untitled

Similar documents
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =


x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

TOP URL 1

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

chap1.dvi


QMI_09.dvi

QMI_10.dvi

30

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

LLG-R8.Nisus.pdf

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

振動と波動

The Physics of Atmospheres CAPTER :

Xray.dvi

meiji_resume_1.PDF

all.dvi

phs.dvi

Gmech08.dvi

IA

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

QMI_09.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Z: Q: R: C: sin 6 5 ζ a, b

08-Note2-web

: , 2.0, 3.0, 2.0, (%) ( 2.


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

keisoku01.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

pdf

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

all.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

Part () () Γ Part ,

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

Korteweg-de Vries

sec13.dvi

all.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

Maxwell

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

chap03.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

2011de.dvi

QMI_10.dvi

v_-3_+2_1.eps

ohpr.dvi

Z: Q: R: C:

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I



PDF

untitled

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

B ver B

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

数学Ⅱ演習(足助・09夏)

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

all.dvi

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

power.tex


Gmech08.dvi

II 2 II

eto-vol2.prepri.dvi

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

Transcription:

Unit 4. n 1 = n 1 ex[i(k x ωt + δ n )] n 1 : k: k = π/λ δ n : k = kxˆ, δ n = n 1 = n 1 os(k x x ωt) v = ω k k k Re(ω) > Im(ω) > Im(ω) < Im(k) E 1 = E 1 ex[i( k x - ωt)] E 1 : + v g ω ω ω ω = = xˆ + yˆ + zˆ k k k k x y z E 1 = φ 1 E 1 = B erturbation E erturbation k // E 1 k E 1 = ωb 1 = eletrostati Eletron lasma wave ω/k v te - Vlasov eq. u mn e e t + ( u e )u e = en ee e n e t + ( n e u e )= ε E =e( n i n e ) Z = 1 u =, E = u e = u e xˆ, E = Exˆ 1 iωmn u 1 = en E 1 ik 1 = en E 1 ik3tn 1 1-D adiabati γ = 3 iωn 1 + ikn u 1 = ikε E1 = en1

iω mn1 e n n1 = + ik3tn1 k ikε ω = ω (k) ω = ω e + 3k T m = ω e + 3k v te Bohm-Gross disersion relation ω e = n e e ε m e ω e ω Ion aousti wave u Mn i i t adiabati ion, isothermal eletron v ti << ω/k << v te + ( u i )u i = en ie i iωmn i u i1 = en i ikφ 1 γ i T i ikn i1 Boltzmann n e = n e ex eφ 1 n e 1 + eφ 1 eφ n e1 = n 1 e 1 Poisson ε E 1 = ε k eφ φ 1 =en ( i1 n e1 )= en i1 n 1 e k e n i1 = n i ε φ 1 e n i t + ( n i u i )= iωn i1 =n i iku i1 ω Mn i ωn kn i1 i = n i en e T e i kn ε i1 k e + γ T kn i i i1 ω k T = e /M 1+ k λ + γ i T i D M kλ D << 1 ω k = + γ i T i M = s s : >> T i s = M kλ D >> 1 ω = m M ω e = ω i ω i Ω

E 1 B erturbation k E 1 E 1 = σ e = n e1 = e1 = Eletromagneti wave Maxwell ik B 1 = µ j 1 iω E 1 ik E 1 = iωb 1 k k E 1 = k E 1 kk ( E 1 )= ω j E 1 + i 1 ε ω E =, B =, u = 1 iωmu 1 = ee 1 j 1 = n eu 1 = n e E 1 iωm ( k ω ) E = j = E1 = ωe E1 1 iω ε 1 n e mε E 1 ω = ω e + k ω =k 1+ ω e k ω > ω e n<n = mε ω ω e = ω ω < ω e k= ω ( ω e ) 1/ e 1/ = ±i ( ω e ω ) 1/ 1/ ex(ikx) = ex ω e ω x ( ω e ω ) 1/ ω << ω e /ω e ollisionless skin deth

B = X k B, ω = ω B = L k B, ω = ω B = R k B, ω = ω

Ion Aousti Soliton n i n = n, u ix s = u, x λ D = ξ, ω i t=τ, eφ = ϕ ontinuity eq. ion eq. motion n τ + ξ ( nu)= u τ + u u ξ + ϕ ξ = el. eq. motion Boltzmann n e n = e ϕ Poisson eq. ϕ ξ = eϕ n n = 1 + n s y = ξ τ n τ + ( y u n + n u)= u τ + u u y + ( y ϕ u)= ϕ y = n ϕ ϕ L 1 y ϕ, u, n u = n = ϕ u τ + u u y + 1 3 u 3 = Korteweg-de Vries (K-dV) eq. y nonlinear 3 disersion K-dV eq. u = u + B seh x t δ, = u + B 3, δ = 6 B (ω, k) (ω, k), (3ω, 3k), Soliton ω = k s soliton

Ponderomotive Fore E = E (r) os(ω t) r(t) = r + r(t) E (r) = E (r) + r(t) E (r) m dv dt = qe (r) os(ω t)+ v B(r,t) Ponderomotive π/ω m dv dt = m v q = 4mω E (r ) Ponderomotive fore Caviton and Enveloe Soliton Eletron Plasma Wave (EPW) A os(kx ωt) [ ] A os ( kx ωt)= 1 A os( kx ωt)+ 1 k =, ω = EPW t u ex + ω e u ex 3v te x u ex = (ω e n e ) (v te ) k 3 n n + δn e (x,t) δn e t u ex 3v te x u ex + ω e 1+ δn e (x, t) u ex = n u ex (x,t) = u(x,t) ex( iω e t) + u *(x, t) ex(iω e t) u u/ t i t u(x,t) + 3 v te ω e x u(x, t) ω e δn e (x,t) u(x,t) = n

3 Shrödinger eq. soliton enveloe soliton Enveloe Soliton δn e (x,t) u(x,t) ω e δn e m e u ex t + m e u ex x u ex = 1 e n e x + e φ x 1 m e x u ex = x ( m e u(x,t) ) onderomotive fore 3 δn e n x ( x m e u(x,t) )= δn e eφ x n u(x,t) δn e, φ δn e n = eφ m e u(x,t) φ m i u i t = e φ x 1 n ( x n it i ) eφ = T i δn i n δn i = δn e

δn e n = m e u(x,t) + T i u(x,t) i t u(x,t) + 3 v te ω e x u(x, t) + ω e m e +T i u(x,t) u(x,t) = diffration nonlinear Shrödinger eq. onderomotive fore onderomotive fore (A) (B)

old lasma aroximation ( = T i = ) k B k = k xˆ, B = B ẑ ordinary wave (O-mode) E 1 // B, E 1 k extraordinary wave (X-mode) E 1 B iωmu x1 = ee x1 + u y1 B iωmu y1 = ee y1 u x1 B u x1 = e m iωe x1 + ω E y1 ω ω u y1 = e m iωe y1 ω E x1 ω ω k E 1 kk ( E 1 )= ω j E 1 + i 1 ; j 1 = n eu 1 ε ω ω ω ( + ω )E x1 iω ω ω E y1 = iω ω ω E x1 + 1 k ω ( ω ω )+ ω E y1 = E 1 det = k ω v =1 ω ω ω ω ω ω h = resonane (k ) ω = ω h ; ω h ω + ω ω h : uer hybrid frequeny utoff (k ) ω = ω + 4ω ± ω ω R ω L ω R : right hand utoff ω L : left hand utoff k // B B = B ẑ k E 1 = (k E 1 ) j 1 = n eu 1 iω ω ω E x1 + 1 k ω ( ω ω )+ ω E y1 = 1 k ω ( ω ω )+ ω E x1 iω ω ω E y1 =

det = k ω = v =1 ω ωω± ω + : L wave E y1 = ie x1 : R wave E y1 = +ie x1 L(R) wave E x1 (t) = Re( E x1 e iωt )= E x1 os(ωt) E y1 (t) = Re( mie x1 e iωt )= me x1 sin(ωt) ( ) L wave utoff at ω = ω L ω > ω L R wave utoff at ω = ω R ω > ω R resonane at ω = ω ω < ω v (R) > v (L) Faraday rotation warm lasma - B = B ẑ, k = k x xˆ + k z ẑ = ksinθ xˆ + kosθ ẑ mn u 1 t = qn ( E 1 + u 1 B ) γt n 1 iωmu x1 = qe ( x1 + u y1 B ) ik x γt n 1 n iωmu y1 = qe ( y1 u x1 B ) iωmu z1 = qe z1 ik z γt n 1 n n 1 = k ( n ω u x1sinθ + u z1 osθ) iωmu x1 = qe ( x1 + u y1 B ) i k ω γtu ( x1sin θ + u z1 sinθ osθ) iωmu y1 = qe ( y1 u x1 B ) iωmu z1 = qe z1 i k ω γtu x1sinθ osθ + u z1 os θ

j 1 = n qu 1 σ E 1 σ : k E 1 kk ( E 1 )= ω det = σ I + i E 1 = ω σ µ ε E 1 ε ε I + i : ε ω ε ω ω µ ε I + kk = k Cold Plasma Disersion Relation = T i = k index of refration n = Stix notation ω v ω R 1 ωω ω L 1 ωω+ ω Ω ω ωω+ Ω ωω ω = ω e, ω = ω e Ω = ω i, = ω i S R + L D R L P 1 ω ω Ω ω n x = n sinθ, n z = n osθ S n os θ id n sinθ osθ id S n n sinθ osθ P n sin θ E x1 E y1 E z1 = det = ( tan θ = Pn R)n ( L) ( Sn RL)n ( P) // roagation (θ = ): n = R (R wave) n = L (L wave) roagation (θ = π/): n = P (O mode) n = RL/S (X mode) utoff (n ): PRL= ω = ω, ω R, ω L θ resonane (n ): tan θ = P/S θ θ =: P = ω = ω, S ω = ω (R ), ω = (L ) θ = π/: S = ω = ω h (uer hybrid), ω = ω lh (lower hybrid)

Shear Alfvén wave // roagation k // B, E 1 B, k E 1 // B // k ion aousti wave B = B ẑ E z1 =, u z1 =, j z1 = ω <<ω u xe1 = e m iωe x1 + ω E y1 ω ω e m E y1 ω = e M E y1 u ye1 = e m iωe y1 ω E x1 ω ω e m E x1 ω = e M E x1 u xi1 = e M iωe x1 E y1 ω u yi1 = e M iωe y1 + E x1 ω j 1 = n e M iω Ω ω Ω Ω ω + 1 Ω ω 1 Ω iω Ω ω E x1 E y1 = σ E 1 k σ ω µ ε I + kk =, ε ε I + i ε ω n = k/ω Ω 1 n + I( 1 n σ Ω )+ nn + i ε ω = ω Ω i ω Ω ω 1 n + Ω i ω Ω ω Ω ω = n = + Ω ± ω ± ω + R wave L wave zz Shear Alfvén R wave utoff / resonane R wave ω = ω ω n = 1 + Ω

Alfvén seedv A = Ω = eb M ε M ne = B µ nm v A << v = ω k = n = 1 + Ω = 1+ v A v A Shear Alfvén L wave ω = resonane ω = ω L = + Ω / utoff ω n = 1 + Ω R wave Shear Alfvén R wave R wave L wave ω << R L Faraday rotation ω << E 1 B Shear Alfvén wave u 1 = k u 1 = Shear Alfvén L wave

Magnetosoni wave roagation k B, E 1 B X-mode E 1 // B O-mode ω < ω B = B ẑ, k = k xˆ << ω << ω eletron olarization drift Ω 1+ Ω ω + ω ω Ω i ω Ω ω Ω i ω Ω ω Ω 1 n + Ω ω + ω ω = n Ω ω +Ω Ω ω + ω ω = ω +Ω Ω ω + ω ω Ω ω ( Ω ω ) n n ω = ω lh = ω +Ω Ω + ω Ω >> 1 ω lh = 1 Ω + 1 ω ω n = 1+ Ω Ω + ω ω lh : lower hybrid frequeny ω 1+ Ω Alfvén wave magnetosoni wave (omressional Alfvén wave k u 1 Comressional Alfvén wave