41 1 Table 1. Chemical composition of alloys (mass%). Alloy Fe Cr Al S Pd Pt Fe 20Cr 4Al (Standard) Bal Fe 20Cr 4Al (FZ) Bal

Similar documents
Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

特-4.indd

渡辺(2309)_渡辺(2309)

Al-Si系粉末合金の超塑性

ステンレス鋼用高性能冷間鍛造油の開発

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

01_辻

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

Corrosion Wear of Alloy Tool Steel (SKD 11) Coated with VC and Precipitation Hardening Stainless Steel (SUS 630) in Sodium Chloride Aqueous Solution T

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

資源と素材

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

特-7.indd

Research Status and Unsolved Problems in Rusting of Iron and Steels* Toshihei Misawa** **Department of Metallurgical Engineering, Muroran Institute of

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

untitled

製紙用填料及び顔料の熱分解挙動.PDF


第 1 号 Pt 含 有 g Ni+g Ni 3 Al 合 金 の 耐 酸 化 性 35 本 研 究 では 引 き 続 き,TBC の 信 頼 性, 耐 久 性 を 向 上 させ るため,Pt+Hf 添 加 g+g ボンドコート 材 の 最 適 組 成 の 探 索 を 行 っており,これまで 調 査

Viscosity of Ternary CaO-SiO2-Mx (F, O)y and CaO-Al2O3-Fe2O3 Melts Toshikazu YASUKOUCHI, Kunihiko NAKASHIMA and Katsumi MORI Synopsis : Effects of add

電子部品はんだ接合部の熱疲労寿命解析

T05_Nd-Fe-B磁石.indd

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

地質調査研究報告/Bulletin of the Geological Survey of Japan

Table 1. St-VAc blockcopolymers Table 2. Stability of dispersion of blockcopolymers in unsaturated polyester

Surface Morphology for Poly-L-lactide Fibers Subjected to Hydrolysis Suong-Hyu Hyon Institute for Frontier Medical Sciences, Kyoto University 53, Shog


Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe

H7


Fig, 1. Waveform of the short-circuit current peculiar to a metal. Fig. 2. Waveform of arc short-circuit current. 398 T. IEE Japan, Vol. 113-B, No. 4,

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

Application of Solid Electrolyte Sensors to Hot Corrosion Studies Nobuo Otsuka* *Iron & Steel Research Laboratories, Sumitomo Metal Industries, Ltd. C

X線分析の進歩36 別刷

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

0900906,繊維学会ファイバ8月号/報文-01-高橋

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Tf dvi

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6


Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee


無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成

J. Jpn. Inst. Light Met. 65(6): (2015)

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

J. Soc. Cosmet. Chem. Jpn. 7-chome, Edogawa-ku, Tokyo 132, Japan 2.1 J. Soc. Cosmet. Chem. Japan. Vol. 31, No

環境負荷低減に向けた低温接合技術

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of


** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

走査型プローブ顕微鏡によるラテックス/デンプンブレンドフィルムの相分離状態の観察

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

Highlights Employment increased in Ontario, Saskatchewan, and Manitoba. There was little change in the other provinces. More people were employed in c

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

untitled

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

9 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /,, No.0,,/+,/0 (,**/) 251 * * E#ects of Microbial Transglutaminase on Melting Point and Gel property of G

* * 2

CHEMOTHERAPY JUNE 1986

<95DB8C9288E397C389C88A E696E6462>

On the Variation of Oxygen and Alminium in Molten Steel during Pouring Practice T. Obinata et, alii. Spoon position: (A): within 100mm under nozzle (B


Title 泌尿器科領域に於ける17-Ketosteroidの研究 17-Ketosteroidの臨床的研究 第 III 篇 : 尿 Author(s) 卜部, 敏入 Citation 泌尿器科紀要 (1958), 4(1): 3-31 Issue Date URL

Clostridium difficile ciprofloxacin, ofloxacin, norfloxacin Bifidobacterium Lactobacillus Lactobacillus Bacteroides fragilis B. fragilis C. difficile

kiyo5_1-masuzawa.indd

(1) D-2-3 () ld () () D-2-3 () () () D-2-3 () D-2-3 D-2-3 (2 ) (3) 2

Fig.1 A location map for the continental ultradeep scientific drilling operations.

錫-亜鉛-アルミニウム系鉛フリーはんだの実用化

CHEMOTHERAPY DEC Table 1 Antibacterial spectra of T-1982, CTT, CMZ, CTX, CPZ and CEZ 106 CFU/ml Note: P; Peptococcus, S; Streptococcus, G; Gaffk

16 Dissolution Rate of Alumina into Molten CaO-SiO2--Al2O3-MgO Slags Shoichirou TAIRA, Kunihiko NAKASHIMA and Katsumi MORI Synopsis : Dissolution rate

UDC '24'26'-192: Strengthening of Ultra-low Carbon Ni-Cr Steel by Precipitation Hardening Isao KIMURA, Hiroshi YADA, and Mitsuo HONDA

越智59.qxd

HAJIMENI_56803.pdf

スライド タイトルなし

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

北海道水産試験場研究報告


ゼリーこんにゃくの分析

06_学術_技師の現状および将来需要_武藤様1c.indd

年次大会原稿最終.PDF

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio


Microsoft Word - mitomi_v06.doc

Transcription:

MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 41, No. 1, 2007 * Effects of Element Additions on High-Temperature Corrosion of Heat-Resisting Alloys Tadaaki AMANO* Adherence of oxide scale formed on Fe 20Cr 4Al (Standard: 4 ppm S), Fe 20Cr 4Al (FZ: 1 ppm S) purified by floating zone melting, Fe 20Cr 4Al (0.05, 0.1, 0.3, 0.5)Pd(Pt) and Fe 20Cr 4Al (0.01 0.5)Y alloys was studied in oxygen for 18 ks at 1373 1673 K, by mass gain measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Spalling of oxide scale on the standard alloy occurred along the alloy grain boundaries after oxidation at 1373 K, and was found to spall over the entire surface after oxidation at 1473 and 1573 K. However, the standard alloy showed good oxide adherence after oxidation at 1673 K. Mass gains of all the alloys, except Y-containing alloys, showed almost the same values, however, those of Y-containing alloys decreased with increasing yttrium up to 0.1%, and then increased with increasing yttrium content after oxidation for 18 ks at 1473 K. High-temperature corrosion behavior of Fe 20Cr 4Al, Fe 20Cr 4Al (FZ) and Fe 20Cr 4Al X (X 0.5Pd, 0.5Pt, 0.5Au, 0.1Lu) alloys was studied in an oxygen-water vapor (dew point: 313 K) environment for 18 ks at 1473, 1573 and 1673 K. FZ, 0.5Pd, 0.5Pt and 0.1Lu alloys showed good oxide adherence. After oxidation at 1673 K, the mass gain of 0.5Pt alloy showed the smallest value compared with those of the other alloys. This result suggested that 0.5Pt alloy has an outstanding corrosion resistance in an water-vapor environment. 1 1273 K * 18 10 16 1) 2) 3) 4) Y 2 50 g 4 ppm Fe 20Cr 4Al FZ Pd, Pt, Au, Lu Y Pt Y 0.5 mm 0.5 10 20 mm 3 (#1500) 5 5 0.5 mm 3 63

41 1 Table 1. Chemical composition of alloys (mass%). Alloy Fe Cr Al S Pd Pt Fe 20Cr 4Al (Standard) Bal. 20 4 0.0004 Fe 20Cr 4Al (FZ) Bal. 20 4 0.0001 Fe 20Cr 4Al 0.05Pd Bal. 20 4 0.0001 0.049 Fe 20Cr 4Al 0.1Pd Bal. 20 4 0.0001 0.099 Fe 20Cr 4Al 0.3Pd Bal. 20 4 0.0001 0.299 Fe 20Cr 4Al 0.5Pd Bal. 20 4 0.0001 0.498 Fe 20Cr 4Al 0.05Pt Bal. 20 4 0.0001 0.050 Fe 20Cr 4Al 0.1Pt Bal. 20 4 0.0001 0.100 Fe 20Cr 4Al 0.3Pt Bal. 20 4 0.0001 0.300 Fe 20Cr 4Al 0.5Pt Bal. 20 4 0.0001 0.499 (3 mm) X SEM EPMA 3 FeCrAl(Pd, Pt) 3.1 Table 1 1373, 1473, 1573 1673 K 18 ks 3.2 3.2.1 Fig. 1 1373, 1473, 1573 1673 K 18 ks Standard, FZ Pd Pt Standard Standard 1473 1573 K 3.2.2 Fig. 2 Standard 1473 1573 K Fig. 1. Mass change of Fe 20Cr 4Al (Standard, FZ, Pd, Pt) alloys exposed to oxygen for 18 ks at 1373, 1473, 1573 and 1673 K; (a) Standard, (b) FZ, (c) 0.05Pd, (d) 0.1Pd, (e) 0.3Pd, (f) 0.5Pd, (g) 0.05Pt, (h) 0.1Pt, (i) 0.3Pt, (j) 0.5Pt. Table 1 Standard 4 ppm FZ H 2 H 2 S (Pd, Pt) SO SO 2 Standard 64

Fig. 2. Surface appearance of Fe 20Cr 4Al (Standard, FZ, Pd, Pt) alloys exposed to oxygen for 18 ks at 1373, 1473, 1573 and 1673 K; (a) Standard, (b) FZ, (c) 0.05Pd, (d) 0.1Pd, (e) 0.3Pd, (f) 0.5Pd, (g) 0.05Pt, (h) 0.1Pt, (i) 0.3Pt, (j) 0.5Pt. Fig. 3. SEM micrographs of oxide scale on Fe 20Cr 4Al (Standard, FZ, Pd, Pt) alloys exposed to oxygen for 18 ks at 1373 K. Fig. 4. SEM micrographs of oxide scale on Fe 20Cr 4Al (Standard) alloy exposed to oxygen for 18 ks at 1373 K. 1673 K 1673 K X a-al 2 O 3 3.2.3 SEM Fig. 3 1373 K Standard Fig. 4 Standard 1373 K Fig. 5 1373 K Fig. 5. SEM micrographs of oxide scale on Fe 20Cr 4Al (Pt, Pd) alloys exposed to oxygen for 18 ks at 1373 K; (a) 0.05Pd, (b) 0.3Pt. 0.05Pd 0.3Pt 1673 K standard FZ 90 Fig. 65

41 1 Fig. 6. SEM micrographs of spalled area of the alloy surface after bending test of (a) Fe 20Cr 4Al (Standard) and (b) Fe 20Cr 4Al (FZ) alloys exposed to oxygen for 18 ks at 1673 K. 6 Standard FZ Table 2 Standard, FZ Pd Pt 3.3 Fe 20Cr 4Al Fe 20Cr 4Al Pd Pt 1373, 1473, 1573 1673 K 18 ks Table 2. Summary of scale feature on Fe 20Cr 4Al (Standard, FZ, Pd, Pt) alloys exposed to oxygen for 18 ks at 1373, 1473, 1573 and 1673 K. Alloy Temperature (K) 1373 1473 1573 1673 Fe 20Cr 4Al (Standard) partially saplled wrinkled entirely saplled wrinkled, cavities entirely spalled planar, reticular, cavities no spalled planar, reticular Fe 20Cr 4Al (FZ) slightly spalled slightly spalled slightly spalled no spalled slightly wrinkled planar planar, reticular planar, reticular Fe 20Cr 4Al 0.05Pd no spalled slightly spalled slightly spalled no spalled slightly wrinkled slightly wrinkled planar, reticular planar, reticular Fe 20Cr 4Al 0.1Pd no spalled slightly spalled slightly spalled no spalled slightly wrinkled planar planar, reticular planar, reticular Fe 20Cr 4Al 0.3Pd slightly spalled slightly spalled slightly spalled no spalled slightly wrinkled planar planar, reticular planar, reticular Fe 20Cr 4Al 0.5Pd slightly spalled slightly spalled slightly spalled no spalled slightly wrinkled planar planar, reticular planar, reticular Fe 20Cr 4Al 0.05Pt slightly spalled slightly spalled no spalled no spalled slightly wrinkled slightly wrinkled planar, reticular planar, reticular Fe 20Cr 4Al 0.1Pt no spalled slighly spalled no spalled no spalled slightly wrinkled planar planar, reticular planar, reticular Fe 20Cr 4Al 0.3Pt slightly spalled slightly spalled no spalled nospalled planar planar planar, reticular planar, reticular Fe 20Cr 4Al 0.5Pt slightly spalled slightly spalled slightly spalled no spalled planar planar planar, reticular planar, reticular 66

Table 3. Chemical composition of alloys (mass%). Alloy Fe Cr Al S Pd Pt Y Fe 20Cr 4Al (Standard) Bal. 20 4 0.0004 Fe 20Cr 4Al (FZ) Bal. 20 4 0.0001 Fe 20Cr 4Al 0.5Pd Bal. 20 4 0.0001 0.498 Fe 20Cr 4Al 0.5Pt Bal. 20 4 0.0001 0.499 Fe 20Cr 4Al 0.01Y Bal. 20 4 0.0001 0.0001 Fe 20Cr 4Al 0.02Y Bal. 20 4 0.0001 0.0002 Fe 20Cr 4Al 0.05Y Bal. 20 4 0.0001 0.0023 Fe 20Cr 4Al 0.1Y Bal. 20 4 0.0001 0.0382 Fe 20Cr 4Al 0.2Y Bal. 20 4 0.0001 0.0980 Fe 20Cr 4Al 0.5Y Bal. 20 4 0.0001 0.3449 1 Fe 20Cr 4Al (4 ppm) 1373 K 1473 1573 K 1673 K 2 1373, 1473 1573 K 3 1673 K Standard FZ FZ Standard FZ 4 FeCrAl(Pd, Pt, Y) 4.1 1273 K a- 1) 12) 13) 23) 2) 4),7),11),17) 23) (Pd, Rh, Pt) 24) 27) FeCrAl (Standard, FZ, Pd, Pt, Y) 1273 1673 K 0.6 18 ks 4.2 Table 3 1473 K 18 ks SEM 1273 K 7.2 18 ks 1373 K 1.8 18 ks 1473 K 0.6, 7.2 18 ks 1573 K 1.8 7.2 ks 1673 K 18 ks 4.3 4.3.1 Fig. 7 FeCrAl (Standard, FZ, 0.5Pd, 0.5Pt) 1473 K, 18 ks 0.50 0.52 10 2 kg/m 2 Pd Pt Standard Standard 67

41 1 Fig. 7. Mass gain of Fe 20Cr 4Al (Standard, FZ, 0.5Pd, 0.5Pt) alloys exposed to oxygen for 18 ks at 1473 K. Fig. 9. Surface appearance of Fe 20Cr 4Al (Standard, FZ, 0.5Pd, 0.5Pt, 0.01 0.5Y) alloys exposed to oxygen for 18 ks at 1473 K; (a) Standard, (b) FZ, (c) 0.5Pd, (d) 0.5Pt, (e) 0.01Y, (f) 0.02Y, (g) 0.05Y, (h) 0.1Y, (j) 0.5Y. Table 4. Oxides determined by X-ray diffraction of Fe 20Cr 4Al (Standard, FZ, 0.5Pd, 0.5Pt, 0.01 0.5Y) alloys exposed to oxygen for 18 ks at 1473 K. Alloy Oxides Fig. 8. Mass gain of Fe 20Cr 4Al (0.01 0.5Y) alloys exposed to oxygen for 18 ks at 1473 K. Fig. 8 FeCrAl Y 1473 K, 18 ks Standard 0.1Y Y Y 4.3.2 Fig. 9 FeCrAl (Standard, FZ, 0.5Pd, 0.5Pt, 0.01 0.5Y) 1473 K, 18 ks Standard, FZ, 0.5Pd 0.5Pt Standard FZ, 0.5Pd 0.5Pt Y 0.01Y Table 3 FCA a-al 2 O 3 (w) FZ a-al 2 O 3 (s) 0.5Pd a-al 2 O 3 (s) 0.5Pt a-al 2 O 3 (s) 0.01Y a-al 2 O 3 (s) 0.05Y a-al 2 O 3 (s) 0.1Y a-al 2 O 3 (s) 0.2Y a-al 2 O 3 (s) Y 3 Al 5 O 12 (vw) 0.5Y a-al 2 O 3 (s) Y 3 Al 5 O 12 (w) s: strong, w: weak, vw: very weak. Standard 4 ppm Standard Y Y, 0.5Pd brown, 0.1Y, 0.2Y 0.5Y glossy gray gray Table 4 FeCrAl (Standard, FZ, 0.5Pd, 0.5Pt, 0.01Y 0.5Y) 1473 K, 18 ks 68

Fig. 10. SEM micrographs of oxide scale on Fe 20Cr 4Al (Standard, FZ, 0.5Pd, 0.5Pt, 0.01 0.5Y) alloys exposed to oxygen for 18 ks at 1473 K; (a) Standard, (b) FZ, (c) 0.5Pd, (d) 0.5Pt, (e) 0.01Y, (f) 0.02Y, (g) 0.05Y, (h) 0.1Y, (j) 0.5Y. X a-al 2 O 3 0.2Y 0.5Y Y 3 Al 5 O 12 0.2Y 0.5Y Fig. 10 FeCrAl (Standard, FZ, 0.5Pd, 0.5Pt, 0.01Y 0.5Y) 1473 K, 18 ks Standard FZ, 0.5Pd 0.5Pt Y Y 0.1Y, 0.2Y 0.5Y Standard, FZ, 0.5Pd, 0.5Pt, 0.01Y, 0.02Y 0.05Y 1000 SEM Standard, FZ, 0.5Pd 0.5Pt 1.0 mm 0.01Y, 0.02Y 0.05Y 0.5, 0.5 0.4 mm Y 0.1Y, 0.2Y 0.5Y 3000 SEM 0.1Y 0.2Y 0.13 0.07 mm 0.5Y 0.1Y, 0.2Y 0.5Y, 1, 2 4 mm Y 3 Al 5 O 12 (Table 4) 4.3.4 SEM 1273 K a-al 2 O 3 q-al 2 O 3 Standard 1273 K, 7.2 ks q-al 2 O 3 Fig. 11 Standard 1273 K, 7.2 ks a- Al 2 O 3 q-al 2 O 3 1273 K 7.2 18 ks, 1373 K 1.8 18 ks, 1473 K 0.6, 7.2 18 ks, 1573 K 1.8 7.2 ks 1673 K 18 ks 1273 K, 7.2 ks q-al 2 O 3 4.1 mm 1473 K, 7.2 ks 1473 K, 18 ks 3.8 mm 1573 K, 1.8 7.2 ks 3.5 2.9 mm 1573 K, 7.2 ks 1273 K, 7.2 ks q-al 2 O 3 1373 K, 18 ks 1673 K, 18 ks 69

41 1 Fig. 11. SEM micrographs of oxide scale on Fe 20Cr 4Al (Standard) alloy exposed to oxygen for 0.6 18 ks at 1273 1673 K; (a) 1273 K, 7.2 ks. (b) 1273 K, 18 ks. (c) 1373 K, 1.8 ks. (d) 1373 K, 18 ks. (e) 1473 K, 0.6 ks. (f) 1473 K, 7.2 ks. (g) 1473 K, 18 ks. (h) 1573 K, 1.8 ks. (i) 1573 K, 7.2 ks. (j) 1673 K, 18 ks. Fig. 12. SEM micrographs of oxide scale on Fe 20Cr 4Al (FZ, 0.5Pd, 0.5Pt) alloys exposed to oxygen at 1273 1673 K. 1473 K, 7.2 ks 1473 K, 7.2 ks 18 ks 0.3 0.5 mm 1573 K, 1.8 7.2 ks 0.6 1.0 mm 1673 K, 18 ks 7 mm Fig. 12 FZ, 0.5Pd 0.5Pt 1273 K 7.2 ks, 1473 K 7.2 ks, 1573 K 7.2 ks 1673 K 18 ks 1273 K, 7.2 ks 1473 K 7.2 ks, 1573 K 7.2 ks 1673 K 18 ks 0.2, 1.0 2.0 mm Fig. 13 0.05Y, 0.1Y 0.5Y 1473 K 7.2 ks, 1573 K 7.2 ks 1673 K 18 ks 0.05Y 0.1Y 0.5Y 1673 K, 7.2 ks 0.05Y 1473 K 7.2 ks, 1573 K 7.2 ks 1673 K 18 ks 0.5, 1.5 2 mm 0.1Y 0.5Y 70

Fig. 13. SEM micrographs of oxide scale on Fe 20Cr 4Al (0.05Y, 0.1Y, 0.5Y) alloys exposed to oxygen at 1473 1673 K. Fig. 14. SEM micrographs of oxide scale on Fe 20Cr 4Al (Standard) alloy exposed to oxygen (a) for 7.2 ks at 1573 K and then (b) for 18 ks at 1673 K. 2 mm 0.1Y 0.5Y Y 3 Al 5 O 12 Y Y 3 Al 5 O 12 1673 K, 18 ks 1 mm Fig. 14 Standard (a) 1573 K, 7.2 ks (b) 1673 K, 18 ks (a) 1673 K, 18 ks (a) (b) (b) (a) 4.4 1473 K, 18 ks Standard, FZ, 0.5Pd 0.5Pt Y 0.1% Y Y FeCrAl Pd Pt 0.1% Y Al 2 O 3 Al Y Y 1473 K Al 28) 0.01% Y Y Fe Y Y 2 O 3 Y 2 O 3 Al 2 O 3 Y 3 Al 5 O 12 Y 1) 2) Y Y 3 Al 5 O 12 Al 1) 2) Y 3 Al 5 O 12 0.1Y, 0.2Y 0.5Y 71

41 1 Table 5. Summary of scale feature on Fe 20Cr 4Al (Standard, FZ, 0.5Pd, 0.5Pt, 0.01 0.5Y) alloys exposed to oxygen for 18 ks at 1473 K. Alloy Fe 20Cr 4Al (Standard) Fe 20Cr 4Al (FZ) Fe 20Cr 4Al 0.5Pd Fe 20Cr 4Al 0.5Pt Fe 20Cr 4Al 0.01Y Fe 20Cr 4Al 0.02Y Fe 20Cr 4Al 0.05Y Fe 20Cr 4Al 0.1Y Fe 20Cr 4Al 0.2Y Fe 20Cr 4Al 0.5Y Scale feature entirely spalled, wavy, fine reticular facial cavity (1 mm), gray faintly spalled, planar, fine reticular facial cavity (1 mm), gray faintly spalled, planar, fine reticular facial cavity (1 mm), brown faintly spalled, planar, fine reticular facial cavity (1 mm), gray slightly spalled, wavy, fine reticular facial cavity (0.5 mm), gray faintly spalled, slightly wavy, fine reticular facial cavity (0.5 mm), gray faintly spalled, slightly wavy, fine reticular facial cavity (0.4 mm), gray no spalled, planar, dense, facial cavity (0.13 mm) glossy gray, fine Y 3 Al 5 O 12 particle (1 mm g.b.) no spalled, planar, dense, facial cavity (0.07 mm) glossy gray, fine Y 3 Al 5 O 12 particle (3 mm g.b.) no spalled, planar, dense, glossy gray fine Y 3 Al 5 O 12 particle (5 mm g.b., g.) no faintly slightly entirely, g.b.; grain boundary, g.; grain. Y 11),13),6),19),29) Table 5 FeCrAl (Standard, FZ, 0.5Pd, 0.5Pt, 0.01 0.5Y) 1473 K 18 ks Standard Standard 4 ppm Forest Davidson 30) 4 ppm 12) 1 3 ppm FeCrAl 4, 7, 35 53 ppm 1) 12) 1 ppm 3),5),9) 12),30) 1473 K, 18 ks 0.5Y 31) Y Y 0.1Y, 0.2Y 0.5Y gray 0.1Y, 0.2Y 0.5Y glossy gray (porous) (dense) 1473 K a-al 2 O 3 3),6),9) 16),18),19),21),22),29) 31) 1273 K g-al 2 O 3 q-al 2 O 3 29),32),33) 32),33) a-al 2 O 3 1 2 34) 35) 1273 K, 7.2 ks a-al 2 O 3 q-al 2 O 3 32) q-al 2 O 3 a-al 2 O 3 29),32),33) 12% 32) q- Al 2 O 3 1273 K, 7.2 ks q-al 2 O 3 4.1 mm 1473 K, 7.2 ks 1473 K, 18 ks 3.8 mm 1573 K, 1.8 ks 7.2 ks 3.5 2.9 mm 1573 K, 7.2 ks 1573 K, 7.2 ks 72

Table 6. Chemical composition of alloys (mass%). Alloy Fe Cr Al S Pd Pt Au Lu Fe 20Cr 4Al (Standard) Bal. 20 4 0.0004 Fe 20Cr 4Al (FZ) Bal. 20 4 0.0001 Fe 20Cr 4Al 0.5Pd Bal. 20 4 0.0001 0.498 Fe 20Cr 4Al 0.5Pt Bal. 20 4 0.0001 0.499 Fe 20Cr 4Al 0.5Au Bal. 20 4 0.0001 0.499 Fe 20Cr 4Al 0.1Lu Bal. 20 4 0.0001 0.04 1673 K, 18 ks 36) 4.5 Fe 20Cr 4Al (Standard: 4 ppms), Fe 20Cr 4Al (FZ: 1 ppm), Fe 20Cr 4Al 0.5Pd, Fe 20Cr 4Al 0.5Pt Fe 20Cr 4Al (0.01 0.5)Y 1273 1673K 0.6 18ks 1 1473 K, 18 ks Standard Y 0.1Y, 0.2Y, 0.5Y, FZ, 0.5Pd 0.5Pt 2 1473 K, 18 ks Standard, FZ, 0.5Pd, 0.5Pt, 0.01Y, 0.02Y 0.05Y 0.1Y, 0.2Y 0.5Y 3 Fe 20Cr 4Al 1273 K, 7.2 ks 1473 K 7.2 ks 1573 K, 7.2 ks 1673 K, 18 ks Standard 7 mm FZ, 0.5Pd, 0.5Pt, 0.05Y 2 mm, 0.1Y 0.5Y 1 mm 4 1673 K, 18 ks 0.1Y, 0.2Y 0.5Y Y 3 Al 5 O 12 2 mm Fig. 15. Mass change of Fe 20Cr 4Al (Standard, FZ, 0.5Pd, 0.5Pt, 0.5Au, 0.1Lu) alloys exposed to an oxygen-water vapor (dew point: 313 K) environment for 18 ks at 1473, 1573 and 1673 K; (a) Standard, (b) FZ, (c) 0.5Pd, (d) 0.5Pt, (e) 0.5Au, (f) 0.1Lu. Y 5 FeCrAl(Pd, Pt, Au, Lu) 5.1 Table 6 10 20 0.5 mm 3 313 K (40 C) (100 cc/min) 1473, 1573 1673 K 18 ks X SEM 5.2 4 ppm 1 ppm Fig. 15 73

41 1 Fig. 17. SEM micrographs of (a) spalled area on Fe 20Cr 4Al (Standard) and (b) oxide scale on Fe 20Cr 4Al 0.5Pt alloys exposed to an oxygenwater vapor (dew point: 313 K) environment for 18 ks at 1473 K. Fig. 16. Surface appearance of Fe 20Cr 4Al (Standard, FZ, 0.5Pd, 0.5Pt, 0.5Au, 0.1Lu) alloys exposed to an oxygen-water vapor (dew point: 313 K) environment for 18 ks at 1473, 1573 and 1673 K; (a) Standard, (b) FZ, (c) 0.5Pd, (d) 0.5Pt, (e) 0.5Au, (f) 0.1Lu. 1473 1573 K 1673 K 0.5Pt 1473 1573 K Fig. 16 1473 1573 K, 0.5Au 1673 K 0.5Pd brown gray a-al 2 O 3 Fig. 17 0.5Pt 1473 K, 18 ks 0.5Pt 5.3 1473 1573 K (1 ppm) 1673 K 0.5Au 0.5Pt 6 16 18 C16560639 18 1) Y. Ikeda, K. Nii, C. Yoshihara, Trans. Japan Inst. Met. Suppl. (1983) 207. 2) A. W. Funkenbusch, J. G. Smeggil, N. S. Bornstein, Met. Trans. 16A (1985) 1164. 3) C. Mennicke, E. Schumann, J. Le Coze, J. L. Smialek, G. H. Meier, M. Rule, in: S. B. Newcomb, J. A. Little, (Eds.), 74

Microscopy of Oxidation Vol. 3, 1997, pp. 95 104. 4) H. Al-Badairy, G. J. Tatlock, J. Le Coze, in: S. B. Newcomb, J. A. Little, (Eds.), Microscopy of Oxidation Vol. 3, 1997, pp. 105 114. 5) J. L. Smialek, in: S. B. Newcomb, J. A. Little, (Eds.), Microscopy of Oxidation Vol. 3, 1997, pp. 127 139. 6) P. Y. Hou, Z. Wang, K. Prusner, K. B. Alexander, I. G. Brown, in: S. B. Newcomb, J. A. Little, (Eds.), Microscopy of Oxidation Vol. 3, 1997, pp. 140 149. 7) P. Y. Hou, Oxid. Met. 52 (1999) 337. 8) P. Y. Hou, J. L. Smialek, Mat. at High Temp. 17 (2000) 79. 9) T. Amano, T. Watanabe, K. Michiyama, J. Japan Inst. Met. 61 (1997) 1077. 10) T. Amano, T. Watanabe, K. Michiyama, Oxid. Met. 53 (2000) 451. 11) T. Amano, A. Hara, N. Sakai, K. Sasaki, Mat. at High Temp. 17 (2000) 117. 12) T. Amano, T. Watanabe, A. Hara, N. Sakai, H. Isobe, K. Sasaki, T. Shishido, ISIJ Int. 44 (2004) 145. 13) T.Amano, S. Yajima, Y. Saito, Trans. Japan Inst. Met. Suppl. (1983) 247. 14) H. Okabe, J. Japan Inst. Met. 49 (1985) 891. 15) H. Okabe, J. Japan Inst. Met. 50 (1986) 500. 16) T. Amano, K. Michiyama, K. Okazaki, in: L. Maldonado, M. Pech (Eds.), Proc. 1st Mexican Symp. Met. Corros. 1994, pp. 119 128, pp. 258 264. 17) A. S. Khanna, H. Jonas, W. J. Quadakkers, Werkstoffe and Korrosion 40 (1989) 552. 18) B. A. Pint, Oxid. Met. 45 (1996) 1. 19) T. Amano, H. Isobe, N. Sakai, T. Shishido, J. Alloys and Comp. 344 (2002) 394. 20) K. Fukuda, K. Takao, T. Hoshi, Y. Usui, O. Furukimi, Mat. at High Temp. 20 (2003) 319. 21) S. Chevalier, J. P.Larpin, P. Dufour, G. Strehl, G. Borchardt, K. Przybylski, S. Weber, H. Scherrer, Mat. at High Temp. 20 (2003) 365. 22) B. A. Pint, K. L. More, I. G. Wright, Mat. at High Temp. 20 (2003) 375. 23) T. Amano, H. Isobe, K. Yamada, T. Shishido, Mat. at High Temp. 20 (2003) 387. 24) E. J. Felten, Oxid. Met. 10 (1976) 23. 25) E. J. Felten, F. S. Pettit, Oxid. Met. 10 (1976) 189. 26) I. M. Allam, H. C. Akuezue, D. P. Whittle, Oxid. Met. 14 (1980) 517. 27) T. Amano, M. Okazaki, K. Takeuchi, T. Shishido, in: G. J. Tatlock, H. E. Evans, (Eds.), Microscopy of Oxidation Vol. 6, 2005, pp. 309 316. 28) C. E. Holley, Jr. and F. B. Baker: in: L.Eyring, (Ed.), Progress in the Science and Technology of Rare Earths, Vol. 3, Pergamon Press, London, 1968, pp. 343 433. 29) R. Prescott, M. J. Graham, Oxid. Met. 38 (1992) 233. 30) C. Forest, H. Davidson, Oxid. Met. 43 (1995) 479. 31) B. A. Pint, Oxid. Met. 48 (1997) 303. 32) V. K. Tolpygo, D. R. Clarke, Mat. at High Temp. 17 (2000) 59. 33) P. Y. Hou, A. P. Paulikas, B. W. Veal, in: G. J. Tatlock, H. E. Evans, (Eds.), Microscopy of Oxidation Vol. 6, 2005, pp. 373 381. 34) M. W. Brumm, H. J. Grabke, Corros. Sci. 33 (1992) 1677. 35) R. Prescott, D. F. Mitchell, M. J. Graham, Corrosion 50 (1994) 62. 36) V. K. Tolpygo, D. R. Clarke, Mat. at High Temp. 20 (2003) 261. 75