Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Size: px
Start display at page:

Download "Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )"

Transcription

1 R.E. Kalman ( ) H H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c /(23)

2 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) x ( < ) ˆx (smoothing) 8) 1 [ ] x +1 F x + G w ( ) (6 1) y H x + v, 0 ( ) (6 2) x 0, ( ){w }, {v } E{w } 0, E{v } 0, E{x 0 } x 0, E{[x 0 x 0 ][x 0 x 0 ] T } Σ x0 Kalman 1) Bucy 2) c /(23)

3 E { w v [ T w, v ]} T E{w w T } 0 0 E{v v T } Σ w 0 0 Σ δ, Σ v > 0 v E{x 0 w T } 0, E{x 0 v T } 0 (6 3) {F }, {G }, {H }, x 0, Σ x0, {Σ w }, {Σ v } E{ }, T δ, Σ v > 0 Σ v E{ x ˆx 2 Y } x ˆx E{x Y } x p(x Y )dx (6 4) (Kalman filtering problem) (Kalman filter: KF) 2 a Y x p(x Y ) p(x y, Y 1 ) p(x, y, Y 1 ) p(y, Y 1 ) p(x, y, Y 1 ) p(x, Y 1 ) p(x, Y 1 ) p(y, Y 1 ) p(y x, Y 1 ) p(x, Y 1 ) p(y, Y 1 ) p(y x ) p(x, Y 1 )/p(y 1 ) p(y, Y 1 )/p(y 1 ) p(y x )p(x Y 1 ) p(y Y 1 ) (6 5) {x } x {v i } 1 i0 {v } p(y x, Y 1 ) p(y x ) b Y x +1 ˆx Y x E{x Y } 4),8),9) ξ p (ξ x Y Y )dξ x p(x Y )dx c /(23)

4 p(x +1 Y ) p(x +1, Y ) p(x+1, x, Y )dx p(y ) p(y ) p(x+1, x, Y ) p(x, Y ) dx p(x, Y ) p(y ) p(x +1 x, Y )p(x Y )dx p(x +1 x )p(x Y )dx (6 6) v F x +G w p(x +1 x, Y ) p(x +1 x ) 3 (6 5) (6 6) (6 4) a x 0, w v p(y x ) exp{ 1 2 (y H x ) T Σ 1 v (y H x )} p(x Y 1 ) exp{ 1 2 (x ˆx 1 ) T ˆΣ 1 1 (x ˆx 1 )} ˆx 1 E{x Y 1 }, ˆΣ 1 E{(x ˆx 1 )(x ˆx 1 ) T Y 1 } ˆx 0 1 x 0, ˆΣ 0 1 Σ x0 (6 5) p(y x ) p(x Y 1 ) (x ˆx 1 ) T ˆΣ 1 1 (x ˆx 1 ) + (y H x ) T Σ 1 v (y H x ) (x ˆx 1 ) T ˆΣ 1 1 (x ˆx 1 ) +[(y ŷ 1 ) H (x ˆx 1 )] T Σ 1 v [(y ŷ 1 ) H (x ˆx 1 )] (x ˆx 1 ) T ( ˆΣ HT Σ 1 v H )(x ˆx 1 ) +(y ŷ 1 )Σ 1 v (y ŷ 1 ) (x ˆx 1 ) T H T Σ 1 v (y ŷ 1 ) (y ŷ 1 ) T Σ 1 v H (x ˆx 1 ) [(x ˆx 1 ) ˆΣ H T Σ 1 v (y ŷ 1 )] T ˆΣ 1 [(x ˆx 1 ) ˆΣ H T Σ 1 v (y ŷ 1 )] +(y ŷ 1 ) T (Σ 1 v Σ 1 v H ˆΣ H T Σ 1 v )(y ŷ 1 ) (x ˆx ) T ˆΣ 1 (x ˆx ) + (y ŷ 1 ) T (Σ v + H ˆΣ 1 H T ) 1 (y ŷ 1 ) ˆx ˆx 1 + ˆΣ H T Σ 1 v (y ŷ 1 ), ŷ 1 H ˆx 1 ˆx 1 + ˆΣ 1 H T (Σ v + H ˆΣ 1 H T ) 1 (y ŷ 1 ) (6 7) ˆΣ ( ˆΣ H Σ 1 v H T ) 1 ˆΣ 1 ˆΣ 1 H T (H ˆΣ 1 H T + Σ v ) 1 H ˆΣ 1 (6 8) c /(23)

5 (6 5) p(y Y 1 ) exp{ 1 2 (y ŷ 1 ) T (Σ v + H ˆΣ 1 H T ) 1 (y ŷ 1 )} Y x p(x Y ) p(y x )p(x Y 1 ) p(y Y 1 ) exp{ 1 2 (x ˆx ) T ˆΣ 1 (x ˆx )} (6 9) ˆx, ˆΣ x ( x ) b x w v E{ Y } ˆx +1 F ˆx (6 10) ˆΣ +1 F ˆΣ F T + G Σ w G T (6 11) (6 10) (6 11) Y x +1 p(x +1 Y ) exp{ 1 2 (x +1 ˆx +1 ) T ˆΣ 1 +1 (x +1 ˆx +1 )} (6 12) 4 ( (6 7), (6 8)) ( (6 10), (6 11)) [ ] ˆx ˆx 1 + K (y H ˆx 1 ) ˆx +1 F ˆx ( ) (6 13) K ˆΣ 1 H T (H ˆΣ 1 H T + Σ v ) 1 ( ) (6 14) ˆΣ ˆΣ 1 K H ˆΣ 1 ˆΣ +1 F ˆΣ F T + G Σ w G T ( ) (6 15) ˆx 0 1 x 0, ˆΣ 0 1 Σ x0 ( ) (6 16) ˆΣ y 0,, y E{ x ˆx 2 } t r { ˆΣ } t r { } c /(23)

6 x 0,{w },{v } x 0 ( w v 0) Σ x0, Σ w0,, Σ w, Σ v0,, Σ v y 0,, y ˆx 0 0,, ˆx ˆΣ 0 0,, ˆΣ x N(x ; ˆx, ˆΣ ) N( ) u x +1 F x + D u + G w ( ) (6 17) y H x + v ( ) (6 18) 8),9) [ ] ˆx ˆx 1 + K (y H ˆx 1 ) ˆx +1 F ˆx + D u ( ) (6 19) K ˆΣ 1 H T (H ˆΣ 1 H T + Σ v ) 1 ( ) (6 20) ˆΣ ˆΣ 1 K H ˆΣ 1 ˆΣ +1 F ˆΣ F T + G Σ w G T ( ) (6 21) ˆx 0 1 x 0, ˆΣ 0 1 Σ x0 ( ) (6 22) 9) c /(23)

7 , 1 x +1 f (x ) + g (x )w (6 23) y h (x ) + v, 0 (6 24) f ( ), g ( ), h ( ) x 0, {w }, {v } (6 3) x ˆx, ˆx 1 f (x ), h (x ) (Taylar expansion) f (x ) f ( ˆx ) + F [x ˆx ] + (6 25) h (x ) h ( ˆx 1 ) + H [x ˆx 1 ] + (6 26) F f (ξ ) ξ T, H h (ξ ) ξ ˆx ξ T ξ ˆx 1 (6 27) ξ 9) G g ( ˆx ) (6 23) (6 24) x +1 f ( ˆx ) + F [x ˆx ] + G w (6 28) y h ( ˆx 1 ) + H [x ˆx 1 ] + v (6 29) x +1 F x + u + G w (6 30) m H x + v (6 31) u f ( ˆx ) F ˆx m y h ( ˆx 1 ) + H ˆx 1 (6 32) f( ) a, b f(ax + by) a f(x) + b f(y) f( ) c /(23)

8 (D I, u f ( ˆx ) F ˆx ) (6 19) (6 22) (6 23) (6 24) 4),8),9) [ ] ˆx ˆx 1 + K (y h ( ˆx 1 )) ˆx +1 f ( ˆx ) ( ) (6 33) K ˆΣ 1 H T (H ˆΣ 1 H T + Σ v ) 1 ( ) (6 34) ˆΣ ˆΣ 1 K H ˆΣ 1 ˆΣ +1 F ˆΣ F T + G Σ w G T ( ) (6 35) ˆx 0 1 x 0, ˆΣ 0 1 Σ x0 ( ) (6 36) (extended Kalman filter: EKF) (6 23) (6 24) F, G, H ˆx, ˆx 1 ˆΣ K ˆx (unsented Kalman filter: UKF) ( (unscented transformation : UT)) 5),6),10) x +1 f (x, w ) (6 37) y h (x, v ) (6 38) x R N x y R Ny w R Nw v R Nv (6 3) 10) f : R Nx R Nw R Nx h : R Nx R Nv R Ny 6),10) x +1 f (x ) + g(x )w, y h (x ) + v c /(23)

9 x a [xt wt vt ]T (6 39) 2N a + 1 N a (2N a +1) X a [(Xx ) T (X w ) T (X v ) T ] T N a N x + N w + N v N x, N w, N v [ ] 1. : x a 0 E{x a 0 } [ xt 0 0T 0 T ] T Σ a 0 E{(x a 0 xa 0 )(xa 0 xa 0 )T } Σ x Σ w Σ v w, v, (6 3). 2. For 1, 2,... (a) : X a 1 [ x a 1, ( ) { x a 1 (N a + λ) Σ a 1 i ( ) { x a 1 (N + a + λ) Σ a 1 i } Na i1, } Na i1 ] > 1 x a 1 [ ˆx T 1 1 0T 0 T ] T, Σ a 1 diag{ ˆΣ 1 1, Σ w, Σ v } ( ) (N a + λ) Σ a 1 N a N a (N a + λ) Σ a 1 i i diag{ } λ (b) ( ): c /(23)

10 X x i, 1 f 1 (X x i, 1, Xw i, 1 ), i 0, 1, 2,, 2N a x 1 Σ 1 2N a W (m) i X x i, 1 i0 2N a W (c) i [X x i, 1 x 1][X x i, 1 x 1] T i0 Y i, 1 h (X x i, 1, Xv i, 1 ), i 0, 1, 2,, 2N a ȳ 1 2N a W (m) i Y i, 1 i0 X x i, 1, Y i, 1 X x 1, Y 1 i + 1, W (m) i, W (c) i W (m) 0 λ/(n a + λ), W (c) 0 λ/(n a + λ) + (1 α 2 + β) W (m) i W (c) i 1/{2(N a + λ)}, i 1,..., 2N a, α, β (c) ( ) : Σ y Σ x y 2N a W (c) i [Y i, 1 ȳ 1 ][Y i, 1 ȳ 1 ] T i0 2N a W (c) i [X x i, 1 x 1][Y i, 1 ȳ 1 ] T i0 K Σ x y Σ 1 y ˆx x 1 + K (y ȳ 1 ) ˆΣ Σ 1 K Σ y K T MATLAB chol( ) ˆΣ 1 H T (Σ v + H ˆΣ 1 H T ) 1 E{(x ˆx 1 )(y ŷ 1 ) T Y 1 }E{(y ŷ 1 )(y ŷ 1 ) T Y 1 } 1, ˆΣ 1 H T (H ˆΣ 1 H T + Σ v ) 1 H ˆΣ 1 K (H ˆΣ 1 H T +Σ v )KT K E{(y ŷ 1 )(y ŷ 1 ) T Y 1 }K T c /(23)

11 3 E{x Y } x p(x Y )dx p(x Y ) (particle filter: PF) 5),6) x +1 f (x, w ) (6 40) y h (x, v ) (6 41) x y w v (6 3) f : R Nx R Nw R Nx h : R Nx R Nv R Ny Y [y 1,, y ] x p(x Y ) q x (i) ( ) E{x Y } X [x 0,, x ] E{X Y } E{X Y } X p(x Y )dx p(x Y ) X q(x Y ) q(x Y )dx p(y X )p(x ) X p(y )q(x Y ) q(x Y )dx W X q(x Y )dx (6 42) p(y ) W p(y X )p(x ) q(x Y ) (6 43) (importance weight) q(x Y ) (proposal distribution) p(y ) p(y X )p(x ) q(x Y )dx q(x Y ) E q {W Y } 1 N s N s i1 W (i), W(i) p(y X (i) )p(x(i) ) q(x (i) Y ), X (i) q(x Y ) (6 44) (6 42) (w 0) (Monte Carlo: MC) MC g(x) f(x)π(x) π(x) x (i) π(x) g(x)dx 1 Ns Ns i1 f(x(i) ) c /(23)

12 E{X Y } E q {W X Y } E q {W Y } 1 N s Ns X(i) i1 W(i) 1 Ns j) N s j1 W( (6 45) N s p(x Y ) W (i) δ(x X (i) ) i1 (6 46) N s δ( ) W (i) W (i) W (i) W (i) Ns j) j1 W( p(y X (i) )p(x(i) ) q(x (i) Y ) p(y )p(x (i) Y ) q(x (i) Y ) (6 47) (6 48) X (i) q(x Y ) q(x Y ) q(x X 1, Y )q(x 1 Y 1 ) (6 49) X (i) 1 q(x 1 Y 1 ) x (i) q(x X (i) 1, Y ) X (i) [X (i) 1, x(i) ] q(x Y ) (6 40) (6 41) p(x Y ) p(x 1 Y 1 ), p(y x ) p(x x 1 ) p(x Y ) p(y X, Y 1 )p(x Y 1 ) p(y Y 1 ) p(y X, Y 1 )p(x X 1, Y 1 ) p(x 1 Y 1 ) p(y Y 1 ) p(y x )p(x x 1 ) p(x 1 Y 1 ) p(y Y 1 ) (6 50) (6 49) (6 48) x (i) q(x X (i) 1, Y ) x (i) q(x X (i) 1, Y ) c /(23)

13 W (i) p(y ) p(y x (i) )p(x(i) x(i) 1 )p(x(i) 1 Y 1) p(y Y 1 ) q(x (i) X(i) 1, Y )q(x (i) 1 Y 1) W (i) p(y x (i) )p(x(i) x(i) 1 ) 1 q(x (i) X(i) 1, Y ) (6 51) q(x X (i) 1, Y ) q(x x (i) 1, y ) W (i) W (i) p(y x (i) )p(x(i) x(i) 1 q(x (i) x(i) 1, y ) 1 ), x (i) q(x x (i) 1, y ) (6 52) ) q(x x (i) 1, y ) p(x x (i) 1 ) ( ) ) q(x x (i) 1, y ) N(x ; x, Σ ) (EKF) (UKF) N(x ; x, Σ ) x Σ (6 46) x p(x Y ) N s p(x Y ) W (i) δ(x x (i) ), i1 x(i) q(x x (i) 1, y ) (6 53) x ˆx (6 52) ( g(x)δ(x x (i) )dx g(x (i) )) ˆx E{x Y } N s x p(x Y )dx i1 W (i) x(i) (6 54) P{x (i) x ( j) } W ( j) {x (i) } x ( j) N s W ( j) {x (i) } W(i) 1 1/N s (6 52) EKF( UKF) 5),6) Bootstrap filter Condensation algorithm P{x (i) x ( j) j) } W( x (i) x (i) x ( j) W ( j) Sampling-Importance Resampling (SIR) c /(23)

14 Draw x (i) -1 from ( j) q ( x -1-2 x, y -1 ) (i) -1 {x -1, N s } ( p(x -1 Y -2 ) ) lielihood (i) p( y -1 x -1 ) Importance weightsw (i) -1 Multiply/Suppress (i) (i) {x -1, w _ -1} ( p(x -1 Y -1 ) ) ^ x -1-1 Draw x (i) from ( j) q ( x x -1, y ) {x (i) -1 s, N } ( p(x Y -1 ) ) lielihood (i) p( x ) y Importance weights w (i) (i) w (i) {x, _ } ( p(x Y ) ) x ^ 6 1. [ ( ) ] 1. ( 0) For i 1,..., N s - p(x 0 ) x (i) 0, EKF ( UKF). 2. For 1, 2, ) For i 1,..., N s - x (i) 1 x(i) 1, Σ (i) 1 Σ(i) 1, F(i), G(i), H(i), EKF ( UKF) x (i), Σ (i), N(x ; x (i), Σ (i) ). - x (i) ( x (i) N(x ; x (i), Σ (i) ) ) - (W (i) W (i) W (i) W (i) Ns j1 W ( j), W (i) /N s). p(y x (i) )p(x(i) x(i) 1 ) N(x (i) ; x(i), Σ (i) ) 2.2) - x (i) W (i) ˆx. ˆx N s W (i) x(i) i1 2.3) - N s (x (i), Σ(i) ). c /(23)

15 EKF UKF 1) R.E. Kalman : A New Approach to Linear Filtering and Prediction Problem, Trans. ASME, Journal of Basic Engineering, 82D, pp (1960). 2) R.E. Kalman and R.S. Bucy : New Results in Linear Filtering and Prediction Theory, Trans. ASME, Journal of Basic Engineering, 83D, pp (1961). 3) A. H. Jazwinsi : Stochasic Process and Filtering Theory, Academic press (1970). 4) B. D. O. Anderson and J. B. Moore : Optimal Filtering, Prentice-Hall (1979). 5) R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan : The Unscented Particle Filter, Technical Report CUED/F-INFENG/TR380, Cambridge, England (2000). 6) B. Ristic, S. Arulampalam, and N. Gorden : Beyond the Kalman Filter, Artech House Publishers (2004). 7) :, (1977). 8) :, (1983). 9) :, (2001). 10) :, (2005). c /(23)

16 H H H H H 1, 2, filter 3) H H 6 2 x +1 F x + G w y H x + v z L x (6 55) (6 56) (6 57) ν w x +1 F x G w H y H z^ x L z e 6 2 H x R n, y R p z R q w R m, v R p Y l : {y 0, y 1,, y l } x ˆx l, z z l H H error criterion H N 0 z ẑ 2 l J : sup N ( w,v,x 0 0 w 2 + v 2) + (x 0 x 0 ) T Π 1 (x 0 x 0 ) < γ2 (6 58) H J : sup w,v 0 z ẑ l 2 0 ( w 2 + v 2) < γ2 (6 59) c /(23)

17 γ Π x 0 w v w 2 < + v 2 < + F, G, H, L ξ : (w, v ) e : z ẑ l T eξ (z) H (6 59) T eξ (z) H T eξ : sup λ >1 σ ( T eξ (λ) ) sup ω [0,2π) σ ( T eξ (e jω ) ) σ: γ J T eξ 2 H H H ξ e γ H 2 T eξ (z) H 2 T eξ 2 ( 2π Tr[T 0 eξ (e jω ) T eξ (e jω )]dω) 1/2 T eξ (e jω ) T eξ σ ( Teξ ( e jω ) ) ω 6 3 T eξ (z) σ H l 1 l 1 H H (6 58) H sup V(w, v, x 0 ; ẑ) < 0 w, v, x 0 N N V(w, v, x 0, ẑ) z ẑ l 2 γ 2 ( w 2 + v 2 ) + (x 0 x 0 ) T Π 1 (x 0 x 0 ) 0 H 0 c /(23)

18 V : min max V(w, v, x 0 ; ẑ) ẑ w,v,x 0 (6 60) minimax estimation problem (w, v, x 0 ) ẑ V (6 56) v y H x v y (6 60) V : min max V(w, y, x 0 ; ẑ) ẑ w,y,x 0 N V(w, y, x 0 ; ẑ) L x ẑ l 2 0 N γ 2 ( w 2 + H x y 2 ) + (x 0 x 0 ) T Π 1 (x 0 x 0 ) 0 (6 61) 1 w x 0 w 0,..., w N, x 0 ẑ Y {y 0,..., y } ẑ y 1 ẑ 1 Y 1 {y 0,..., y 1 } ẑ 1 y 1 y (6 61) 1 V max y 0 min ẑ 0 0 (max y 1 min ẑ 1 1 ( max y N 1 min (max ẑ N 1 N 1 y N min ( max V(w, y, x 0 ; ẑ) )) )) ẑ N N w 0,...,w N,x 0 1 V min ẑ 0 1 max y 0 (min ẑ 1 0 max ( min max y 1 ẑ N 1 N 2 y N 1 (min ẑ N N 1 max y N ( max w 0,...,w N,x 0 V(w, y, x 0 ; ẑ) )) )) H 1 2, 4) 5) c /(23)

19 1 H (6 55) (6 57) F, 0,..., N i H H Riccati difference equation P +1 F P [I + (H T H γ 2 L T L )P ] 1 F T + G G T, P 0 Π (6 62) P P > 0 & γ 2 I L P (I + H T H P ) 1 L T > 0, 0,..., N (6 63) V 0 H (6 58) ˆx +1 F ˆx, ˆx 0 1 x 0 (6 64) ˆx ˆx 1 + K (y H ˆx 1 ) (6 65) ẑ L ˆx K P H T (I + H P H T ) 1 (6 66) (6 67) ii 1 H (6 62) P > 0 & γ 2 I L P L T > 0, 0,..., N (6 68) 1 ˆx +1 F ˆx, ˆx 0 1 x 0 (6 69) ˆx ˆx 1 + K (y H ˆx 1 ) (6 70) ẑ 1 L ˆx 1 K P H T (I + H P H T ) 1 P P (I γ 2 L T L P ) 1 (6 71) (6 72) (6 73) V 0 1 H (6 58) (6 55)-(6 57) H H P 0 0 N + (6 62) P c /(23)

20 2 H (6 55)-(6 57) F, G, H, L F, G, H, L (F, G) (H, F) i H (6 59) H H algebraic Riccati equation P FP[I + (H T H γ 2 L T L)P] 1 F T + GG T (6 74) P P 0 & γ 2 I LP(I + H T HP) 1 L T > 0 (6 75) (6 59) H ˆx +1 F ˆx (6 76) ˆx ˆx 1 + K(y H ˆx 1 ) (6 77) ẑ L ˆx K PH T (I + HPH T ) 1 (6 78) (6 79) ii (6 59) H 1 H (6 74) P P 0 & γ 2 I LPL T > 0 (6 80) 1 H ˆx +1 F ˆx (6 81) ˆx ˆx 1 + K(y H ˆx 1 ) (6 82) ẑ 1 L ˆx 1 K PH T (I + H PH T ) 1 P P(I γ 2 L T LP) 1 (6 83) (6 84) (6 85) 1 H H 1 2 H H H H 3, 6) 7) 2 γ γ (6 62),(6 74) ) γ H c /(23)

21 3 (6 63),(6 68) P, P γ H H γ γ (6 58) (6 59) H γ H H (w, v) H 8, 9) 3 (6 55) (6 57) x 0 x 0 Π w, v E{w } 0, E{v } 0, E w [ ] v w T l v T l I 0 0 I δ l,, l 0, 1, 2,... E δ l exponential-quadratic error criterion N J EQ E exp γ 2 z ẑ l 2 0 (6 60) 1 H J EQ w, v, x 0 f N f (w, v, x 0 ) c exp ( w 2 + v 2 ) (x 0 x 0 ) T Π 1 (x 0 x 0 ) 0 c J EQ N J EQ exp γ 2 z ẑ l 2 f (w, v, x 0) dx 0 dw dv R p(n+1) R m(n+1) R n 0 exp ( γ 2 V(w, v, x 0 ; ẑ) ) dx 0 dw dv R p(n+1) R m(n+1) R n J EQ. min J EQ ẑ [ c min R p ẑ 0 0 min R p ẑ 1 1 [ [ [ ] ] ] ] min exp(γ 2 V)dx 0 dw dv N dv 1 dv 0 R p ẑ N N R m(n+1) R n c /(23)

22 2 Z(x)/ x x T < 0 Z : R n R { } exp(z(x))dx const exp max Z(x) (const: ) R n x 10) minẑ J EQ { min J EQ const exp max ẑ v 0 min ( ( max ẑ 0 0 v N } min ( max(γ 2 V)) ) ẑ N N w, x 0 (6 86) (6 60) H (6 64) (6 66) J EQ 5) LMS y ϕ T θ + v, 0, 1, 2,..., N (6 87) θ R n v (y, ϕ ), 0, 1,..., N θ N 1 lim N N N ϕ ϕ T > 0 0 (6 88) θ +1 θ, θ 0 θ (6 89) H sup x 0,v N 0 y ŷ 2 N 0 v 2 + µ 1 θ 0 θ 0 2 < γ2, µ > 0 (6 90) ˆθ H x θ, z y, F I, G 0, H L ϕ T, x 0 θ 0, Π µi 1 H 1(ii) ˆθ +1 ˆθ + K (y ϕ T ˆθ ), ˆθ 0 θ 0 (6 91) K P ϕ /(1 + ϕ T P ϕ ) P +1 P [I + (1 γ 2 )ϕ ϕ T P ] 1, P 0 µi (6 92) (6 93) c /(23)

23 Q : P 1 (6 93) Q +1 Q + (1 γ 2 )ϕ ϕ T, Q 0 µ 1 I (6 94) (6 68) Q γ 2 ϕ ϕ T > 0, 0, 1,..., N (6 95) (6 94) Q µ 1 I + (1 γ 2 ) 1 i0 ϕ iϕ T i γ < 1 1 γ 2 < 0 (6 88) N 1 Q N γ 1 γ 1 Q µ 1 I ( ) 1 0 < µ < sup ϕ 2 (6 96) Q γ 2 ϕ ϕ T µ 1 I ϕ ϕ T > 0 (6 95) (6 96) µ H γ γ 1 P µi K µϕ ˆθ +1 ˆθ + µϕ (y ϕ T ˆθ ), ˆθ 0 θ 0 (6 97) µ LMS LMS (6 96) H LMS 1) K.M. Nagpal and P.P. Khargonear, Filtering and smoothing in an H setting, IEEE Trans. Automat. Contr., vol.36, no.2, pp , ),, vol.7, no.8, pp , ) B. Hassibi, A.H. Sayed and T. Kailath, Linear estimation in Krein spaces Part I: Theory & Part II: Applications, IEEE Trans. Automat. Contr., vol.41, no.1, pp.18-33, 34-49, ),, 9,, ) B. Hassibi, A.H. Sayed and T. Kailath, H optimality of the LMS algorithm, IEEE Trans. Signal Processing, vol.44, no.2, pp , ) B. Hassibi, A.H. Sayed and T. Kailath, Indefinite Quadratic Estimation and Control A Unified Approach to H 2 and H Theories, SIAM, ) K. Taaba and T. Katayama, Parametrization of discrete-time H filters based on model-matching,, vol.33, no.7, pp , ) J.L. Speyer, C. Fan and N. Banavar, Optimal stochastic estimation with exponential cost criteria, Proc. 31st IEEE Conf. Decision Control, pp , ) K. Taaba, Stochastic properties of the H filter, Statistical Methods in Control and Signal Processing (T. Katayama and S. Sugimoto (eds.)), Marcel-Deer, pp ) P. Whittle, Ris-Sensitive Optimal Control, Wiley, c /(23)

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

2 4 (four-dimensional variational(4dvar))(talagrand and Courtier(1987), Courtier et al.(1994)) (Ensemble Kalman Filter( EnKF))(Evensen(1994), Evensen(

2 4 (four-dimensional variational(4dvar))(talagrand and Courtier(1987), Courtier et al.(1994)) (Ensemble Kalman Filter( EnKF))(Evensen(1994), Evensen( 1,3 2,3 2,3 ; ; ; 1. (Wunsch(1996), Daley(1991), Bennett(2002), (1997)) 1 106-8569 4-6-7 2 106-8569 4-6-7 3 (JST) (CREST) 2 4 (four-dimensional variational(4dvar))(talagrand and Courtier(1987), Courtier

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

toukei04.dvi

toukei04.dvi 2005 53 2 211 229 c 2005 1,3 2,3 2,3 2005 3 31 2005 8 31 1. Wunsch, 1996; Daley, 1991; Bennett, 2002;, 1997 4 four-dimensional variational 4DVAR Talagrand and Courtier, 1987; Courtier et al., 1994 Ensemble

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

??

?? ( ) 2014 2014 1/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS = (ISS) FB 2014 2/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS R + : 0 K: γ: R + R + K γ γ(0) = 0 K : γ: R + R + K γ K γ(r) (r ) FB K K K K R

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information