OHO.dvi

Similar documents
Slater[] Collin[] [3] [4] AR 508.6MHz λ =58.9cm 4 9.7m APSAlternating Periodic Structure 50kW.M/m 3M cm 7.5 WR500 f c TE 0 f c = 393MHz 9 90k 0

Gmech08.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2 [1] KEK Report L C R L C R [2] 2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

i


Gmech08.dvi


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

meiji_resume_1.PDF

Note.tex 2008/09/19( )

chap03.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

The Physics of Atmospheres CAPTER :

Untitled

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Microsoft Word - 章末問題



LLG-R8.Nisus.pdf

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

総研大恒星進化概要.dvi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

『共形場理論』

pdf

85 4

第3章


: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

2011de.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


Quz Quz

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

4‐E ) キュリー温度を利用した消磁:熱消磁


Microsoft Word - 学士論文(表紙).doc

吸収分光.PDF


液晶の物理1:連続体理論(弾性,粘性)

TOP URL 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

untitled

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

重力方向に基づくコントローラの向き決定方法

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

gr09.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

30

201711grade1ouyou.pdf

TOP URL 1

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II 2 II

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

X線散乱と放射光科学

untitled

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

i

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Mott散乱によるParity対称性の破れを検証

Gmech08.dvi

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Xray.dvi

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Transcription:

1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v<<c( m ) f T f = 1 T = eb (4) 2πm 1 ( ) PET(positron emission tomography) 10 20 MeV 1: 1.2 2 Injector (linac) RF cavity Extraction Bending magnet Injection 2: t p(t) r 0 (2) B B = p(t) er 0 (5) (4) f rf f rf = eb(t) 2πm(t)

= f 0 pc (pc) 2 +(m 0 c 2 ) 2 (6) f 0 = c/2πr 0 200 MeV 300 400 MeV 1.3 ( ) ( ) ( ) (liner accelerator) ( 3 ) () ( ) ( ) (radio frequency quadruple linac: RFQ) ( 3 ) 3: ( ) ( ) X RFQ

2 Maxwell [2, 3] 2.1 Maxwell 4 5: (rot) E rote [4] (rot) l S 4: ( ) ( ) ( ) E dl = μ H nds (7) t ( l S (rot) l S 1 ( 5 ) 1 rot E = E rot (7) rot E nds = μ H t nds rote = μ H t (8) ( ) H (8) E 6 6: ( )/ɛ 0 (div) S V ( 7 )

1 μ 0 rot B ds = j nds 1 μ 0 rot B ds = j (10) 8 ( 9 ) 7: (div) E dive E nds = 1 ɛ 0 ρdv div E = ρ (9) ɛ 0 ( 8 ) 9: div i = ρ t (11) div E = ρ ɛ 0 8: ( ) 1 B dl = j nds μ 0 5 l S rot 1 B dl = j nds μ 0 div i = t ɛ 0div E = ɛ 0 div E t E i = ɛ 0 t (12) ( E ) i ɛ 0 t (10) (10) 1 E rot B ds = j + ɛ 0 μ 0 t (13) ( )j E (13) B

2.2 10: B (14) (15) 11 12 E B TEM (transverse electric and magnetic wave) ( 10 ) div B =0 rote = B t (14) 1 E rotb = j + ɛ 0 μ 0 t (15) dive = ρ ɛ 0 (16) divb = 0 (17) 11: 1 B E [4] (14) (15) (16) (17) 12: 2 E B ɛ 0 μ 0 c = 1/ ɛ 0 μ 0 S = E H E V/m H A/m S W/m 2

13 ( 11 12) ( ) TE TM (z ) ( ) TE11 z TM01 (TM01)

(a) Plain wave (c) Rectangular (b) Coaxial TE01 (Transverse electric wave) TM11 (Transverse magnetic wave) (d) Circular cylindrical TM01 13: E B S (a) (E ) (b) (TEM ) (c) E =0 (TE ) TM ( TE ) (d) TM11 TM01 ( : (a) TE01 TM11, TM01 )

3 14 2 z R sh (Ω) R sh P = V 2 /R ( 2 2 ) E 0 = V/ (V/m) (18) Z sh = R sh / Z sh = V 2 P = E2 0 P/ (19) 14: E B e ( ) Z sh (Ω/m) 14 B P wall V P wall P (= P wall ) V R sh R sh = V 2 (18) P (V) (W) ω b E 0 b E 0 i b (20) P/ i R P/ i 2 R (21) R ρ(ω m) δ = 2ρ ωμ (22) 2 Maxwell ( ) [5] [6] ( μ ) R = ρ 2πbδ (23)

b ω (b ω 1 ) (19) (22) Z sh ω (24) φ =0 P wall (stored energy) U ω Q 0 = ωu P wall (25) Q P wall Q Q 0 Q 0 P wall ( 3 ) Q 0 (18) (25) P R sh Q 0 = V 2 ωu (26) (R/Q) 15 15: E z t ( ) φ =0 ( ) φ s cos φ s ( ) 16 p E z 3 δ [ (22) ] ( ) T = /2 /2 E z(z)cos(ωz/v)dz /2 /2 E z(z)dz (27)

V eff φ s ( 15 ) V eff = E 0 Tcos φ s (30) 16: T p E z T (27) E z E 0 = /2 /2 E z (z)dz/ (28) E 0 p E 0 T (19) E 0 E 0 T Z eff = Z sh T 2 = E2 0 T 2 P/ (29) p

4 4.1 13 17 v p 17 v p = c/ cos θ c ( ) v g c z v g = c cos θ 18: λ 0 λ g cos θ = λ 0 λ g (31) λ 0 θ ( 19) λ c λ c /2 20 λ g λ c 17: v p v g c v p >c v p v g λ g λ 0 λ c 17 18 tan θ = λ g λ c (32) (32) (31) tan θ = sin θ cos θ = λ g λ c sin θ λ g λ 0 = λ g λ c sin θ = λ 0 λ c (33) (31) (33) sin 2 θ +cos 2 θ =1 θ ( λ 0 λ c ) 2 +( λ 0 λ g ) 2 = 1

20: λ c λ g 1 λ 2 g 1 λ 2 = 1 0 λ 2 c (34) 1 λ g 1 λ 0 4 ( 21) 19: λ 0 z θ λ c a a = λ c /2 21: λ 0 λ g () 1 λ 2 c + 1 λ 2 = 1 g λ 2 0 1 λ 2 c 17 v p = c/ cos θ 4 k =2π/λ g ω =2πc/λ 0 21

(31) v p = c λ g λ 0 v p = c 1 λ 0 / 1 λ g (35) 21 v p ( c ) 17 v p = c cos θ (31) v g = c λ 0 λ g (36) (34) 1 λ g 21 2 1 λ g 2( 1 λ 0 )( 1 λ 0 ) = 0 ( 1 λ 0 ) = λ 0 λ g (37) v p 22: ( ) 4.2 v p c ( λ g λ 0 ) (disk-loaded structure) ( 22) 3 ω ω 23 λ 0 λ g () 5 5 [5] [6] Stopband Passband 23: λ 0 λ g () (passband) (stopband) z 1/3 [6, p. 17]

1 1/3 c λ g λ 0 1 d d = λ 0 /3 v p = c ( ) 24 2π/3 1/4 z (19) Z sh = E2 0 dp/dz (38) P z (dp/dz < 0) Q (25) Q 0 = ωu P wall U P ( ) (stored energy) w Q 0 = ωw dp/dz (39) Z sh (38) (39) Z sh /Q 0 Z sh Q 0 = E2 0 ωw (40) R/Q [ (26) ] 24: z 2π/3 1/4 ( [7, p. 7] ) α de dz = αe (41) P E 2 dp dz dp dz = 2αP (42) Z sh

(42) α z P P = P 0 exp ( z ) 2 α(z)dz 0 (43) P 0 z 0 α(z)dz τ τ = 0 α(z)dz (44) (z = ) P τ P = P 0 e 2α = P 0 e 2τ (45) P P 0 P /P 0 = e 2τ [ (t f )] 25 ) Vector network analyzer (41) (42) E(z) = E 0 e αz = E 0 e τ z (47) P (z) = P 0 e 2αz = P 0 e 2 τ z (48) z (=) [ (42)] ( ) (z = ) P z P P (z) = P 0 (P 0 P )z/ (49) (45) P τ P = P 0 e 2τ (49) 25: [8] α z τ = α (46) P (z) = P 0 (P 0 P 0 e 2τ )z ( = P 0 1 1 ) e 2τ z (50) dp dz = P 0 1 e 2τ (51) v g

26 P v g (stored energy)w P = w v g (52) (52) 26: P v g w ( ) P P = w v g Q 0 (39) v g ωp v g = Q 0 (dp/dz) (53) (42) (46) τ dp dz dp dz = 2τP v g ωp v g = Q 0 (2τP/) = ω 2Q 0 τ (54) v g z (t f ) v g t f = v g = 2Q 0τ ω (55) t f t f P dp dz (50) (51) ( P = P 0 1 1 ) e 2τ z dp dz = P 0 1 e 2τ (53) ωp v g = Q 0 (dp/dz) ) v g = ωp 0 (1 1 e 2τ z 1 e Q 0 ( P 2τ 0 ) = ω 1 1 e 2τ z Q 0 1 e 2τ (56) v g z (t f ) dz v g (z) z 0 t f = = Q 0 ω = Q 0 ω dz 0 v g 0 [ = 2Q 0τ ω 1 e 2τ 1 1 e 2τ z ( ln 1 1 )] e 2τ z 0 (57) t f

5 1.3 RFQ RFQ J-PARC 324 MHz DT 6 5.1 (Alvarez) Drift tube linac (DT) ( ) 27 TM01 z ( ) 28: J-PARC DT ( 324 MHz) ( 5.2 ) Drift tube 29 z 1/4 v 1 T = vt = βλ (58) 27: 28 6 DT (KEK-PS DT 200 MHz ( ) [9] )

β = v/c ( ) [10] D d g g = βλ 0 0 μ 0βλ 2π ln D (59) d ( μ 0 ) d C 0 C 0 πd2 g (60) ( ɛ 0 ) 0,C 0 ω 0 c = 1/ ɛ 0 μ 0 ω 0 = 1 0 C 0 2gc2 βλd 2 ln D d (61) β βλ g/βλ 29: z 1/4 β = v/c 1 βλ ω g d C 0 g 30 [ (29) ]

Effective shunt impedance [MΩ/m] 40 30 20 10 Alvarez (DT) linac Coupled cavity linac (CC) 0 40 80 120 160 Proton energy [MeV] ( ) 31 0 mode π/2 mode 30: ( [11] ) π mode 5.2 4 v = c ( ) v c (v <<c) ( ) [ β(= v/c) > 0.4 ] ( ) 3 ( ) ( 23 ) 31: ( ) 0,π/2,π λ g 31 0,π/2,π 32 ( 23) 31 0 λ g = ( )

Disk loaded structure max. π/2 π (mode) (π/2 mode) 0 Passband Alternating periodic structure (APS) 32: λ g 0,π/2,π v g 0,π 0 π/2 Side coupled structure (SCS) π/2 1 23 v g ( ) π 23 v g =0 ( 5 ) π/2 33 APS π/2 () APS 33: π/2 ( ) π/2 ( ) APS π/2 ( ) π/2 ( 34 ) Disk-and-washer (DAW) Annular-ring coupled structure (ACS) ( 34 ) Disk-and-washer (DAW) Annular-ring coupled structure (ACS) ( 35) π/2 31 33 π/2 π/2

Coupling cell Accelerating mode (E) M E M E M E M (E) Accelerating cell Coupling mode M E M E M E M E M 34: Accelerating cell Coupling cell 36: E () M ( ) ( ) 35: Annular-ring coupled structure (ACS) 36 ( 31 33 ) ( 36) π/2

(confluence) π/2 v g 0 7 ( 37) TM010 (Accelerating mode) E E E E E E Confluence 0 π/2 π (mode) Passband Post 0 mode (Coupling mode) M M M M M M 37: (confluence) 38 π/2 5.1 = βλ Post coupler 38: ( )[9] ( ) ( π/2 S 7 [5] [6]

6 OHO [10]. (II). OHO 01, 2001. [11],.., 1993. [1].. 2004. [2].., 1965. [3],,. III., 1969. [4].., 1987. [5].. OHO 97, 1997. [6].. KEK Report 2003-11, 2004. [7].. OHO 02, 2002. [8],,. KEKB. KEK Report 98-12, 1999. [9].. OHO 84, 1984.