3 p(3) , 3 +, 2 + 2, 2 + +, p(4) , 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7, p(6), p(7) 5, p(8) , + +

Size: px
Start display at page:

Download "3 p(3) , 3 +, 2 + 2, 2 + +, p(4) , 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7, p(6), p(7) 5, p(8) , + +"

Transcription

1 k l. n n n pariion n p(n) p(n).. p() 2 2, , + 2 p(2) 2 3 3, 2 +, :00 7:00.

2 3 p(3) , 3 +, 2 + 2, 2 + +, p(4) , 6, 7, 8 p(5), p(6), p(7), p(8). p(5) 7, p(6), p(7) 5, p(8) , p(0) Young diagram 3 Ferrers diagram n k + k k r (k k 2 k r ) n k 2 k 2 r k r k + k k r 2 Alfred Young Norman Macleod Ferrers

3 .3., 2, n, k, l k n l k n l a n (k, l) k, l k, l a n a 0 (k, l) k 0 l 0 a 0 (k, 0), a n (k, 0) 0 (n > 0), a 0 (0, l), a n (0, l) 0 (n > 0) ().4 k l l k n.5. k l ,,,,, 3

4 6 a 0 (2, 2), a (2, 2), a 2 (2, 2) 2, a 3 (2, 2), a 4 (2, 2) n 5 a n (2, 2) 0 a n (k, l) (kl + ) a 0 (k, l), a (k, l), a 2 (k, l),, a kl (k, l) kl F (k, l; ) a n (k, l) n a 0 + a + a a kl kl (2) n0 n > kl a n (k, l) 0 F (k, l; ) {a n (k, l)} generaing funcion a n (k, l) n, k, l.2 F (k, l; ).6. () k 0 l 0 k l 2.5 F (0, l; ), F (k, 0; ) (3) F (2, 2; ) ( )( + 2 ).7. F (, l; ), F (k, ; ), F (3, 2; ). k a n (, l) (0 n l) a n (, l) 0 (n > l) F (, l; ) l l a n (k, ) (0 n k) a n (k, ) 0 (n > k) k F (k, ; ) k n k 3, l 2 l n n F (3, 2; ) n ( )( + 2 ) 4

5 .3 - kl F (k, l; ) a n (k, l) a 0 + a + + a kl n0 l k k 5, l F (k, l; ) l, k k l.. ( ) k + l F (k, l; ) (4) l ( ) k + l k+l C l n C m ( ) l n m ( ) n n! (5) m m!(n m)! i [i] i i i [] 0 < m < n m] [n] [n ] [] [m] [m ] [] [n m] [n m ] [] (6) 5

6 m 0 m n ] 0 n] (7) 4 Gaussian polynomial - binominal coefficien m]. [i] i (5) (6) [ ( ) n n (8) m] m.8. m m n ] [ ] n [n] [n ] [n 2] [2] [] n [] [n ] [n 2] [2] [] [n] [] n [ ] 4 [4] [3] [2] [] [4] [3] ( 4 )( 3 ) 2 [2] [] [2] [] [2] [] ( 2 )( ) ( )( + 2 ).9. n m [n] [m] [n] /[m] [n/m] [ ] [4] 4 + 2, [2] + [2] < m n m] m] [ ] n m n m m [ ] n + m, (9) m ] [ ] n +. (0) m 4 Johann Carl Friedrich Gauss, k j0 ( e 2π /k ) j 2 6

7 (9), (0) (8) ( ) ( ) ( ) n n n + () m m m. [k]! [k] [k ] [] [k + ]! [k + ] [k]! (9) [ ] [ ] n n + m m m [n ]! [m ]![n m]! + [n ]! m [m]![n m ]! [n ]! [m]![n m]! {[m] + m [n m] } [n ]! [m]![n m]! ( m ) + m ( n m ) [n ]! [m]![n m]! n [n ]! [m]![n m]! [n] m] (0).0.. m] [ ] 0. n n 0 0 [ ] [ ] [ ] n n n n,,, 0 n [ [ ] n n m n.0 (9) + m] [ ] m n ] m (7) m 0 n] n, m (0 m n) m] 7

8 k, l [ ] k + l F (k, l; ) l k n [ ] l k + l a n (k, l) n l. k 0 l 0 (3) (7) [ ] [ ] k l F (0, k; ), F (l, 0; ) 0 l k > 0, l > 0 k + l (2) k l [ ] [ ] + 2 F (, ; ) +, + (2) k + l > k l.7.8 [ ] + l F (, l; ) l, l [ ] k + F (k, ; ) k (2) k >, l > (2) F (k, l; ) F (k, l ; ) + l F (k, l; ) (3) l k.. 8

9 l k k k l l l k n a n (k, l ) l k k k l l l k n 2 a n l (k, l) a n (k, l) a n (k, l ) + a n l (k, l) n > k(l ) a n (k, l ) 0 m < 0 a m (k, l) 0 kl F (k, l; ) a n (k, l) n n0 9

10 kl (a n (k, l ) + a n l (k, l)) n n0 k(l ) n0 k(l ) n0 kl a n (k, l ) n + l a n l (k, l) n l nl (k )l a n (k, l ) n + l m0 F (k, l ; ) + l F (k, l; ) a m (k, l) m (3) (3).0 (3) F (k, l; ) F (k, l ; ) + l F (k, l; ) [ ] [ ] k + (l ) (k ) + l F (k, l ; ), F (k, l; ) l l [ ] k + l F (k, l; ) l [ ] k + l + l. l.0 (9) [ ] k + l F (k, l; ) l.3. k l 3 (3) 2-5 k l :00 7:00. 0

11 k l k n l a n (k, l) a 0 (k, l) + a 2 (k, l) + a 4 (k, l) k l ,,, 4 a n (k, l) kl F (k, l; ) a n (k, l) n a 0 + a + a a a a kl kl n0 kl F (k, l; ) a n (k, l) a 0 + a + a 2 + a 3 + a 4 + n0 kl F (k, l; ) ( ) n a n (k, l) a 0 a + a 2 a 3 + a 4 n0 2 ((F (k, l; ) + F (k, l; )) a 0 + a 2 + a 4 + a 6 + (4) + ( ) n 2 { n 0 n 6 Hook lengh formula laice pah mehod

12 2.2.2 k, l F (k, l; ) [ ] k + l F (k, l; ) l (4) [ 2. n ( ) m] n 7 m ( ) ( ) n n m m ( ) n m () ( ) ( ) ( ) n n n + m m m.0 m] 7 Blaise Pascal

13 [ ] n m m m] [ n ] m.0 (9) [ ] [ ] n n + m m m m].0 (9) ] m] m + ( ) m m ] (5) 3

14 m] m] m n, 0 l < n [ ] ( ) 2n n, 2m m [ ] 2n 0 2l + 0 m n [ ] 2n + 2m [ ] 2n + 2m + ( ) n m [ ] 0. n n 0 [ ] 0 [ ] 0 0 [ ] 0 [ ] ( ) 0 0 n > 0 (5) [ ] [ ] [ ] 2n 2n 2n + ( ) 2m 2m 2m 2m [ ] [ ] [ ] 2n 2n 2n + ( ) 2m+ 2m + 2m 2m + 4, [ ] 0

15 [ ] ( ) 2n n, 2m m [ ] 2n 2m [ ] 2n 2m + (5) [ ] 2n + 2m [ ] 2n + 2m + [ ] 2n 0, 2m [ ] 2n + 2m 0 + ( ) n m [ ] 2n 2m [ ] 2n 2m + ( ) ( ) ( ) n n n +, m m m ( ) ( ) n n 0. m m [ ] [ ] 2n 2n + ( ) 2m 2m 2m [ ] [ ] 2n + ( ) 2m+ 2n 2m 2m + [ ] 2n 2m ( ) n, m ( ) n, m [ ] 2n + 2m +, [ 2n ] 2m + ( ) n 0 ( ) n + 0 m m ( ) n m (4) k l {( ) ( )} k + l (k + l)/2 + k, l 2 l l/2 {( ) ( )} k + l (k + l )/2 + k l 2 l (l )/2 {( ) ( )} k + l (k + l )/2 + k l 2 l l/2 ( ) k + l k, l 2 l 5

16 k 3 l k, l k l k l l, k 80 l, k kl k l 3,,,,,,,,, n ( ) n ( + z) n z l (6) l l0 6

17 ( ) n + 0 ( ) n z + ( ) ( ) n n z z n + 2 n ( ) n z n. n - c, c 2,, c n 8 n c i c c 2 c n i 2.7. n ( + i z) i n ] l(l+)/2 z l. (7) l l0 ( + z)( + 2 z) ( + n z) ] 0 ] ] ] + z + 3 z n(n+)/2 z n. 2 n - (7) (8) (6) [ ] [ ] 2.8. n (7) n 2 0 [ ] 2 0, ( + z)( + 2 z) + ( + 2 )z + 3 z 2 [ ] 2 +, + ( + )z + 3 z 2 [ ] 2 (7) n 3, 4, 5 (7) n n 2.8 (7) 8 produc P π sum S 7

18 n > n n [ ] n ( + i z) k(k+)/2 z k k i k0 + n z n n ( + i z) ( + i z) ( + n z) i i ( n [ ] n k(k+)/2 k k0 n [ ] n k(k+)/2 k k0 ) z k ( + n z) z k + n k0 [ ] n k(k+)/2+n z k+ k z l l 0 k 0 z 0 [ ] n ] 0 0 l n 2 k n z n [ ] n ] n(n )/2+n n(n+)/2 n(n+)/2 n n l n k l 2 k l z l l(l+)/2 l ] + l(l )/2+n l ] ([ ] [ ] ) n n l(l+)/2 + n l l l.0 (0) ] l(l+)/2 l n ( + i z) i (7) n ] l(l+)/2 l l0 z l.2 8

19 2..2 n ( + i z) i ] F (n l, l; ) l n l(l+)/2 F (n l, l; )z l (8) l0 (8) n l l (8) x i i n ( + x i z) ( + x z)( + x 2 z) ( + x n z) i z l x i() x i(2) x i(l) ( i() < i(2) < < i(l) n) x i i x i() x i(2) x i(l) i(l) 2 i(l ) l i() x 2 x 3 x 5 x 7 l n l l.... l l n l n 7, l 4 ( + x )( + x 2 ) ( + x 7 ) z 4 x 2 x 3 x 5 x 7 9

20 z l l n l l l l(l + ) 2 n i ( + i z) z l l(l+)/2 F (n l, l; ) 2.0. n 3 ( + x z)( + x 2 z)( + x 3 z) + (x + x 2 + x 3 )z + (x x 2 + x x 3 + x 2 x 3 )z 2 + x x 2 x 3 z 3 l z x, x 2, x 3 x, x 2, x 3. 3 i ( + i z) z F (2, ; ) l 2 z 2 x x 2, x x 3, x 2 x 3 x x 2, x x 3, x 2 x 3. 3 i ( + i z) z 2 +2 F (, 2; ) z 3 x x 2 x 3 x x 2 x 3 3 i ( + i z) z F (3, 0; ) 20

21 2.. n 4, l 2 ( + x z)( + x 2 z)( + x 3 z)( + x 4 z) z x x 2, x x 3, x x 4, x 2 x 3, x 2 x 4, x 3 x 4. 4 i ( + i z) z 2 z +2 F (2, 2; ) 2.2. n 5 5 i ( + x iz) z 2, z 3 5 i ( + i z) z 2, z 3 z 3 F (3, 2; ), z 6 F (2, 3; ) 3 9 p(n) n0 p(n)n 3. n n p(n) p(0) n p(n) n p(n) :00 7:00. 2

22 p(n) p(0) + p() + p(2) 2 + p(3) 3 + p(4) p(n) n n p(n) p(n) n n0 k0 p(0) + p() + p(2) 2 + p(3) 3 + p(4) p(n) n + k (9) 2 3 k 3.2 a 0 + a + a a d d formal power series a 0 + a + a a n n + (20) n0 a n n p(n) n n0 n > d n a n 0 (20) 22

23 i , i0 (i + ) i , i0 2 i i i0 2 i0 a i i, i0 b i i a i i + i0 b i i i0 (a i + b i ) i, (2) ( a0 + a + a a a ) + ( b 0 + b + b b b ) i0 (a 0 + b 0 ) + (a + b ) + (a 2 + b 2 ) 2 + (a 3 + b 3 ) 3 + (a 4 + b 4 ) 4 + ( ) a i i i0 ( ) b i i i0 ( i ) a j b i j i, (22) i0 j0 ( a0 + a + a a a ) (b 0 + b + b b b ) a 0 b 0 + (a 0 b + a b 0 ) + (a 0 b 2 + a b + a 2 b 0 ) 2 + (a 0 b 3 + a b 2 + a 2 b + a 3 b 0 ) 3 + (a 0 b 4 + a b 3 + a 2 b 2 + a 3 b + a 4 b 0 ) 4 + n 3.4. ( ) ( ) i (i + ) i. i0 i0 23

24 . i ( ) ( ) i (i + ) i i0 i0 ( ) ( ) + ( + 2) + ( ) 2 + ( ) 3 + ( ) ( (i + )) i (i + )(i + 2) i. 2 i0 (i + )(i + 2) i ( ) ( α) α i i (23) ( ) ( α) α i i i0 i0 ( α) ( + α + α α ) + (α α) + (α 2 α α) 2 + (α 3 α α 2 ) (α i α α i ) i + (23) α α i i + α + α α i i0 i

25 k + k + 2k + 3k + 2i, i0 3i, i0 ki (24) 3.6. i0 ( + k ) ( + )( + 2 )( + 3 ) k m k ( + k ) m, 2, 3, 4 + +, ( + )( + 2 ) , ( + )( + 2 )( + 3 ) , ( + )( + 2 )( + 3 )( + 4 ) , ( + )( + 2 )( + 3 )( + 4 )( + 5 ) m, 2, 3, 4, 5 2 m 2, 3, 4, 5 3 m 3, 4, 5 4 m 4, 5 ( + 6 ), ( + 6 )( + 7 ), 5 m 5 m k ( + k ) 0,, 2, 3, 4, 5 m i m k ( + k ) i m i a i ( + k ) a i i k 25 i0

26 ( + k ) k f (), f 2 (), f 3 (), i m m k f k() i m m a i f k () a i i k 3.7. n k ( + k) m k ( + k) m(m + )/2 m i (9) k k > n k + k + 2k + 3k + k + n m k /( k ) n m n m k /( k ) n m i /( i ) (m n) n m n m k k 2 3 ( ) ( ) ( ) 26 4 m

27 ( ) ( + m + 2m + 3m + 4m + ) n p(n) k + k + 2k + 3k + rk ( k ) r r k k r.. 4 /( ), /( 2 ), /( 4 ) ( ) 4, ( 2 ) 2, ( 4 ) /( k() ) r()k() /( k(h) ) r(h)k(h) r()k() r(h)k(h) r() k() r(h) k(h) ( ) ( 3 ) ( 4 ) ( 6 ) ( ) 3 ( 3 ) 2 ( 4 ) ( 6 ) 27

28 9 n 3.8. n p(0) n /( ) p() n 2 2 /( ) 2 ( ) 2 /( 2 ) 2 ( 2 ) ( ) 2, ( 2 ) 2 2 p(2) 3 /( ) ( ) 3 /( ) ( ) /( 2 ) ( 2 ) /( 3 ) ( 3 ) ( ) 3, ( ) ( 2 ), ( 3 ) 3 3 p(3) 28

29 4 4 4 ( ) 4, ( ) 2 ( 2 ), ( ) ( 3 ) ( 2 ) 2, ( 4 ) p(4) , 6 p(5), p(6) m n m k /( k ) n n (9) n n p(n) (9) 3.4 n n q(n) n p odd (n) q(0) p odd (0) 3.0. n n

30 q() p odd (), q(2) p odd (2), q(3) p odd (3) 2, q(4) p odd (4) 2, q(5) p odd (5) 3, q(6) p odd (6) 4. n 6 q(n) p odd (n) 3.. n n q(n) p odd (n). (25). q(n) n n0 p odd (n) n 3. p odd (n) n n0 k q(n) n n0 n0 ( + k ) (26) k ( + )( + 2 )( + 3 ) 2k (27) 3 5 ( )( )( ) ( + k ) k + i ( 2i )/( i ) k ( + )( + 2 )( + 3 )( + 4 )( + 5 ) k (28)

31 3 5 ( 6 )( 8 )( 0 ) n 0,, 2, 3, 4, 5 ( + )( + 2 )( + 3 )( + 4 )( + 5 ) n 3 5 n ( + i ) n i i 2i n n m n m ( + )( + 2 )( + 3 ) ( + m ) m 3 m 3 ( m m+ )( m+3 ) ( 2m ) i ( + i ) n i /( 2i ) n (28) ( + i ) i i 2i i i ( 2i ) i ( i ) 2i i 3. n n i ( i ) p(n) :00 7:00. 3

32 4. 4. p(n) n n0 i i ( i ) 50 i ( i ) i ( i ) i 0,, 0,,,,,,,,,,, k(3k )/2 2 k(3k + )/2 4.. ( i ) + ( ) k k(3k )/2 + i k ( ) l l(3l+)/2 (29) l 4. k(3k )/2, 2, 3, 4, Leonhard Euler

33 2 k k(3k )/2, 2, k(k + )/2 (k ) i ( i ) i ( + i ) 3. n q(n) ( + i ) q(n) n i 33 n0

34 + i i i i ( + i ) , 2,, i ( i ) i + ( i ) i 3 ( ), ( ) ( ) + ( )

35 ,, 6 ( ) 2 ( ) 3 ( ) ( ) 2 4 ( ) ( ) 2 5 ( ) ( ) 2 ( ) 2 6 ( ) ( ) 2 ( ) 2 ( ) 3,, ( ) + ( ) ( ) + ( ) ( ) + ( ) 2 + ( ) 2 6 ( ) + ( ) 2 + ( ) 2 + ( ) 3 0 r ( ) r 4.3. n q + (n) n q (n) ( i ) i (q + (n) q (n)) n (30) n0 q + (0), q (0)

36 4.4. n q + (n) q (n) { ( ) k n k n k(3k ± )/2 0 (3) (a) n k n k(3k ± )/2 q + (n) q (n) +, (b) n k n k(3k ± )/2 q + (n) q (n), (c) q + (n) q (n). n n (a) n k(3k ± ) k (b) n k(3k ± ) k (c) a, b m + (m ) + + (m a + ) +((m a) ) + + b. }{{} a m b a b a 2, b 3 a, b 36

37 a < b a a (m ) + (m 2) + + (m a) +((m a) ) + + b + a }{{} a a b b b b {}}{ (m + ) + m + + (m b + 2) +(m b) + + (m a + ) }{{} a + ((m a) ) + a < b a a b b a 2, b a 5, b a 3, b a, b a, b 2 37

38 4.6. n a b n 2 2 a, b 2 + n 3 n 4 n a 2, b 2 n 6, n 7, 38

39 4 + 3 a 2, b n 8, 9, 0,, 2 () (2) (),,, (2),,, (2k ) + (2k) + + (k + ) + k }{{} k 2k k.... k a b k (2k) + (2k ) + + (k + 2) + }{{} k (2k) + (2k ) + + (k + 2) + (k + ) }{{} k 39

40 2k k.... k + a k, b k + (2k ) + (2k 2) + + (k + ) + k +k }{{} k p(n) n n0 4. i0 i + ( ) k k(3k )/2 + k ( ) l l(3l+)/2 l ( i ) i 2 (p(0) + p() + p(2) 2 + p(3) 3 + p(4) 4 + ) ( ) n p(n) p(n ) p(n 2) + p(n 5) + p(n 7) p(n 2) p(n 5) + 0 p(n) 40

41 4.8. p(n) k ( ) k p (n 2 ) k(3k ) + l ( ) l p (n 2 ) l(3l + ) (32) k, l n k(3k )/2, n l(3l + )/2 p(n) 4.9. p(0) p() p(0), p(2) p() + p(0) 2, p(3) p(2) + p() 3, p(4) p(3) + p(2) 5, p(5) p(4) + p(3) p(0) 7, p(6) p(5) + p(4) p(), p(7) p(6) + p(5) p(2) p(0) 5, p(8) p(7) + p(6) p(3) p() p(9), p(0),, p(5) G. E. Andrews and K. Eriksson, Ineger Pariions, Cambridge Univ. Press, Andrews Eriksson 2 G. E. Andrews, The Theory of Pariions, Cambridge Univ. Press, 998. Andrews 30 4

42 R. P. Sanley, Enumeraive Combinaorics, Vol., Cambridge Univ. Press, 996. I R. P. Sanley, Enumeraive Combinaorics, Vol. 2, Cambridge Univ. Press,

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

89 91 93 95 97 99 101 103 105 107 109 111 113 115 H 117 119 l l 121 l l 123 125 127 129 l l l l 131 kl kl kl kl 133 135 137 139 141 143 145 147 149 151 153 155 157 159

More information

株式会社日清製粉グループ本社 第158期中間事業報告書

株式会社日清製粉グループ本社 第158期中間事業報告書 C O N T E N T S...1...3...5...7...9...11...12...13...14 1 2 3 4 3.7% 5.8% 8.5% 70,100kL 81.2% 0.8% 25 20 15 10 5 0 9.18 9.54 9.74 9.62 9.65 9.71 21.04 21.97 22.44 22.23 8.54 22.31 22.45 20.41 15 12 9 6

More information

N N 1,, N 2 N N N N N 1,, N 2 N N N N N 1,, N 2 N N N 8 1 6 3 5 7 4 9 2 1 12 13 8 15 6 3 10 4 9 16 5 14 7 2 11 7 11 23 5 19 3 20 9 12 21 14 22 1 18 10 16 8 15 24 2 25 4 17 6 13 8 1 6 3 5 7 4 9 2 1 12 13

More information

2.

2. 2. 10 2. 2. 1995/12006/111995/42006/12 2. 10 1995120061119954200612 02505 025 05 025 02505 0303 02505 250100 250 200 100200 5010050 100200 100 100 50100 100200 50100 10 75100100 0250512 02505 1 025051205

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi + ( ) : ( ) n, n., = 2+2+,, = 2 + 2 + = 2 + + 2 = + 2 + 2,,,. ( composition.), λ = (2, 2, )... n (partition), λ = (λ, λ 2,..., λ r ), λ λ 2 λ r > 0, r λ i = n i=. r λ, l(λ)., r λ i = n i=, λ, λ., n P n,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

プランマブロック

プランマブロック CAT. NO. B00- SD 300TSTAC 46 4 6 8 0 SN 500 0 SN 600 4 SN 3300 8 SN 3400 0 SSN 500TSTAC V 500 48 V 600 5 SSN 600TSTAC 6 SSN 00B 30 SSN 300B 34 SD 500 38 SD 600 40 V 00 56 V 300 60 SD 3300 4 SD 3400 44

More information

kou05.dvi

kou05.dvi 2 C () 25 1 3 1.1........................................ 3 1.2..................................... 4 1.3..................................... 7 1.3.1................................ 7 1.3.2.................................

More information

untitled

untitled ---------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------------

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2009-9-2.indd

2009-9-2.indd Q No.1441 Q No.1442 Vol.33 NO.9 (2009) 30 (614) Q No.1443 Vol.33 NO.9 (2009) 31 (615) Q No.1444 Vol.33 NO.9 (2009) 32 (616) Vol.33 NO.9 (2009) 33 (617) Vol.33 NO.9 (2009) 34 (618) Q No.1445 Vol.33 NO.9

More information

untitled

untitled 12 3 10 27 1 100 1/10 1/3 2012 24 27 22 23 153 8407 26 28 563 275 26 260 275 120 67 21 15 98 70 8407 7791 616 70.2 19 50 100 300 vol.195 12 10 12 22 11 23 30 0.022 22 11 23 1 9230+0.022 22 11 23 vol.194

More information

みさき_1

みさき_1 2 3 4 5 6 7 1F 2F 8 9 10 11 17 18 19 20 21 22 23 24 31 25 26 27 28 29 30 8 1 2 3 4 5 6 7 6 8 7 16 7 8 9 10 11 12 14 15 13 17 23 Vol.41 8 6 20 11 7 15 7 23 7 7 7 16 23 23 8 13 18:00 22:00 722

More information

Vol..3 2010 2 10 2

Vol..3 2010 2 10 2 1 Vol..3 2010 2 10 2 Vol..3 2010 2 10 3 Vol..3 2010 2 10 4 Vol..3 2010 2 10 5 Vol..3 2010 2 10 6 Vol..3 2010 2 10 7 Vol..3 2010 2 10 8 Vol..3 2010 2 10 9 Vol..3 2010 2 10 10 Vol..3 2010 2 10 11 Vol..3

More information

H21_report

H21_report vol.4 1 2 6 10 14 18 20 22 24 25 1 2 2172 73 3 21925 926 21125 126 4 5 6 21629 630 7 21107 108 21127 128 8 9 10 21616 617 11 211026 1027 211213 1214 12 13 14 21713 714 15 2194 95 211031 111 16 17 18 19

More information

untitled

untitled Vol.27 1 Vol.27 2 Vol.27 3 Vol.27 4 Vol.27 5 Vol.27 6 Vol.27 7 Vol.27 8 Vol.27 9 Vol.27 10 11 Vol.27 Vol.27 12 Vol.27 13 Vol.27 14 Vol.27 15 Vol.27 16 Vol.27 17 Vol.27 2007 10 29 18 http://www.nira.or.jp/index.html

More information

09030549_001.図書館31-1

09030549_001.図書館31-1 vol.31 NO.1 2 3 5 6 10 12 8 1947-1954- 1950-1838-1904 1952-1996 1 913-1954 1981-1958- 1 902-1992 1972-1946- 1 940- 1 2 3 3 5 6 6 8 8 12 8 8 1 2 2 http://library.hokkai-s-u.ac.jp/cgi-bin/tosyokan/index.cgi

More information

VOL a s d f g h

VOL a s d f g h VOL.20013 -- 1937 101939 1940410 1940 1 VOL.20013 2030 193810 19391034 1937 a s d f g h 1995139140161 1998348 1988236 1994577578 1998 1987151 1922 2 VOL.20013 101110 3000500 70 1929 1920 1927 70 4050 30

More information