36

Size: px
Start display at page:

Download "36"

Transcription

1

2 36

3 37

4 38 P r R P

5 39 (1+r ) P =R+P g P r g P = R r g r g == ==

6 40

7 41

8 42 τ R P = r g+τ

9 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P

10 44 R τ P P = (1 τ )(r g) (1 τ )P R τ

11 45 R R σ u R= R +u u~ (0,σ ) u

12 46 σ Var ( P )= (r g) σ Var ( P )= (r g+τ ) σ Var ( P )= (1 τ ) (r g) Var ( P ) Var ( P ) = 1 (1 τ ) >1

13 47 τ =

14 48

15 49

16 50

17 51 x > x

18 52 W W

19 53 =

20 54 W W Q W W

21 55 Q Q W +(1 t )(1 τ )(1 τ )(100Q )=W τ τ t (1 t ) (100Q ) Q Q = W W (1 t )(1 τ )(1 τ ) Q Q Q Q Q W W

22 56 τ τ W W X W W

23 57

24 58

25 59

26 60

27 61

28 62

29 63

30 64

31 65

32 66

33 67

34 68

35 69

36 70 =

37 71 = = =

38 72

39 73

40 74

41 75

42 76

43 77

A B A E

A B A E 10533-68-3955 10533-68-3955 10533-68-3804 RP A-6 10533-68-3804 10533-69-9615 10533-57-2161 B-2 10533-68-2274 10533-68-2221 10533-67-6282 A-6 10533-57-2161 E-3 10533-68-5161 10533-68-3553 D-2 D-2 10533-69-5258

More information

- 1 - - 2 - 320 421 928 1115 12 8 116 124 2 7 4 5 428 515 530 624 921 1115 1-3 - 100 250-4 - - 5 - - 6 - - 7 - - 8 - - 9 - & & - 11 - - 12 - GT GT - 13 - GT - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -

More information

Ⅰ.市場リスクの計測手法

Ⅰ.市場リスクの計測手法 1 2 3 4 { } n n 5 R R R R 1 6 7 8 9 , 10 11 12 13 14 15 T 16 T 17 18 19 20 21 22 23 99VaR 99 24 25 26 0.5 0.5 27 99 28 99 99 29 99 30 31 t-1 t-1 t-1 t-1 t-10 t-10 t-10 t-10 32 33 2 T 2 34 99 99 99 35 36

More information

GT-3 P GT-3-6F GT GT GT GT GT GT GT

GT-3 P GT-3-6F GT GT GT GT GT GT GT 150-1.5GT-3 P 30-1.5GT-3-6F 40.5-1.5GT 40.50 27 45-1.5GT 45.00 30 48-1.5GT 48.00 32 51-1.5GT 51.00 34 61.5-1.5GT 61.50 41 69-1.5GT 69.00 46 70.5-1.5GT 70.50 47 72-1.5GT 72.00 48 73.5-1.5GT 73.50 49 76.5-1.5GT

More information

untitled

untitled 1 20 3 14.0% () 4 7 3 () () 5 (66 3.7%) (134.7%) 10 2 () (59 3.3%) 7.3% 11 (52 2.9%) (50 2.8%)(48 2.7%)(38 2.1%) 23.8%25.0%65.5%65.2% 11 13 14 16 (35 2.0%) 18 6 19 10 1 20 1 9 25 2 4 24 5 30 (37 ) (37

More information

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

http://banso.cocolog-nifty.com/ 100 100 250 5 1 1 http://www.banso.com/ 2009 5 2 10 http://www.banso.com/ 2009 5 2 http://www.banso.com/ 2009 5 2 http://www.banso.com/ < /> < /> / http://www.banso.com/

More information

(0 5 ) 11 Tel:251152 (0 5 ) 610 Tel:239646 (0 2 ) 22 Tel:354152 (0 2 ) 303 Tel:312000 (2 5 ) 218 Tel:310335 (0 2 ) 215 Tel:317788 (0 5 ) (0 5 ) Tel:382128 (0 5 ) 916 Tel:320510 (1 5 ) 410 Tel:225725 5-15

More information

n=360 28.6% 34.4% 36.9% n=360 2.5% 17.8% 19.2% n=64 0.8% 0.3% n=69 1.7% 3.6% 0.6% 1.4% 1.9% < > n=218 1.4% 5.6% 3.1% 60.6% 0.6% 6.9% 10.8% 6.4% 10.3% 33.1% 1.4% 3.6% 1.1% 0.0% 3.1% n=360 0% 50%

More information

項 目

項 目 1 1 2 3 11 4 6 5 7,000 2 120 1.3 4,000 04 450 < > 5 3 6 7 8 9 4 10 11 5 12 45 6 13 E. 7 B. C. 14 15 16 17 18 19 20 21 22 23 8 24 25 9 27 2 26 6 27 3 1 3 3 28 29 30 9 31 32 33 500 1 4000 0 2~3 10 10 34

More information

統計的仮説検定とExcelによるt検定

統計的仮説検定とExcelによるt検定 I L14(016-01-15 Fri) : Time-stamp: 016-01-15 Fri 14:03 JST hig 1,,,, p, Excel p, t. http://hig3.net ( ) L14 Excel t I(015) 1 / 0 L13-Q1 Quiz : n = 9. σ 0.95, S n 1 (n 1)

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

untitled

untitled 280 200 5 7,800 6 8,600 28 1 1 18 7 8 2 ( 31 ) 7 42 2 / / / / / / / / / / 1 3 (1) 4 5 3 1 1 1 A B C D 6 (1) -----) (2) -- ()) (3) ----(). ()() () ( )( )( )( ) ( ) ( )( )( )( ) () (). () ()() 7 () ( ) 1

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

61“ƒ/61G2 P97

61“ƒ/61G2 P97 σ σ φσ φ φ φ φ φ φ φ φ σ σ σ φσ φ σ φ σ σ σ φ α α α φα α α φ α φ α α α φ α α α σ α α α α α α Σα Σ α α α α α σ σ α α α α α α α α α α α α σ α σ φ σ φ σ α α Σα Σα α σ σ σ σ σ σ σ σ σ σ σ σ Σ σ σ σ σ

More information

2

2 1 2 119 119 5 500 1 30 102 1 113 3 4 120 2 3 113 5 230 1 1 3 4 5 6 7 8 1 [email protected] 2 9 3 ( ) 10 11 12 4 1. 2. 3. 4. 13 5 14 15 16 17 18 19 [ ] [ ] 20 [ ] [ ] [ ] 21 22 [ ] 23 < > < >

More information

1 1 2 65

1 1 2 65 3 3 2000 6 14 2 30 4 2 1 1 2 65 1!?? < > 3 2 2 100 19 19 100 100 100 < > 19 2 2 2 2 < > 2000 2000 50 1945 5 50 1945 5 45 20 20 4 1945 4 5 5 5 100 50 20 5 2 20 5 20 5 5 6 20 6 19 5 5 6 5 6 2 20 6 21

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

災害リスクの計測と リスクカーブの活用(基礎編)

災害リスクの計測と リスクカーブの活用(基礎編) 2009528 28 BCM) 4 5 4cm 8cm 1992 7 400 220 200 100 100 192385 5060 1985 10199222 2005/7/23M6.0 HP200166 8 http://www.jishin.go.jp/main/ http://www.bousai.go.jp/index.html 9 10 7.3 11 13 BCPBCM ( 14

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

untitled

untitled 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) 1 ( ) ( ) ( ) ( ) 3 ( ) a b ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 ( ) ( ) ( ) ( ) ( ) ( ) < > 5 a b c d ( ) ( ) ( ) ( ) ( ) 18 73 ( ) ( ) a b 6 6 c ( ) (

More information

EL-G37

EL-G37 EL-G37 A A A A A A A A A A A A A A GT F543210A CE CA 4 00. 00 23.80 2 015.6250 77.14286 96. 91. 102. 25. 9. 1 700. 2 720. 2.5 7. 20. 25. 220. 400. 4 096. 4.685 0.084 M 125. M 28. M 85.

More information

2

2 1 2 10 14 945 3000 2012 3 10 4 5 6 7 8 9 10 11 12 2011 11 21 12301430 (1215 ) 13 6 27 17 () ( ) ( ) (112360) 2 (1157) (119099) ((11861231) )( ) (11641205) 3 (1277) 3 4 (1558) (1639)() 12 (1699)( ) 7 (1722)

More information

ICT 5,293 (2012 3 31 ) http://www.nttcom.co.jp/employ/recruit/ 4. IT IT / / IT / / . BB http://recruit.softbank.jp/graduate/ 3-7-1 28 29 URL.http://www.nliro.or.jp 2014 . ( ) 10 ( ) < > / < > . ( )

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

~ 豆 ~ 品,~ ~れ 藻 i~ れ 議 I ~>3 ガンピア

More information

ATTENTION TO GOLF CLUB LAUNCHER DST DRIVER 04 05 LAUNCHER DST TOUR DRIVER LAUNCHER DST DRIVER LAUNCHER DST TOUR DRIVER LAUNCHER DST DRIVER LAUNCHER DST TOUR DRIVER 06 07 LAUNCHER DST FAIRWAY WOOD LAUNCHER

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

2 KH Coder KH Coder KH Coder KH Coder

2 KH Coder KH Coder KH Coder KH Coder Keywords : 1 2 KH Coder KH Coder KH Coder KH Coder 2.1 KH Coder 1 ........,,,..... .. 2 - - - - - - - - - - - - 2.2 3, ......... - - - - - - 4 3 3.1.. 1 - / - - - - - 2 - ....... a . ... 3.2 < >, Sunday

More information

10月表紙BB.indd

10月表紙BB.indd Q F Q Q Q Q Q Q Q F QF F QF QF F Q F 三 Q QF Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q P F F F F F F F F QF Q F PNAYQ RX Y F A P P P P Q F P Q F R P Y F Q R QF P QF P A Q F P A F Q P A F A Y F Q P A F P Q F PNAYQ RX

More information

38

38 3 37 38 3.1. 3.1.1. 3.1-1 2005 12 5 7 2006 5 31 6 2 2006 8 10 11 14 2006 10 18 20 3.1-1 9 00 17 3 3.1.2. 3.1-2 3.1-1 9 9 3.1-2 M- M-2 M-3 N- N-2 N-3 S- S-2 S-3 3.1.2.1. 25 26 3.1.2.2. 3.1-3 25 26 39 3.1-1

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

Box-Jenkinsの方法

Box-Jenkinsの方法 Box-Jeks の 方 法 自 己 回 帰 AR 任 意 の 時 系 列 を 過 程 ARと 呼 ぶ で 表 す これが AR または AR m m m 個 の 過 去 の 値 に 依 存 する 時 これを 次 数 の 自 己 回 帰 ここで は 時 間 の 経 過 に 対 して 不 変 な 分 布 を 持 つ 系 列 相 関 のない 撹 乱 誤 差 項 である 期 待 値 一 定 の 分 散 σ

More information

32 1 7 1 20 ( ) [18 30] [21 00] 2 3 ( ( ) ) ( ) 4 1 2 95 ( 7 3 2 ) 1 2 3 2 a b

32 1 7 1 20 ( ) [18 30] [21 00] 2 3 ( ( ) ) ( ) 4 1 2 95 ( 7 3 2 ) 1 2 3 2 a b 31 1 7 1 ( ) [18 35] [20 40] 2 3 ( ( ) ) ( ) 4 1 2 1 22 1 2 a b T T A c d 32 1 7 1 20 ( ) [18 30] [21 00] 2 3 ( ( ) ) ( ) 4 1 2 95 ( 7 3 2 ) 1 2 3 2 a b 7 1 ( 34 ) 1 7 2 13 ( ) [18 20] [20 00] 2 4 7 3

More information

サイバネットニュース No.121

サイバネットニュース No.121 2007 Spring No.121 01 02 03 04 05 06 07 08 09 10 12 13 14 18 01 02 03 04 05 06 07 L R L R L R I x C G C G C G x 08 09 σ () t σ () t = Sx() t Q σ=0 P y O S x= y y & T S= 1 1 x& () t = Ax() t + Bu() t +

More information

JFC11j-kokumin_SKM-Master.indd

JFC11j-kokumin_SKM-Master.indd 13 13 1634 1 22 271 144 13 118 216 1 634 3,512 8,19 (1 2 3 () 4 994 22 2 4.4% 119 8.6% 59 21.1% 4 65.9% () 1 7.4% 1 5.% 42.6% () 83 7 22 318,94 22 27.8% 77.% () 1 2 15.3% 23.% 318,94 22 76.3% () 1 2 23.7%

More information

UN-15TD6 UN-10TD6 SQW0694 1 2 3 4 5 6 7 8 1 2 9 : 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 1 00:00 1 2 3 4 5 6 7 0 8 9 1 2 02:30 2 1 2 3 4 5 6 5 1 2 3 4 5 1 2 1 2 1 2 1 2 1 1 2 3

More information