12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

Size: px
Start display at page:

Download "12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71"

Transcription

1 ( :51 ) 1/ 71 GCOE WinBUGS kubo@ees.hokudai.ac.jp

2 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

3 ( :51 ) 3/ 71 ( ) random effects BUGS

4 ( :51 ) 4/ 71

5 ( :51 ) 5/ 71 GLM (1)? y = 0, 1, 2, 3, (y ) (family = poisson) y = {0, 1}, y = {0, 1, 2,, N} (family = binomial) (family = Gamma) (family = gaussian)

6 R : glm() ( ) rbinom() glm(family = binomial) rbinom() glm(family = binomial) rpois() glm(family = poisson) rnbinom() glm.nb() ( ) rgamma() glm(family = gamma) rnorm() glm(family = gaussian) glm() glm.nb() MASS library GLM ( :51 ) 6/ 71

7 ( :51 ) 7/ 71 GLM (2)!! GLMM! GLMM/ random effects GLM

8 ( :51 ) 8/ 71 (Poisson distribution) (Binomial distribution) ( ) (Normal distribution, Gaussian ) (Gamma distribution)

9 ( :51 ) 9/ 71

10 ( :51 ) 10/ 71

11 ( :51 ) 11/ 71 : + WinBUGS 1. : GLMM 2.

12 1. : GLMM

13 : 8 ( ) ( ) : N i = 8 i y i = 3 : :? ( :51 ) 13/ 71

14 ( :51 ) 14/ 71 :?! ! y i

15 ( :51 ) 15/ 71 (overdispersion) y i 0.5 : overdispersion :?

16 ? : 1. fixed effects 2. random effects ( :51 ) 16/ 71

17 ( :51 ) 17/ 71 fixed random? fixed/random effects : 1. fixed effects : ( ) fixed effects 2. random effects : fixed effects ( ) random effects

18 ( :51 ) 18/ 71 : i N i y i ( ) Ni p(y i q i ) = q y i i (1 q i) N i y i, y i q i

19 ( :51 ) 19/ 71 q i = q(z i ) (logistic) q(z) = 1/{1 + exp( z)} q(z) z z i = a + b i a: b i : i ( )

20 b i (a {b 1, b 2,, b 100 }) /! ( )?? ( ) ( :51 ) 20/ 71

21 ( :51 ) 21/ 71 : b i s p(b i s) = 1 2πs 2 exp b2 i 2s 2, = 1 = 1.5 = 3 b i {b 1, b 2,, b 100 }

22 ( :51 ) 22/ 71 b i s = 1 = 1.5 = 3 b i s b i s b i y i

23 (C) : b i s s ( :51 ) 23/ 71 b i? (A) (B) (C)!? s (A) : b i (B) : b i ( -5 5 )

24 y i = 2 b i b i p(b i y i = 2, s) s p(y i = 2 b i ) b i p(b i s) s b i ( :51 ) 24/ 71

25 y i {2, 3, 5} b i s s s b i ( :51 ) 25/ 71

26 ( :51 ) 26/ 71? データ N[i] Y[i] 胚珠数中の生存 tau は hyper parameter 二項分布生存確率 q[i] 全体の平均 a 無情報事前分布 植物の個体差 b[i] 事前分布 tau 個体差のばらつき 無情報事前分布 ( 超事前分布 )

27 ( :51 ) 27/ 71 データ N[i] Y[i] 胚珠数中の生存 tau は hyper parameter 二項分布生存確率 q[i] 全体の平均 a 無情報事前分布 植物の個体差 b[i] 事前分布 tau 個体差のばらつき 無情報事前分布 ( 超事前分布 )

28 ? b i s = 0.1? s = 0.1 s individual posterior prior small large ( ) s ( :51 ) 28/ 71

29 ( :51 ) 29/ 71 τ = 1/s 2 s τ (non-informative prior) p(τ ) = τ α 1 e τ β Γ(α)β α, α = β = 10 4

30 ( :51 ) 30/ 71 (1) τ ( 1; 1) ( 1; 100) τ τ

31 (2) a ( 0; 1) ( 0; 100) a (logit) a ( :51 ) 31/ 71

32 ( :51 ) 32/ 71 p(a, {b i }, τ ) = 100 i=1 p(y i q(a + b i )) p(a) p(b i τ ) h(τ ) ( ) db i dτ da p(a, {b i }, τ ) 100 i=1 p(y i q(a + b i )) p(a) p(b i τ ) h(τ ) : : p(a, {b i }, τ ) 100 i=1 p(y i q(a + b i )) : p(a) p(b i τ ) h(τ )

33 ( :51 ) 33/ 71 b i s individual small hyperprior posterior prior (posterior) large hyperparameter s MCMC

34 ? p(a, {b i }, τ ) 100 i=1 p(y i q(a + b i )) p(a) p(b i τ ) h(τ ) p(a, {b i }, τ ) Markov chain Monte Carlo (MCMC)! WinBUGS ( :51 ) 34/ 71

35 Gibbs sampling p(a ) 100 p(y i q(a + b i )) p(a) i=1 p(τ ) 100 i=1 p(b i τ ) h(τ ) p(b 1 ) p(y 1 q(a + b 1 )) p(b 1 τ ) p(b 2 ) p(y 2 q(a + b 2 )) p(b 2 τ ). p(b 100 ) p(y 100 q(a + b 100 )) p(b 100 τ ) ( :51 ) 35/ 71

36 ( :51 ) 36/

37 ( :51 ) 37/ 71 :

38 ( :51 ) 38/ 71 ( ) ( ) ( ) ( ) データ N[i] Y[i] 胚珠数中の生存 tau は hyper parameter 二項分布生存確率 q[i] 全体の平均 a 無情報事前分布 植物の個体差 b[i] 事前分布 tau 個体差のばらつき 無情報事前分布 ( 超事前分布 ) : Markov Chain Monte Carlo (MCMC)

39 ( :51 ) 39/ 71

40 ( :51 ) 40/ 71 WinBUGS

41 ( :51 ) 41/ 71 WinBUGS BUGS (model.bug.txt) 3. R2WBwrapper R (runbugs.r) 4. R runbugs.r (source(runbugs.r) ) 5. bugs

42 ( :51 ) 42/ 71? データ N[i] Y[i] 胚珠数中の生存 tau は hyper parameter 二項分布生存確率 q[i] 全体の平均 無情報事前分布 p(a, {b i }, τ ) 100 i=1 a 植物の個体差 b[i] 事前分布 tau 個体差のばらつき 無情報事前分布 ( 超事前分布 ) p( q(a + b i )) p(a) p(b i τ ) h(τ )

43 BUGS model.bug.txt ( ) model{ for (i in 1:N.sample) { Y[i] ~ dbin(q[i], N[i]) # logit(q[i]) <- a + b[i] # q[i] } a ~ dnorm(0, 1.0E-4) # for (i in 1:N.sample) { b[i] ~ dnorm(0, tau) # } tau ~ dgamma(1.0e-4, 1.0E-4) # sigma <- sqrt(1 / tau) # tau SD } ( :51 ) 43/ 71

44 ( :51 ) 44/ 71 (hierarchical) random effects (non-informative) fixed effects (subjective) ( )

45 BUGS BUGS ( ) node ( ) 1. ~ sthochastic node 2. <- deterministic node ( :51 ) 45/ 71

46 R2WBwrapper R runbugs.r ( ) source("r2wbwrapper.r") # R2WBwrapper d <- read.csv("data.csv") # clear.data.param() # ( ) set.data("n.sample", nrow(d)) # set.data("n", d$n) # set.data("y", d$y) # ( :51 ) 46/ 71

47 R2WBwrapper R runbugs.r ( ) set.param("a", 0) # set.param("sigma", NA) # set.param("b", rep(0, N.sample)) # set.param("tau", 1, save = FALSE) # set.param("p", NA) # post.bugs <- call.bugs( # WinBUGS file = "model.bug.txt", n.iter = 2000, n.burnin = 1000, n.thin = 5 ) ( :51 ) 47/ 71

48 WinBUGS post.bugs <- call.bugs( file = "model.bug.txt", # WinBUGS n.iter = 2000, n.burnin = 1000, n.thin = 5 ) default ( ) 3 (n.chains = 3) MCMC sampling ( ) cf. PC MCMC chain 2000 step (n.iter = 2000) 1000 step (n.burnin = 1000) step 5 step (n.thin = 5) ( :51 ) 48/ 71

49 ? R source("runbugs.r") WinBUGS MCMC sampling (WinBUGS ) WinBUGS WinBUGS R post.bugs ( :51 ) 49/ 71

50 ( :51 ) 50/ 71 R a a?

51 ( :51 ) 51/ 71 bugs post.bugs (1) plot(post.bugs), R-hat Gelman-Rubin var ˆ ˆR + (ψ y) = W var ˆ + (ψ y) = n 1 n W + 1 n B W : chain variance B : chain variance Gelman et al Bayesian Data Analysis. Chapman & Hall/CRC

52 ( :51 ) 52/ 71 ubothinkpad/public_html/stat/2009/ism/winbugs/model.bug.txt", fit using WinBUGS, 3 chains, each with 1300 i 80% interval for each chain R-hat a sigma * b[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] tau * q[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] * array truncated for lack of space a sigma * b tau * q deviance medians and 80% intervals

53 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff a sigma b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10] ( :51 ) 53/ 71 bugs post.bugs (2) print(post.bugs, digits.summary = 3) 95%

54 ( :51 ) 54/ 71 mcmc.list post.list <- to.list(post.bugs) plot(post.list[,1:4,], smooth = F),

55 ( :51 ) 55/ 71

56 ( :51 ) 56/ 71 mcmc post.mcmc <- to.mcmc(post.bugs) matrix :

57 2.

58 ( :51 ) 58/ 71 : abundance ( ) location :

59 ( :51 ) 59/ 71 : abundance location ( 95% )

60 β : β Normal(0, 10 2 ), ( :51 ) 60/ i λ i : y i Poisson(λ i ) λ i ( ) + ( ) : log λ i = β + r i

61 ( :51 ) 61/ 71 ( ) Conditional Autoregressive (CAR) r i (N i i, J i i ): j J r i Normal( i r j, σ ) σ N i N i σ : τ = 1/σ Gamma(1.0 2, ) p(β, {r i }, τ {y i }) = p({y i} β, {r i }, τ ) ( ( )dβdr1 dr 50 dτ

62 τ - τ (σ ) - τ (σ ) - τ ( ) abundance tau = abundance tau = tau = location location ( :51 ) 62/ 71

63 ( :51 ) 63/ 71 BUGS model { # BUGS for (i in 1:N.site) { Y[i] ~ dpois(mean[i]) # log(mean[i]) <- beta + re[i] # ( ) + ( ) } # re[i] CAR model re[1:n.site] ~ car.normal(adj[], Weights[], Num[], tau) beta ~ dnorm(0, 1.0E-2) # tau ~ dgamma(1.0e-2, 1.0E-2) # }

64 ( :51 ) 64/ 71 abundance β beta τ location tau ( 95% )

65 ( :51 ) 65/ 71 abundance location GLMM OK?

66 ( :51 ) 66/ 71 vs abundance abundance location location?

67 ( :51 ) 67/ 71 ( ):?!! abundance location (

68 ( :51 ) 68/ 71 abundance abundance location location!

69 ( :51 ) 69/ 71 abundance abundance location location CAR

70 ( :51 ) 70/ 71 : abundance abundance location location

71 ( :51 ) 71/ 71 : 1. : GLMM 2.

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht kubo2015ngt6 p.1 2015 (6 MCMC kubo@ees.hokudai.ac.jp, @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /

More information

kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1

kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1 kubostat1g p.1 1 (g Hierarchical Bayesian Model kubo@ees.hokudai.ac.jp http://goo.gl/7ci The development of linear models Hierarchical Bayesian Model Be more flexible Generalized Linear Mixed Model (GLMM

More information

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77 60 (W30)? 1. ( ) kubo@ees.hokudai.ac.jp 2. ( ) web site URL http://goo.gl/e1cja!! 2013 03 07 (2013 03 07 17 :41 ) 1/ 77 ! : :? 2013 03 07 (2013 03 07 17 :41 ) 2/ 77 2013 03 07 (2013 03 07 17 :41 ) 3/ 77!!

More information

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons.

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons. 2010 05 22 1/ 35 2010 2010 05 22 *1 kubo@ees.hokudai.ac.jp *1 c Mike Gonzalez, October 14, 2007. Wikimedia Commons. 2010 05 22 2/ 35 1. 2. 3. 2010 05 22 3/ 35 : 1.? 2. 2010 05 22 4/ 35 1. 2010 05 22 5/

More information

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i kubostat2017j p.1 2017 (j) Categorical Data Analsis kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G

More information

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

/22 R MCMC R R MCMC? 3. Gibbs sampler :   kubo/ 2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : kubo@ees.hokudai.ac.jp http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )

More information

kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10

kubo2017sep16a p.1 ( 1 ) :   : :55 kubo (  ( 1 ) / 10 kubo2017sep16a p.1 ( 1 ) kubo@ees.hokudai.ac.jp 2017 09 16 : http://goo.gl/8je5wh : 2017 09 13 16:55 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 1 / 106 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 2 / 106

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM kubo@ees.hokudai.ac.jp I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi kubostat7f p statistaical models appeared in the class 7 (f) kubo@eeshokudaiacjp https://googl/z9cjy 7 : 7 : The development of linear models Hierarchical Baesian Model Be more flexible Generalized Linear

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

(2/24) : 1. R R R

(2/24) : 1. R R R R? http://hosho.ees.hokudai.ac.jp/ kubo/ce/2004/ : kubo@ees.hokudai.ac.jp (2/24) : 1. R 2. 3. R R (3/24)? 1. ( ) 2. ( I ) : (p ) : cf. (power) p? (4/24) p ( ) I p ( ) I? ( ) (5/24)? 0 2 4 6 8 A B A B (control)

More information

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30 PlotNet 6 ( ) 2006-01-19 TOEF(1998 2004), AM, growth6 DBH growth (mm) 1998 1999 2000 2001 2002 2003 2004 10 20 30 40 50 70 DBH (cm) 1. 2. - - : kubo@ees.hokudai.ac.jp http://hosho.ees.hokudai.ac.jp/ kubo/show/2006/plotnet/

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM kubo@ees.hokudai.ac.jp https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

: Bradley-Terry Burczyk

: Bradley-Terry Burczyk 58 (W15) 2011 03 09 kubo@ees.hokudai.ac.jp http://goo.gl/edzle 2011 03 09 (2011 03 09 19 :32 ) : Bradley-Terry Burczyk ? ( ) 1999 2010 9 R : 7 (1) 8 7??! 15 http://www.atmarkit.co.jp/fcoding/articles/stat/07/stat07a.html

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

untitled

untitled MCMC 2004 23 1 I. MCMC 1. 2. 3. 4. MH 5. 6. MCMC 2 II. 1. 2. 3. 4. 5. 3 I. MCMC 1. 2. 3. 4. MH 5. 4 1. MCMC 5 2. A P (A) : P (A)=0.02 A B A B Pr B A) Pr B A c Pr B A)=0.8, Pr B A c =0.1 6 B A 7 8 A, :

More information

2014ESJ.key

2014ESJ.key http://www001.upp.so-net.ne.jp/ito-hi/stat/2014esj/ Statistical Software for State Space Models Commandeur et al. (2011) Journal of Statistical Software 41(1) State Space Models in R Petris & Petrone (2011)

More information

2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

/ 60 : 1. GLM? 2. A: (pwer functin) x y?

/ 60 : 1. GLM? 2. A: (pwer functin) x y? 2009-03-17 1/ 60 (2009-03-17) GLM 1. GLM :, link,, deviance (20 ) 2. GLM : (60 ) 3. GLM ( ): ffset (40 ) http://hsh.ees.hkudai.ac.jp/ kub/ce/ecsj2009.html 2009-03-17 2/ 60 : 1. GLM? 2. A: (pwer functin)

More information

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 : Dirichlet Process : joint work with: Max Welling (UC Irvine), Yee Whye Teh (UCL, Gatsby) http://kenichi.kurihara.googlepages.com/miru_workshop.pdf 1 /40 MIRU2008 : Dirichlet process mixture Dirichlet process

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

Microsoft PowerPoint - R-stat-intro_20.ppt [互換モード]

Microsoft PowerPoint - R-stat-intro_20.ppt [互換モード] と WinBUGS R で統計解析入門 (20) ベイズ統計 超 入門 WinBUGS と R2WinBUGS のセットアップ 1. 本資料で使用するデータを以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/r-intro/r-stat-intro_data.zip 2. WinBUGS のホームページから下記ファイルをダウンロードし WinBUGS14.exe

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM )

/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM ) 2012 01 25 1/ 55 ( II) : (2012 1 ) 2 2 (GLM) 2012 01 25! kub@ees.hkudai.ac.jp http://g.gl/76c4i 2012 01 25 2/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM ) 2012 01 25 3/ 55 1. : 2.

More information

Stanによるハミルトニアンモンテカルロ法を用いたサンプリングについて

Stanによるハミルトニアンモンテカルロ法を用いたサンプリングについて Stan によるハミルトニアンモンテカルロ法を用いたサンプリングについて 10 月 22 日中村文士 1 目次 1.STANについて 2.RでSTANをするためのインストール 3.STANのコード記述方法 4.STANによるサンプリングの例 2 1.STAN について ハミルトニアンモンテカルロ法に基づいた事後分布からのサンプリングなどができる STAN の HP: mc-stan.org 3 由来

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

dvi

dvi 2017 65 2 235 249 2017 1 2 2 2016 12 26 2017 3 1 4 25 1 MCMC 1. SLG OBP OPS Albert and Benett, 2003 1 2 3 4 OPS Albert and Benett 2003 Albert 2008 1 112 8551 1 13 27 2 112 8551 1 13 27 236 65 2 2017 Albert

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

1 1 1.1...................................... 1 1.2................................... 5 1.3................................... 7 1.4............................. 9 1.5....................................

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

@i_kiwamu Bayes - -

@i_kiwamu Bayes - - Bayes RStan 1 2012 12 1 R @ @i_kiwamu Bayes - - Stan / RStan Bayes Stan Development Team - Andrew Gelman, Bob Carpenter, Matt Hoffman, Ben Goodrich, Michael Malecki, Daniel Lee and Chad Scherrer Open source

More information

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural SLC Internal tutorial Daichi Mochihashi daichi.mochihashi@atr.jp ATR SLC 2005.6.21 (Tue) 13:15 15:00@Meeting Room 1 Variational Bayesian methods for Natural Language Processing p.1/30 ? (EM),, EM? (, 2004/

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

バイオインフォマティクス特論4

バイオインフォマティクス特論4 藤 博幸 1-3-1. ピアソン相関係数 1-3-2. 致性のカッパ係数 1-3-3. 時系列データにおける変化検出 ベイズ統計で実践モデリング 5.1 ピアソン係数 第 5 章データ解析の例 データは n ペアの独 な観測値の対例 : 特定の薬剤の投与量と投与から t 時間後の注 する遺伝 の発現量 2 つの変数間の線形の関係性はピアソンの積率相関係数 r で表現される t 時間後の注 する遺伝

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

バイオインフォマティクス特論12

バイオインフォマティクス特論12 藤 博幸 事後予測分布 パラメータの事後分布に従って モデルがどんなデータを期待するかを予測する 予測分布が観測されたデータと 致するかを確認することで モデルの適切さを確認できる 前回と同じ問題で事後予測を う 3-1-1. 個 差を考えない場合 3-1-2. 完全な個 差を考える場合 3-1-3. 構造化された個 差を考える場合 ベイズ統計で実践モデリング 10.1 個 差を考えない場合 第 10

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

Ł\”ƒ.dvi

Ł\”ƒ.dvi , , 1 1 9 11 9 12 10 13 11 14 14 15 15 16 19 2 21 21 21 22 23 221 23 222 24 223 27 23 30 231 2PLM 31 232 CCM 31 233 2PLCM 33 234 34 235 35 3 51 31 51 32 53 321 53 322 54 323 2 BTM 54 2 324 55 325 MCMC

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

kubostat2018a p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル

kubostat2018a p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) Why in Japanese? because even in Japanese, statistics

More information

統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) 統計モデリング入門 2018a 1

統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) 統計モデリング入門 2018a 1 統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) kubo@ees.hokudai.ac.jp 1/56 The main language of this class is Japanese Sorry Why in Japanese? because

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ kkarato@eco.u-toyama.ac.jp 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

名称未設定

名称未設定 2007 12 19 i I 1 1 3 1.1.................... 3 1.2................................ 4 1.3.................................... 7 2 9 2.1...................................... 9 2.2....................................

More information

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Management 2019 3 15 Dai Yamashita (Hitotsubashi ICS) MSV Models

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: gito@eco.u-toyama.ac.jp October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

36

36 36 37 38 P r R P 39 (1+r ) P =R+P g P r g P = R r g r g == == 40 41 42 τ R P = r g+τ 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P 44 R τ P P = (1 τ )(r g) (1 τ )P R τ 45 R R σ u R= R +u u~ (0,σ

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99 218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

(lm) lm AIC 2 / 1

(lm) lm AIC 2 / 1 W707 s-taiji@is.titech.ac.jp 1 / 1 (lm) lm AIC 2 / 1 : y = β 1 x 1 + β 2 x 2 + + β d x d + β d+1 + ϵ (ϵ N(0, σ 2 )) y R: x R d : β i (i = 1,..., d):, β d+1 : ( ) (d = 1) y = β 1 x 1 + β 2 + ϵ (d > 1) y

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information