x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

Similar documents
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

73

all.dvi

all.dvi

dvipsj.8449.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

i

( ) ( )

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

untitled

Microsoft Word - 計算力学2007有限要素法.doc

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

TOP URL 1

1

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

untitled

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

all.dvi

all.dvi

A

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

?


1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

TOP URL 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Z: Q: R: C:

ii

pdf

2


genron-3

notekiso1_09.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

untitled

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Gmech08.dvi

keisoku01.dvi

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

Untitled

Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,



1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)


untitled

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C


Note.tex 2008/09/19( )

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Jacobson Prime Avoidance

Z: Q: R: C: 3. Green Cauchy

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Gmech08.dvi

SO(2)


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

D d d c b a c x n cε c sε c c σ c sσ c n a c a t sε t sσ t n a t cε t cσ t S n = 0 ( ) 2 bd + n a 2 cdc + atd xn = bd + n ( ac + at ) n = n 1 I M = E

kou05.dvi


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

°ÌÁê¿ô³ØII

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

i

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

2000年度『数学展望 I』講義録

i 18 2H 2 + O 2 2H 2 + ( ) 3K


V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

, = = 7 6 = 42, =

応力とひずみ.ppt

Transcription:

1 8 6 No-tension 1. 1 1.1................................ 1 1............................................ 5.1 - [B].................................. 5................................. 6.3.......................................... 7.4........................................ 7 3. No-tension 8 3.1.......................................... 8 3....................................... 11 3.3............................................ 1 4. 13 4.1 subroutine................................... 13 4. FEM subroutine function....................... 14 15.1.............................................. 15. -........................................ 16.3................................ 16.4........................................ 16

1. 1.1 x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ ) ( xy + X σy B + δv + τ )] xy + Y B d = (1) (1) f g = (f g) f g () [ (δu σx ) = + (δu τ xy) + (δv σ y) + (δv τ ] xy) d [ (δu) σ x + (δu) τ xy + (δv) σ y + (δv) ] τ xy d + (δu X B + δv Y B ) d () () 1 Green - D ( P + Q ) ( d = P C n + Q ) ds n [ (δu σx ) + (δu τ xy) + (δv σ y) + (δv τ ] xy) d ( = δu σ x s n + δu τ xy n + δv σ y n + δv τ xy ) ds n = [δu(σ x l + τ xy m) + δv(σ y m + τ xy l)]ds s = (δu S x + δv S y )ds (3) s u = ɛ x v = ɛ y v + u = τ xy () [ (δu) σ x + (δu) τ xy + (δv) σ y + (δv) ] τ xy d = (δɛ x σ x + δɛ y σ y + δγ xy τ xy )d (4) (δɛ x σ x + δɛ y σ y + δγ xy τ xy )d = (δus x + δvs y )ds + (δux B + δvy B )d (5) s 1

(5) {δɛ} T {σ}d = s {δu} T {S}ds + {δu} T {F }d (6) (6) V s {δɛ} T {σ}dv = {δu} T {S}d + V V {δu} T {F }dv (7) = t z t ( ) {δɛ} T {σ}dv = {δɛ} T {σ}d dz = t {δɛ} T {σ}d V (6) t 1. t (1) [N] {u} {ɛ} {u nd } {u} =[N]{u nd } (8) {ɛ} =[B]{u nd } (9) (6) {u nd } {δu nd } [B] T {σ}d = {δu nd } [N] T {S}ds + {δu nd } [N] T {F }d (1) s [B] T {σ}d = s [N] T {S}ds + [N] T {F }d (11) - [D e ] t {f nd } =[k]{u nd } (1) [k] = t [B] T [D e ][B]d {f nd } = t [N] T {S}ds + t [N] T {F }d s {ɛ} = [B]{u nd } {σ} = [D e ]{ɛ} = [D e ][B]{u nd } {f nd } [k] {u nd } [B] - t {ɛ} {σ} [D e ] - [N] {S} {F }

{S} (t C [N]T {S}ds) {F } = {F Bx, F By } T {w} [N] {F } = [N]{w} (13) {F B } {F B } = t [N] T {F }d = t [N] T [N]d {w} (14) () {ɛ } {σ} = [D e ]{ɛ ɛ } = [D e ][B]{u nd } [D e ]{ɛ } (15) {T nd } {T nd } = t [B] T [D e ]{ɛ }d (16) {f nd } = [k]{u nd } {T nd } (17) {u nd } = [k] 1 {f nd + T nd } (18) (15) (3) - - E ν α T Hooke ɛ x αt = 1 E [σ x ν(σ y + σ z )] ɛ y αt = 1 E [σ y ν(σ z + σ x )] ɛ z αt = 1 E [σ z ν(σ x + σ y )] γ xy = (1 + ν) E τ (1 + ν) xy γ yz = E τ yz γ zx = x y σ z = τ yz = τ zx = ɛ x αt = 1 E (σ x νσ y ) ɛ y αt = 1 E (σ y νσ x ) γ xy = 1 ν σ x = σ y = E ν 1 ɛ x αt 1 ν τ 1 ν ɛ y αt xy γ xy (1 + ν) E τ zx (1 + ν) E τ xy 3

ɛ z = σ z = ν(σ x + σ y ) EαT τ yz = τ zx = ɛ x αt = 1 E [(1 ν )σ x ν(1 + ν)σ y ] ɛ y αt = 1 E [(1 ν )σ y ν(1 + ν)σ x ] γ xy = 1 ν ν σ x = σ y = E ν 1 ν ɛ x (1 + ν)αt (1 + ν)(1 ν) 1 ν ɛ y (1 + ν)αt τ xy γ xy (1 + ν) E τ xy {σ} = σ x σ y τ xy αt {ɛ } = αt {ɛ} = ɛ x ɛ y γ xy (1 + ν)αt {ɛ } = (1 + ν)αt - [D e ] = [D e ] = E 1 ν 1 ν ν 1 E 1 ν ν 1 ν ν ν 1 ν 1 ν E (1 + ν)(1 ν) 4

..1 - [B] u,v (a,b) [ 1,1] u i,j,k,l v i,j,k,l u =N 1 (a, b) u i + N (a, b) u j + N 3 (a, b) u k + N 4 (a, b) u l v =N 1 (a, b) v i + N (a, b) v j + N 3 (a, b) v k + N 4 (a, b) v l {u} {u nd } {u} = { } [ ] u N1 N = N 3 N 4 v N 1 N N 3 N 4 u i v i u j v j u k v k u l v l = [N]{u nd } (19) N 1 = 1 4 (1 a)(1 b) N = 1 (1 + a)(1 b) 4 N 3 = 1 4 (1 + a)(1 + b) N 4 = 1 (1 a)(1 + b) () 4 N 1 a = 1 4 (1 b) N a = +1 4 (1 b) N 3 a = +1 4 (1 + b) N 4 a = 1 (1 + b) 4 N 1 b = 1 4 (1 a) N b = 1 4 (1 + a) N 3 b = +1 4 (1 + a) N 4 b = +1 (1 a) (1) 4 {ɛ} {u nd } u v {ɛ} = = u + v N 1 N 1 N 1 N 1 N N N N N 3 N 3 N 3 N 3 N 4 N 4 N 4 N 4 N i Jacobi [J] N i a N i b [J] = a b [J] 1 = i=1 u i v i u j v j u k v k N i N i N i = [J] N i N = [J] 1 a i N i b ( ) 4 Ni 4 ( ) a a x Ni i a y i [ ] = i=1 ( ) i=1 4 Ni 4 ( ) b b x Ni i b y = J11 J 1 J 1 J i [ ] 1 J J 1 det(j) J 1 J 11 i=1 u l v l = [B]{u nd } () (3) (4) det(j) = J 11 J J 1 J 1 (5) 5

()(4) { } N i = 1 N i J det(j) a J N i 1 b { } N i = 1 N i J 1 det(j) a + J N i 11 b (6) (4) (x i,y i ) (1)(4) [J] [J] (1)(5)(6) () - [B] [B] a b [J] x i,j,k,l y i,j,k,l J 11 = N 1 a x i + N a x j + N 3 a x k + N 4 a x l J 1 = N 1 a y i + N a y j + N 3 a y k + N 4 a y l J 1 = N 1 b x i + N b x j + N 3 b x k + N 4 b x l J = N 1 b y i + N b y j + N 3 b y k + N 4 b y l. 4 [k] t - [D e ] 1 [k] = t 1 1 1 [B] T [D e ][B] det(j) da db (7) {ɛ } {T nd } {σ} {R nd } 1 {T nd } = t {R nd } = t 1 1 1 1 1 1 1 [B] T [D e ]{ɛ } det(j) da db (8) [B] T {σ} det(j) da db (9) αt p α (N 1 φ i + N φ j + N 3 φ k + N 4 φ l ) {ɛ } = αt p = α (N 1 φ i + N φ j + N 3 φ k + N 4 φ l ) (1 + ν)αt p (1 + ν) α (N 1 φ i + N φ j + N 3 φ k + N 4 φ l ) {ɛ } = (1 + ν)αt p = (1 + ν) α (N 1 φ i + N φ j + N 3 φ k + N 4 φ l ) α ν T p {φ i φ j φ k φ l } T [N 1 N N 3 N 4] [N] Gauss 1 1 f(a, b) da db 1 1 i=1 j=1 n n H i H j f(a i, b j ) (3) 6

[k] t {T nd } t {R nd } t n i=1 j=1 n i=1 j=1 n i=1 j=1 n H i H j [B(a i, b j )] T [D e ][B(a i, b j )] det(j(a i, b j )) (31) n H i H j [B(a i, b j )] T [D e ]{ɛ } det(j(a i, b j )) (3) n H i H j [B(a i, b j )] T {σ} det(j(a i, b j )) (33) 4 (n = ) a b H a b 4.3 i j a b H 1 1.5773569.5773569 1. 1 +.5773569.5773569 1. 1 +.5773569 +.5773569 1..5773569 +.5773569 1. {σ} {u} {σ(a i, b j )} = [D e ][B(a i, b j )]{u nd } (34) - [B] a b {σ} a b 4 4.4 {F } = {F Bx, F By } T {w} [N] {F } = [N]{w} (35) [ N1 N [N] = N 3 N 4 N 1 N N 3 ] N 4 (36) {w} = γ {k h k v k h k v k h k v k h k v } T (37) γ k h k v {F B } {F B } = t [N] T {F }d = t γ [N] T [N]d {w } (38) {w} γ {w } = { k h k v k h k v k h k v k h k v } T (39) 7

3. No-tension 3.1 Zienkiewicz No-tension No-tension No-tension No-tension 1 No-tension 1 3 [k] { f} {f} {f m } {u} { f} = {f} + {f m } {u} = {} { f} [k] { u} { u} = [k] 1 { f} 4 {u} = {u} + { u} {ɛ} = [B]{u} 5 {σ} = [D e ]{ɛ ɛ } 6 7 8 σ 1 σ σ ts {σ} {σ t } {σ} = {σ} {σ t } {R} {R} = t [B] T {σ}d { f} { f} = {f} + {f m } {R} 9 { f} { u} 3 8

Setting of [k] { f} = {f} + {f m } {u} = {} i= i=i+1 { u} = [k] 1 { f} {u} = {u} + { u} {ɛ} = [B]{u} {σ} = [D]{ɛ ɛ } σ 1, σ < σ ts Yes No {σ} = {σ} {σ t } {R} = t [B] T {σ}d { f} = {f} + {f m } {R} No f < δ End Yes 9

i 1 σ i 1 f i 1 = f R i 1 f i 1 u i u i u i ɛ i σ i ɛ i σ i = σ i σ t σ t σ i σ i R i f i = f R i i [K] {f} { u i } [K] { fi 1} [K] { fi} [K] {σ i } = [D]{ɛ i ɛ } {σ i } = {σ i } {σ t } {Ri 1} {Ri} 1 {u i } 1

3. No-tension {σ x, σ y, τ xy } T {σ x, σ y, τ xy } T (1) x y θ (I ) () σ 1 = σ x + σ y + 1 (σ x σ y ) + 4τ xy (4) σ = σ x + σ y 1 (σ x σ y ) + 4τ xy (41) θ = 1 ( ) τxy tan 1 (4) σ x σ y σ x > σ y τ xy θ = θ σ x > σ y τ xy < σ x < σ y σ x = σ y τ xy > σ x = σ y τ xy < θ = θ + 18 θ = θ + 9 θ = 45 θ = 135 σ x = σ y τ xy = (θ = ) x y φ σ x = σ x + σ y σ y = σ x + σ y τ xy = σ x σ y x-y + σ x σ y σ x σ y σ x = σ 1 + σ σ y = σ 1 + σ τ xy = σ 1 σ cos φ + τ xy sin φ (43) cos φ τ xy sin φ (44) sin φ + τ xy cos φ (45) + σ 1 σ σ 1 σ σ 1 σ σ x = σ 1 (1 + cos φ) σ 1 σ y = σ 1 (1 cos φ) τ xy = σ 1 sin φ σ x = σ (1 cos φ) σ σ y = σ (1 + cos φ) τ xy = σ sin φ 11 cos φ (46) cos φ (47) sin φ (48) (49) (5)

No-tension {σ x,σ y,τ xy } σ 1 > ( ) σ 1 σ σx c1 = σ x σ 1 (1 + cos φ) σ 1 σy c1 = σ y σ 1 (1 cos φ) τxy c1 = τ xy + σ 1 sin φ σx c = σx c1 σ (1 cos φ) σ σy c = σx c1 σ (1 + cos φ) τxy c = τxy c1 σ sin φ φ = θ σ 1 σ 1 {R} {σ c1 x, σ c1 y, τ c1 xy} T {σ c x, σ c y, τ c xy} T 3.3 ( u i ) n {( ui ) n } < 1 1 6 u i { u i } i n m mm 1 3 mm (51) (5) 1

4. 4.1 subroutine (1) subroutine XGYG3M(ne,kk,kakom,x,y,xg,yg,NELT,NODT,nod) () subroutine XGYG4M(ne,kk,kakom,x,y,xg,yg,NELT,NODT,nod) IPR=1 (3) subroutine XGYG4I(ne,kk,kakom,x,y,xg,yg,NELT,NODT,nod) Gauss Gauss (4) subroutine DMT PL(NSTRES,Eme,poe,d) (5) real(8) function CL PL3(ne,kakom,x,y,NELT,NODT) (6) subroutine BMT PL3(ne,kakom,x,y,b,NELT,NODT) - (7) subroutine SM PL3(ne,kakom,x,y,NSTRES,Em,po,t,sm,NELT,NODT) (8) subroutine MV PL3(ne,kakom,x,y,t,gamma,gkh,gkv,fevec,NELT,NODT) (9) subroutine CLST PL3TS(ne,kakom,x,y,deltaT,dist,NSTRES,Em,po,t,alpha,ts, strsave,fevec,noten,nelt,nodt,nt) (1) subroutine BMT PL4(ne,kakom,x,y,bm,detJ,a,b,NELT,NODT) - (11) subroutine IPOINT4(kk,a,b) Gauss (1) subroutine SM PL4(ne,kakom,x,y,NSTRES,Em,po,t,sm,NELT,NODT) (13) subroutine MV PL4(ne,kakom,x,y,t,gamma,gkh,gkv,fevec,NELT,NODT) (14) subroutine CLST PL4TS(ne,kakom,x,y,deltaT,dist,NSTRES,Em,po,t,alpha,ts, strsave,fevec,noten,nelt,nodt,nt) 13

(15) subroutine PST PL(sigx,sigy,tauxy,ps1,ps,ang) 4. FEM subroutine function (1) subroutine SVEC(ne,nod,nhen,kakom,fevec,ftvec,NELT,NODT) vector. () subroutine SMT(ne,nod,nhen,kakom,sm,tsm,NELT,NODT) matrix (3) subroutine CHBND1(n1,m1,array,nt) Cholesky Cholesky (4) subroutine CHBND11(n1,m1,array,vector,nt) Cholesky (5) integer function IBND(mm,array,fact,nt) Cholesky ib function mm mm 1. 1 3 fact (6) subroutine BND(mm,ib,array,nt) Cholesky mm mm Cholesky mm ib (7) subroutine del spaces(s) csv 14

.1 α 1 6 u =α 1 + α x + α 3 y (53) v =α 4 + α 5 x + α 6 y (54) i j k (u, v) (x, y) α {α} u i 1 x i y i α 1 v i 1 x i y i α u j = 1 x j y j α 3 v j 1 x j y j α 4 u k 1 x k y k α 5 v k 1 x k y k α 6 (55) {α} = [C]{u nd } (56) a i a j a k [C] = 1 b i b j b k c i c j c k a i a j a k b i b j b k c i c j c k 1 x i y i = 1 x j y j 1 x k y k (57) a i = x j y k x k y j b i = y j y k c i = x k x j a j = x k y i x i y k b j = y k y i c j = x i x k (58) a k = x i y j x j y i b k = y i y j c k = x j x i {u nd } {α} = (x k x j )y i + (x i x k )y j + (x j x i )y k (59) Sarrus 3 3 a 11 a 1 a 13 a 1 a a 3 a 31 a 3 a 33 = a 11a a 33 + a 1 a 3 a 13 + a 31 a 1 a 3 a 13 a a 31 a 3 a 3 a 11 a 33 a 1 a 1 { } [ ] [ ] u 1 x y 1 x y = {α} = [C]{u v 1 x y 1 x y nd } = [N]{u nd } (6) [N] [N] = [ ] [ ] 1 x y Ni N [C] = j N k 1 x y N i N j N k (61) N i = a i + b i x + c i y N i = a j + b j x + c j y N i = a k + b k x + c k y (6) 15

. - {ɛ} (u, v) u N i N j N k v {ɛ} = = N i N j N k u + v {u nd } = [B]{u nd } (63) N i N i N j N j N k N k - [B] = 1 b i b j b k c i c j c k c i b i c j b j c k b k = 1 y j y k y k y i y i y j x k x j x i x k x j x i (64) x k x j y j y k x i x k y k y i x j x i y i y j = 1/ [(x k x j )y i + (x i x k )y j + (x j x i )y k ] (65).3 [k] - [B] - [D e ] [k] = t [B] T [D e ][B]d = t [B] T [D e ][B] (66) {ɛ } {σ} {R nd } {T nd } = t {R nd } = t [B] T [D e ]{ɛ }d = t [B] T [D e ]{ɛ } (67) [B] T {σ}d = t [B] T {σ} (68) αt m α (φ i + φ j + φ k )/3 {ɛ } = αt m = α (φ i + φ j + φ k )/3 (1 + ν)αt m (1 + ν) α (φ i + φ j + φ k )/3 {ɛ } = (1 + ν)αt m = (1 + ν) α (φ i + φ j + φ k )/3 α ν T m {φ i, φ j, φ k } T.4 (1) [N] = [ ] [ ] Ni N j N k ζi ζ = j ζ k N i N j N k ζ i ζ j ζ k 16 (69)

ζ i = i ζ j = j ζ k = k 1 x y i = a i + b i x + c i y = 1 x j y j 1 x k y k 1 x y j = a j + b j x + c j y = 1 x k y k 1 x i y i 1 x y k = a k + b k x + c k y = 1 x i y i 1 x j y j (7) (71) (7) (73) (ζ i, ζ j, ζ k ) ζ i + ζ j + ζ k = 1 ζ r 1 (r = i, j, k) (74) () [N]T [N]d [N] T [N] ζ i ζ i ζ i ζ j ζ k ζ i ζ i [ ] ζ i ζ i ζ j ζ k ζ i [N] T [N] = ζ j ζi ζ j ζ k ζ j = ζ i ζ j ζ j ζ j ζ k ζ i ζ j ζ k ζ i ζ j ζ j ζ j ζ k ζ k ζ k ζ i ζ j ζ k ζ k ζ k ζ k ζ i ζ j ζ k ζ k (75) f(x, y)dxdy = 1 1 ζ i + ζ j + ζ k = 1 (x, y) g(ζ i, ζ j, ζ k ) (ζ i, ζ j ) dζ idζ j (76) x =ζ i x i + ζ j x j + ζ k x k x = ζ i (x i x k ) + ζ j (x j x k ) + x k y =ζ i y i + ζ j y j + ζ k y k y = ζ i (y i y k ) + ζ j (y j y k ) + y k (77) (x, y) (ζ i, ζ j ) = ζ i ζ j = x i x k x j x k y i y k y j y k ζ i ζ j =(x k x j )y i + (x i x k )y j + (x j x i )y k = (78) f(x, y)dxdy = 1 1 (ζ i, ζ j, ζ k ) g(ζ i, ζ j, ζ k )dζ i dζ j (79) 1 1 ζ il ζ j m ζ kn dζ i dζ j = l! m! n! (l + m + n + )! l, m, n (8) l =, m = n = l = 1, m = 1, n = 1 1 1 1 ζ il ζ j m ζ kn dζ i dζ j = 1/1 ζ il ζ j m ζ kn dζ i dζ j = 1/4 17

ζ ζ i d = ζ j d = ζ k d = 1/1 = 1/6 ζ i ζ j d = ζ j ζ k d = ζ k ζ i d = 1/4 = 1/1 1/6 1/1 1/1 1/6 1/1 1/1 [N] T [N]d = 1/1 1/6 1/1 1/1 1/6 1/1 1/1 1/1 1/6 1/1 1/1 1/6 (81) (3) {F B } {w} {F B } = t [N] T {F }d = t [N] T [N]d {w} (8) {w} = γ {k h k v k h k v k h k v } T (83) k h k v γ {F B } {F B } = γ t 3 1/ 1/4 1/4 k h 1/ 1/4 1/4 k v 1/4 1/ 1/4 k h 1/4 1/ 1/4 k v 1/4 1/4 1/ k h 1/4 1/4 1/ t γ k v (84) 18

[1] I-1-B 54 5 [] 55 5 [3] S.P. Timoshenko, J.N. Goodier : Theory of Elasticity Third edition, McGRW-HILL BOOK CM- PNY, 1st printing 1985 [4] 1984 6 [5] H.C. Martin / G.F. Carey / 56 1 [6] O.C.Zienkiewicz / 5 1 [7] 1991.7 [8],,, 55 1 19