BH BH BH BH Typeset by FoilTEX 2

Similar documents

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Untitled

重力方向に基づくコントローラの向き決定方法

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

LLG-R8.Nisus.pdf

Gmech08.dvi


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

85 4

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

PDF

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

振動工学に基礎


橡実験IIINMR.PDF

Quz Quz

QCD ( ), ( ) 8 23 Typeset by FoilTEX

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP


2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

TOP URL 1

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

untitled

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

i

The Physics of Atmospheres CAPTER :


( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

news

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


PowerPoint Presentation

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

<82D282A982C1746F95F18D908F57967B95B E696E6464>


秋植え花壇の楽しみ方


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

数学の基礎訓練I

進化

Transcription:

GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1

BH BH BH BH Typeset by FoilTEX 2

1. BH 1.1 1 Typeset by FoilTEX 3

1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free fall x x x t = t f t = 0 : Typeset by FoilTEX 4

3 Step 1 K inertia b K rest w.r.t. star star b Typeset by FoilTEX 5

Step 2 K free fall K b = K b K-system star Typeset by FoilTEX 6

Step 3 star free fall for a long time Typeset by FoilTEX 7

1.3 3 2 1 A v a = A A A light A A-system ( if v a = constant ) K Inertia light A A-system ( v a increases ) accelerate! A = v a [m/s] light Typeset by FoilTEX 8

2 A star K free fall = light light K-system (free fall system) Typeset by FoilTEX 9

Abell1689 Typeset by FoilTEX 10

Typeset by FoilTEX 11

1.4 2 2 Typeset by FoilTEX 12

( paper ) ( sphere ) 4 2 180 Typeset by FoilTEX 13

1.5 Einstein R(P) G c 4 ρ(p) L 1 R 1 < R 2 < R 3 P 2 R(P) 1 P 1 L 2 L(P) 2 L 3 P 3 ρ(p) P [erg/cm 3 ] R(P) P [1/cm 2 ] G/c 4 [cm/erg] L(P) ct P x. =. ct P x Typeset by FoilTEX 14

1.6 BH BH light cone 1.1 ct x light { ct y x Typeset by FoilTEX 15

BH BH horizon L BH = 2GM c 2 Black hole Singularity: ρ = ct light cone BH lights core of a star M [kg] L BH BH x Typeset by FoilTEX 16

BH BH BH BH BH BH light BH BH BH Typeset by FoilTEX 17

BH Schwarzschild BH r(λ) ( ) dr(λ) 2 ( L 2 c 2 ) ( + dλ r 2 (µc 2 ) 2 1 r ) BH r { µ 0 µ µ = 0 E L = E 2 λ Typeset by FoilTEX 18

BH E, L BH µ 0 { µ = 0 potential µ = 0 µ = 0 3_ 2 r BH 3 r BH BH BH r Typeset by FoilTEX 19

L = 0 Singularity O ct Black Hole (Trapped Region) R BH gravity Light Cone r ct Singularity O Grav. Doppler Light Cone Trapped Region (Black Hole) R BH world sheet of a wave source r Typeset by FoilTEX 20

1.7 BH OK Typeset by FoilTEX 21

OK OK Typeset by FoilTEX 22

OK BH BH Typeset by FoilTEX 23

BH BH (A) BH (B) BH (A) BH (B) BH Typeset by FoilTEX 24

1 BH Typeset by FoilTEX 25

2. BH BH 2.1 BH BH BH BH Typeset by FoilTEX 26

BH BH 3 M : J : Q : Q = 0 Typeset by FoilTEX 27

BH Einstein Schwarzschild BH r BH = 2m, m = GM c 2 [cm] BH 0 Typeset by FoilTEX 28

BH Einstein Kerr BH r BH = m + m 2 a 2, a = J Mc [cm] BH BH 0 a < m r erg = m + m 2 a 2 cos 2 θ θ BH r < r erg BH Typeset by FoilTEX 29

Kerr BH BH a = 0.8 m Typeset by FoilTEX 30

2.2 BH BH BH BH M a ( a := J Mc ) BH BH 0 a < m = GM c 2 Typeset by FoilTEX 31

2.3 BH BH VLBI { Typeset by FoilTEX 32

2.4 BH BH source W 0 earth W 1 W 0 0 W 1 1 Typeset by FoilTEX 33

W 0 W 1 BH t obs E obs = E 1 E 0 BH M a BH source W 1 W 0 earth Typeset by FoilTEX 34

2.5 Gouy phase shift E 0 W 0 1 0.8 0.6 0.4 0.2-0.5 0 0.5 oscillation of observed wave at ONE telescope E 1 Hilbert Trans. of W E 0 0.4 0 t obs t obs t obs t obs -1.0-0.5 0.2-0.2 E 1 W 1 0.5 1.0 Zenginoglu &Galley PRD86(2012)064030, YouTube -2-4 4 2 source BH 10 W 1 W 0 20 earth Typeset by FoilTEX 35

Gouy Phase Shift (GPS) (caustic) 1 Fourier π/2 Fourier +π/2 Hilbert caustic BH caustic (ex. non-rot. BH) For each beam [cross section] = 0 Typeset by FoilTEX 36

F obs E obs 2 E obs F obs (t obs ) GPS W 0 W 1 t obs 2 3 Hilbert GPS BH Typeset by FoilTEX 37

2.6 E obs Oscillation of observed wave at ONE telescope Τ 0 (ex. line emission) E Τ 1 obs W 0 W 1 t obs t obs { t obs, E obs BH T 0 T 1 Typeset by FoilTEX 38

3 M : BH a : BH ν 1 /ν 0 : (= T 0 /T 1 ) BH BH M, a Typeset by FoilTEX 39

W 0 W 1 Gouy Phase Shift intensity (photon no.) W 0 an example W1 source ν Typeset by FoilTEX 40

2.7 Step1: A, B Step2: B Hilbert E obs Step3: A B 2 3 1 0.8 0.6 0.4 0.2 0.2-0.2 E original data (A) W 0 W 1 t obs 1 2 3 strong corelation W 0 W 1 1 2 3 t obs modulated data (B) W 0, W 1 t obs, E obs, ν 1 /ν 0 VLBI Typeset by FoilTEX 41

3. 3.1 ( t obs, E obs, ν 1 /ν 0 ) E obs = F obs (1) F obs (0) Specific Flux Typeset by FoilTEX 42

Specific Flux [erg/s cm 2 Hz] F obs (ν obs ) = I obs (ν obs ) Ω obs = I(ν) ( νobs ν s = ν s (ν obs ) ν s ) 3Is (ν s ) Ω obs Specific Intensity I(ν) [erg/s cm 2 Hz ste-rad] ν 3 = const. Ω obs 1 ν 2 obs Typeset by FoilTEX 43

3.2 BH (M, a) M = 1, a = 0.8 obs. φ φ=0 BH θ = 0.7π 2.2 r BH source v s = φ ZAMO W 0 W 1 v s Typeset by FoilTEX 44

図 A 光線 これらの光線は 遠方に居る同一観測者に届く しかし 到着時刻がずれて 観測強度も異なる Caustic point on the light orbit 光源がバースト的に発光 赤線はエルゴ領域の赤道 光線ではない

φ obs F 1 /F 0 ν 1 /ν 0 φ obs φ obs 0 2π t obs /M F 1 /F 0 ν 1 /ν 0 O(0.1) 0.7 1.3 Typeset by FoilTEX 46

W 0 W 1 Gaussian Power law Planckian (θ obs, ϕ obs ) E obs Mathematica file Typeset by FoilTEX 47

3.3 VLBI W 0, W 1 { BH W1 W 0 source u s BH Typeset by FoilTEX 48

4. BH M, a BH BH ( t obs, F 1 /F 0, ν 1 /ν 0 ) Typeset by FoilTEX 49