H. C. Hamaker : Physica, 4, (1937) 1058. 42) S. Chandrasekhar: Rev. Modern Phys., 15, (1943) 1. 43) J. Q. Umberger, V. K. La Mer : J. Amer. Chem. Soc., 67, (1945) 1099. 44) N. Fuchs : Z. Physik, 89, (1934) 736. 45) P. Debye : Trans. Electrochem. Soc., 82, (1942) 265. 46) H. Freundlich : Z. physik. Chem., 44, (1903) 129; 73, (1910) 385. 47) H. Freundlich, G. von Elissafoff : ibid., 79, (1912) 385. 48) W. B. Hardy: Proc. Roy. Soc., 66, (1899) 1100; J. Phys. Chem., 4, (1900) 235 ; Z. physik. Chem., 33, (1900) 385. 49) H. Schulze : J. prakt. Chem. (2) 25, (1882) 431 ; 27, (1883) 320. 50) H. Reerink, J. Th. G. Overbeek : Disc. Faraday Soc., 18, (1954) 74. 51) G. H. Jonker, H. R. Kruyt : ibid., 18, (1954) 170. 52) A. Watanabe: Bull. Inst. Chem. Res., Kyoto Univ., 38, (1960) 216. 53) R.H. Ottewill, A. Watanabe : Kolloid Z., 171, (1960) 33. 54) R. H.. Ottewill, A. Watanabe : ibid., 170, (1960) 38. 55) ã c à j, n Ó ¹:ŽÀŒ±»Šw u À7,ŠÛ P(1956) 386. 56) G. E. van Gils, H. R. Kruyt : Kolloid Beih., 45, (1937) 60. 57) S.A. Troelstra, H. R. Kruyt : Kolloid Z., 101, (1942) 182. 58) J. Th. G. Overbeek : Kolloid Beih., 54, (1943) 287. 59) D.C. Henry: Proc. Roy. Soc. (London) A, 133, (1931) 106. 60) A. Watanabe : Bull. Inst. Chem. Res., Kyoto Univ., 38, (1960) 179. 61) R. H. Ottewill, A. Watanabe : Kolloid Z., 170, (1960) 132. 62) P. Mukerjee, K. J. Mysels, C. J. Dulin : J. Phys. Chem., 62, (1958) 1390, 1937, 1400. 63) R. H. Ottewill, A. Watanabe : Kolloid Z., 173, (1960) 122. 64) G. Oster : J. Biol. Chem., 190, (1951) 55. 65) A. Watanabe : Bull. Inst. Chem. Res., Kyoto Univ., 38, (1960) 248. 66) I. M. Klotz : "The Proteins 1", (ed. by Neurath and Bailey), Acad. Press, New York (1953). 67) Œã õ ½, n Ó ¹: ú»,84, (1963) 480. 68) A. Watanbe, R. Gotoh : Kolloid Z., 191, (1963) 36. 69) n Ó ¹, ¼ { Y,Œã õ ½: \. 70) J. T. Edsall, J. Wyman : "Biophysical Chemistry 1", Acad. Press, New York (1957). 71) H. C. Hamaker : "Hydrophobic Colloids," Amsterdam (1938) 16; Rec. tray. chim., 55, (1936) 1015 ; 56, (1937) 3. 72) H. R. Kruyt, M.A.M. Klompe : Kolloid Beih., 54, (1942) 484. 73) A. Kuhn : "Kolloidchemisches Taschenbuch", Akad. Verlags., Leipzig (1960). 74) J. Lyklema, J. Th. G. Overbeek : J. Colloid Sci., 16, (1961) 501. 75) J. W. Mitchell : Lecture at the Univ. of Cambridge, England (1959). 76) R. H. Ottewill, J. A. Sirs: Bull. Photoelectr. Spectrometry Group, 10, (1957) 262. 77) R. W. Horne, R. H. Ottewill, A. Watanabe : Proc. 3rd Intern. Congr. Surface Activity, 1, Cologne (1960) 203. 78) R. H. Ottewill, A. Watanabe : Kolloid Z., 173, (1960) 7. 79) E. J. Verwey : Chem. Revs., 16, (1935) 363. 80) S. Hachisu, K. Furusawa : Science of Light, 12, (1963) 1. 81) M. B. M'Ewen, M. I. Pratt : Trans. Faraday Soc., 53, (1957) 535 ; M. B. M'Ewen, D. L. Mould, ibid, 53, (1957) 548. 82) R. N. Gurney: "Ionic Processes in Solution", Mc- Graw-Hill, New York (1953). 83) R. H. Ottewill, M. C. Rastogi : Trans. Faraday Soc., 56, (1960) 866, 880. 84) P. Becher : "Emulsions", Reinhold, New York (1957). 85) n Ó ¹,Šç, 7 (1963) 886, 915, 941. 86) n Ó ¹: ƒ [ƒ ƒ ƒoƒ ƒtƒb [, 10 (1962) 175.