Size: px
Start display at page:

Download ""

Transcription

1 13

2

3 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x ( ), D = b 2 4ac f, ax + by = c, Diophantus ax + by = c a b d c, x = α, y = β ( ) t x = α + ( b )t, y = β ( a )t d d x 2 + y 2 = z 2, Fermat( ) 4k + 1 ( ) p, x 2 + y 2 = p, 3k + 1 p x 2 + 3y 2 = p, ax 2 + bxy + cy 2 19 Gauss( ) Disquisitiones Arithmeticae Legendre Gauss,,,, ( ) Gauss 1 y

4 0 2 Gauss,, 21,, 22, ( ),, 31,,,, 32,, 33,,, D,, 41, 42,,,,

5 D, D,, 51,, D 52,,, m ξ ξ = k 0, k 1,, k n 1, ξ n (n = 1, 2,, m 1) ξ ξ 0 = ξ, ξ 1, ξ 2,,ξ m 1 f(x, y) = ax 2 + bxy + cy 2 n f(x, y) = n x, y n f n, n

6 1, 1, 4, 2, 6,,, 1,, 4, i i 2 = 1 N = {1, 2, 3, 4, } Z = {0, ±1, ±2, ±3, } } Q = a, b Z, a 0 { b a R = C = {a + ib a, b R} x x 11 a, b, c, 11 ( ) a b a = bq + r, 0 r < b q, r q a b, r a b a, b, c a = bc a b, b a, b a, b a 4

7 1 5 a b a, b a b a c a b, c, a c b c c a, b (a, b) (0, 0), a, b 0 a, b a, b (a, b) (0, 0) = 0 (a, b) = 1 a b n a, b n a b a b (mod n), n (modulus) a b 13 (Legendre ) p, a p ( ) a x 2 a (mod p) a p = 1 ( ) p a p = 1 p ( ) a p a = 0 p ( ) Legendre, p ( ) ( ) ( ) ab a b = p p p 14 (Euler ) a p ( ) a p a p 1 2 (mod p) 15 ( ) ( 1 p ) = { 1, p 1 (mod 4) 1, p 3 (mod 4)

8 ( ) ( ) { 2 1, p 1, 7 (mod 8) = p 1, p 3, 5 (mod 8) 17 ( ) p, q ( ) ( ) q p = ( 1) p 1 q p q G G (i) (ii) (iii) a, b, c G (ab)c = a(bc) e G a G ae = ea = a a G aa 1 = a 1 a = e a 1 (ii) e e G a (iii) a 1 a 1 a 19 G H G, H G (i) (ii) a, b H ab H a H a 1 H H G 110 n GL(n, Q) 111 X X X, S X

9 1 7 X X 112 G G f a, b G f(ab) = f(a)f(b) ( ) f f ( ) G G G G 113 G N G g N = g 1 Ng G N G G H G ah = {ah h H} H G a ( ) H G G/H 114 N G G/N an, bn (an)(bn) = abn G/N G N f : G G G G Im(f) = {f(g) g G}, Ker(f) = {x G f(x) = 1} Ker(f) f, Im(f) f 115 ( ) f : G G Ker(f) G, Im(f) G Im(f) G/Ker(f)

10 1 8 SL(Z) ± = SL(Z) + = { r s t u { r s t u SL(Z) = SL(Z) ± SL(Z) + r, s, t, u Z, ru st = ±1 r, s, t, u Z, ru st = 1 } }, SL(Z) ±, SL(Z) +, SL(Z) 116 SL(Z) + SL(Z) ± Proof SL(Z) + SL(Z) ± 110 GL(2, Q) SL(Z) ± GL(2, Q) 19 A, B SL(Z) ± AB = A B = ±1 AB SL(Z) ± r s u s SL(Z) ± A = A 1 = SL(Z) ± t u t r SL(Z) ± GL(2, Q), SL(Z) ± T = r s t u tξ + u 0 ξ C T (ξ) = rξ + s tξ + u ξ T (ξ)

11 1 9 SL(Z) ± T = r s t u r, T = s t u T (ξ), T (T (ξ)) T (T (ξ)) = rt (ξ) + s r ξ + s r tt (ξ) + u = t ξ + u + s t r ξ + s t ξ + u + u = T (T (ξ)) = T T (ξ) (rr + st )ξ + (rs + su ) (tr + ut )ξ + (ts + uu ) 117 SL(Z) ± T, T T (ξ), T (T (ξ)) T (T (ξ)) = T T (ξ)

12 2 21,, 22, 21 ω 0 ( ) {ω 0, ω 1, } ( ) {k 0, k 1, } k 0 = ω 0 1 ω 0 k 0 ω 1 = ω 1 0 < ω 0 k 0 < 1 ω 0 k 0 ω 1 > 1 ω 1 > 1 k 1 = ω 1 ω 1 k 1 ω 2 = ω 2 ω 2 > 1 1 ω 1 k 1 ω j > 1 k j = ω j 1 j n k j N ω j k j ω j = d (c > 0) c k j = q, ω j+1 = c r q, r d c ω j+1 c, n ω n = k n, ( ) {ω 0, ω 1,, ω n } ( ) {k 0, k 1,, k n } 10

13 2 11 {ω 0, ω 1,, ω n } {k 0, k 1,, k n } k 0, ω 1, k 0, k 1, ω 2, k 0, k 1, k 2, ω 3,, k 0,, k n 1, ω n, ω n = k n k 0, ω 1 = k ω 1 k 0, k 1, ω 2 = k k 0, k 1, k 2, ω 3 = k 0 + k ω 2 k k ω 3 k 0, k 1,, k n 1, k n = k 0 + k k n k n ω 0 = k 0, ω 1 = k 0, k 1, ω 2 = = k 0,, k n 1, k n k 0,, k n 1, k n n + 1, ω 0 = k 0,, k n 1, k n ω 0 k 0 k 1,, k n k 0, k 1,, k n 1, k n 21 h 0 h 1,, h n, h 0,, h n 1, h n α h n > 1 α = h 0, h 1,, h n α h n = 1 α = h 0, h 1,, h n α

14 h 0 h 1,, h n α = h 0,, h n α = h 0,, h n α = h 0,, h n α ω n + 1 ω = k 0, k 1,, k n 1, k n k n = = + k n k n k n ω = k 0, k 1,, k n n k n > k n = + 1 k n ω = k 0, k 1,, k n 1, 1 n , = = = = 4, 1, 2, 4 61, = 4, 1, 2, 3, 1 13 ω = ω 0 {k 0, k 1,, k n } T j = kj (j = 0, 1, 2,, n)

15 2 13 ω j (0 j n) 0 p8 117 ω 0 = k ω 1 ω 0 = k 0ω ω 1 = T 0 (ω 1 ), ω 1 = k ω 2 ω 1 = k 1ω ω 2 = T 1 (ω 2 ), ω n 1 = k n ω n ω n 1 = k n 1ω n + 1 ω n = T n 1 (ω n ) ω = T 0 T 1 T j 2 T j 1 (ω j ), j = 1, 2,, n T 0 T 1 T j 2 T j 1 = pj p j q j q j pj p j pj 1 p j 1 kj 1 1 kj 1 p j 1 + p j 1 p j 1 q j q j = q j 1 q j = k j 1 q j 1 + q j 1 q j 1 T 0 T 1 T j 2 T j 1 = pj p j 1 q j q j 1, { pj = k j 1 p j 1 + p j 2 q j = k j 1 q j 1 + q j 2 (21) ω = k 0, k 1,, k j 1, ω j = T 0 T 1 T j 2 T j 1 (ω j ) = p jω j + p j 1 q j ω j + q j 1 (22) j = n ω n = k n ω = k 0, k 1,, k n 1, k n = T 0 T 1 T n 2 T n 1 (k n ) = p nk n + p n 1 q n k n + q n 1 (23) k 0,, x = p nx + p n 1 q n x + q n 1

16 2 14 x x = 1, k n = 1 (23) 23 (23) p j q j p j 1 q j 1 = T 0T 1 T j 2 T j 1 = ( 1) j (24) 22 ω 0, {ω 0, ω 1, } {k 0, k 1, } k 0 = ω 0 ω 0 ω 0 k < ω 0 k 0 < 1 ω 1 = ω 1 ω 1 > 1 ω 0 k 0 k 1 = ω 1 k 1 N 1 0 < ω 1 k 1 < 1 ω 2 = ω 2 ω 2 > 1 ω 1 k 1, ω n > 1 k n = ω n, ω n+1 = 1 > 1 k n+1 = ω n+1 ω n k n, {ω 0, ω 1, } {k 0, k 1, } j 1 k j N {ω 0, ω 1, } {k 0, k 1, }

17 2 15 ω 0 = k 0, ω 1 = k ω 1 = k 0, k 1, ω 2 = k = k 0, k 1, k 2, ω 3 = k 0 + k ω 2 k k ω 3 = k 0, k 1,, k n 1, ω n = k 0 + k k n ω n k 0, k 1,, k n 1, ω n ω 0 {h j } j 0, h j N (j 1), lim h 0, h 1,, h n = h 0, h 1, h 2, n, ω 0 {k j } ω 0 = lim n k 0, k 1,, k n = k 0, k 1, k 2, ( ) 24 h 0 h 1, h 2,, h n 1, β > 1 α = h 0, h 1,, h n 1, β h 0, h 1,, h n 1, β α

18 2 16 ω = ω 0 {ω j } {k j } T n = kn (n = 0, 1, 2, ) T n (cf p8) ω 0 = k ω 1 ω 0 = k 0ω ω 1 = T 0 (ω 1 ) ω 1 = k ω 2 ω 1 = k 1ω ω 2 = T 1 (ω 2 ) ω n = k n + 1 ω n+1 ω n = k nω n ω n+1 = T n (ω n+1 ) ω = T 0 T 1 T n 2 T n 1 (ω n ) T 0 T 1 T n 2 T n 1 = pn p n q n q n, T 0 T 1 T n 2 T n 1 = pn p n 1 q n q n 1, { pj = k j 1 p j 1 + p j 2 q j = k j 1 q j 1 + q j 2 (25) ω = k 0, k 1,, k n 1, ω n = T 0 T 1 T n 2 T n 1 (ω n ) = p nω n + p n 1 q n ω n + q n 1 (26) p n q n p n 1 q n 1 {q j } = T 0T 1 T n 2 T n 1 = ( 1) n (27) q 0 = 0, q 1 = 1, q 0 < q 1 q 2 < q 3 <, lim n q n = (28)

19 2 17 (26) ω p n = q n = < p n ω n + p n 1 p n q n ω n + q n 1 = (p n q n 1 p n 1 q n ) q n (q n ω n + q n 1 ) q n ( 1) n 1 q n (q n ω n + q n 1 ) = 1 q n (q n ω n + q n 1 ) 1 q n (q n k n + q n 1 ) = 1 q n q n+1 25 ω {k j } (25) {p j, q j } ω p n q n < 1 < 1 q n q n+1 qn 2 26 ω {k j } {p j, q j } p n q n = k 0, k 1,, k n 1 (n = 1, 2, ) Proof α = k 0, k 1,, k n 1 22 α, 23 (23) (21) k 0, k 1,, k n 1 = p n 1k n 1 + p n 2 q n 1 k n 1 + q n 2 = p n q n 27 ω {k j } lim k 0, k 1,, k n = ω n Proof ω k 0, k 1,, k n = ω p n+1 < 1 q n+1 q n+1 2 (28) lim n q n = lim n k 0, k 1,, k n = ω

20 2 18 k 0, k 1,, k n,, ω = k 0, k 1,, k n, ω 28 n 1 k n 1 {k n } η = lim n k 0, k 1,, k n, η = k 0, k 1,, k n, η Proof {k n } T n = kn 1 1 0, T 0 T 1 T n 2 T n 1 = q n pn p n 1 q n 1 {p n }, {q n } 26, (27) p n q n = k 0, k 1,, k n 1 p n q n p n 1 q n 1 = p nq n 1 p n 1 q n q n q n 1 = ( 1)n q n q n 1 pn+1 p ( n 1 = ( 1)n 1 1 ) q n+1 q n 1 q n q n 1 q n+1 (28) 1 q n 1 1 q n+1 > 0, p 2k+1 p ( 2k 1 = ( 1)2k 1 1 ) > 0 q 2k+1 q 2k 1 q 2k q 2k 1 q 2k+1 p1 < p 3 < < p 2k 1 < p 2k+1 < q 1 q 3 q 2k 1 q 2k+1 p 2k+2 p ( 2k = ( 1)2k ) < 0 q 2k+2 q 2k q 2k+1 q 2k q 2k+2 p 2 q 2 > p 4 q 4 > > p 2k+2 q 2k+2 > p 2k q 2k >

21 2 19 p 1 q 1 < p 3 q 3 < < p 2k 1 q 2k 1 < < p 2k q 2k < p 4 q 4 < p 2 q 2 { } { } p2k+1 p2k, q 2k+1 q 2k p 2k+1 lim = ω 1, k q 2k+1 p 2k lim = ω 2 k q 2k ω 1 = ω 2 ( pn lim p ) n 1 1 = lim = 0 n q n q n 1 n q n q n 1 lim k p n+1 0, k 1,, k n = lim = η n n q n+1 η lim n k 1,, k n = η 1 η = k η 1, η 1 > k 1 1 η = k 0 η 1 = k 1, η 2 = 1 η 1 k 1 η 2 = k 2,, η n = k n, {k n } η η = k 0, k 1,, k n, η

22 3 ( ),, 31,,, 32,, 33,,, 31 a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 a b/2 b/2 c b/2 c x y 20

23 3 21 f D = b 2 4ac = 4 a b/2 b/2 c f,,, a, b, c f f f 1, f, f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x y f (x, y ) = a x 2 + b x y + c y 2 = x y a b /2 b /2 c x y a b /2 r s T = t u b /2 c = r t s u a b/2 b/2 c r s SL(Z) ± f(x, y) f (x, y ) f(x, y) f (x, y ) T SL(Z) +, T SL(Z) f(x, y) f (x, y ) f (x, y ) f(x, y) x y = r s t u x y t u (31) a = ar 2 + brt + ct 2 b = 2ars + b(ru + st) + 2ctu (32) c = as 2 + bsu + cu 2

24 3 22, f, f, f,, a b/2 b/2 c, a b /2 b /2 c, a b /2 b /2 c, 31 Proof, 1 0 E = 0 1 a b/2 1 0 a b/2 1 0 b/2 c = 0 1 b/2 c 0 1 f f f f a b /2 b /2 c = T t a b/2 b/2 c T (T t T ) T SL(Z) ± a b/2 b/2 c = (T 1 ) t a b /2 b /2 c T 1 f f f f f f a b /2 b /2 c = T t 1 a b/2 b/2 c T 1, a b /2 b /2 c a = T2 t b /2 b /2 c T 2 T 1, T 2 SL(Z) ± a b /2 b /2 c = (T 1 T 2 ) t a b/2 b/2 c T 1 T 2 f f

25 f f n (i) (ii) f(x, y) = n f (x, y) = n Proof a b /2 r t a b/2 r s b /2 c = s u b/2 c t u r s t u SL(Z) ± a b/2 u t a b /2 u s b/2 c = s r b /2 c t r f(x, y) = n (α, β) n = α = α β β a b/2 α b/2 c β u t a b /2 u s s r b /2 c t r α β α u s α β = t r β f (α, β ) = n f (x, y) = n f (x, y) = n 33 f f f f

26 3 24 Proof a, b, c a b /2 r t a b/2 r s b /2 c = s u b/2 c t u r s t u SL(Z) ± a b/2 u t a b /2 u s b/2 c = s r b /2 c t r, a = a u 2 b ut + c t 2 b = 2a su + b (ru + st) 2c rt c = a s 2 b rs + c r 2 a, b, c a, b, c a, b, c f 34 f, f D, D D = D Proof D = 4 a b /2 b /2 c = 4 r s t u a b/2 b/2 c r t s u 2 r s = 4 t u = 4 a b/2 b/2 c a b/2 b/2 c = D 34 D D D h(d) D,

27 3 25 h + (D) D h + (D) h(d) 32 a( 0), b, c f(x) = ax 2 +bx+c Q f(ξ) = 0 ξ ξ a, b, c f(x) = ax 2 + bx + c x = 0 i i 2 = 1 i = 1 f(x) = ax 2 + bx + c D D > 0 D < 0 ξ = b + D, ξ = b D 2a 2a ξ = b + i D, ξ = b i D 2a 2a, ξ, ξ ξ ξ ξ ξ ax 2 + bx + c D = b 2 4ac ξ aξ 2 + bξ + c = 0 ξ tξ + u = 0 t = u = 0 r s p8 T = SL(Z) ± t u η = T (ξ) = rξ + s tξ + u (33) η ξ T SL(Z) ± (33) η ξ η

28 3 26 Proof aξ 2 + bξ + c = 0 a b/2 ξ ξ 1 b/2 c 1 = aξ 2 + bξ + c = 0 a b/2 r t a b /2 r s b/2 c = s u b /2 c t u a, b, c, tξ + u 0 a η 2 + b η + c a b /2 η = η 1 b /2 c 1 ( ) 2 1 r t a b /2 r s = ξ 1 tξ + u s u b /2 c t u ( ) 2 1 a b/2 ξ = ξ 1 tξ + u b/2 c 1 ( ) 2 1 ( = aξ 2 + bξ + c ) = 0 tξ + u ξ 1 a η 2 + b η + c = 0 a b/2 4 b/2 c = 4 a b /2 b /2 c ξ η a x 2 + b x + c Q η p25 ξ T (33) T (ξ) T, T SL(Z) ± T (T (ξ)) = T T (ξ) 36 T SL(Z) ± (33) ( ) Proof η ξ = T 1 (η) 35 T (ξ) = T T 1 (η) = η

29 3 27 T T (ξ) = T (ξ ) ξ = T 1 (T (ξ)) = T 1 (T (ξ )) = ξ T T SL(Z) ± (33) 1 0 T = ±E E = 0 1 r s Proof T = T (i) = i r = u, t = s T (2i) = 2i t u s = 4t s = t = 0 T = r 2 = ±1 r = u = ±1 T = ±E T T = 1, T = 1 35 T SL(Z) ± (33) SL(Z) ±, ±E 115 SL(Z) ± /{±E} M ± SL(Z) + /{±E}, M + ξ η ξ η ξ η, 37 Proof, ξ E(ξ) = ξ ξ ξ ξ η η = T (ξ) T SL(Z) ± ξ = T 1 (η) η ξ ξ η, η ζ η = T (ξ), ζ = T (η) T, T SL(Z) ± ζ = T T (ξ) ξ ζ

30 f(x, y) = ax 2 + bxy + cy 2 f a 0, ax 2 + bx + c Q f ax 2 + bx + c ξ ξ ax 2 bx c f 1 (x, y) = a 1 x 2 + b 1 xy + c 1 y 2, f 2 (x, y) = a 2 x 2 + b 2 xy + c 2 y 2, ξ 1, ξ 2 38 f 1 (x, y) f 2 (x, y) ξ 1 ξ 2 Proof a2 b 2 /2 r t a1 b 1 /2 r s b 2 /2 c 2 = s u b 1 /2 c 1 t u r s t u SL(Z) + a 1 = a 2 u 2 b 2 ut + c 2 t 2 b 1 = 2a 2 us + b 2 (ru + st) 2c 2 rt c 1 = a 2 s 2 b 2 rs + c 2 r 2 D > 0 b 2 + D r + s rξ 2 + s tξ 2 + u = 2a 2 t b 2 + D + u 2a 2 = (2a 2s b 2 r) + r D (2a 2 u b 2 t) + t D

31 3 29 = (4a2 2su 2a 2 b 2 st 2a 2 b 2 ru + 4a 2 c 2 rt) + 2a 2 (ru st) D 4a 2 2u 2 4a 2 b 2 ut + 4a 2 c 2 t 2 = 2a 2b 1 + 2a 2 D 4a 2 a 1 = b 1 + D 2a 1 = ξ 1 ξ 1 = rξ 2 + s tξ 2 + u ξ 1 ξ 2 D < 0 ξ 2 f rξ 2 + s 2 tξ 2 + u f 1 39 ξ 1 ξ 2 f 1 (x, y) f 2 (x, y) Proof ξ 1 ξ 2 r s t u (tξ 2 + u) 2 ξ 1 = rξ 2 + s tξ 2 + u SL(Z) + a 1 ξ1 2 + b 1 ξ 1 + c 1 = 0 ( ) 2 ( ) rξ2 + s rξ2 + s a 1 + b 1 + c 1 = 0 tξ 2 + u tξ 2 + u (a 1 r 2 + b 1 rt + c 1 t 2 )ξ (2a 1 rs + b 1 (ru + st) + 2c 1 tu)ξ 2 + (a 1 s 2 + b 1 su + c 1 u 2 ) = 0 b 2 1 4a 1 c 1 = b 2 2 4a 2 c 2 ξ 2, ±1 a 1 r 2 + b 1 rt + c 1 t 2 = ±a 2 2a 1 rs + b 1 (ru + st) + 2c 1 tu = ±b 2 a 1 s 2 + b 1 su + c 1 u 2 = ±c 2

32 3 30 ( ) r t s u a1 b 1 /2 b 1 /2 c 1 r s t u a2 b 2 /2 = ± b 2 /2 c 2 f 1 f 2 r t s u a1 b 1 /2 b 1 /2 c 1 r s t u = a2 b 2 /2 b 2 /2 c 2, f 1 f 2 ξ 2 f 2 ξ 1 = rξ 2 + s tξ 2 + u f 1 f 1 f f 1 (x, y) f 2 (x, y), ξ 1 ξ 2 311

33 4 D,,, 41, 42,,,, 43 f(x, y) = ax 2 +bxy+cy 2 D = b 2 4ac < 0 ac > 0 a c ( f(x, y) = ax 2 + bxy + cy 2 = a x + b 2a y ) 2 + ( 4ac b 2 D < 0 f(x, y) (x, y) (0, 0) a > 0 f(x, y) > 0, a < 0 f(x, y) < 0 a > 0 f, a < 0 f 32,, f f f f 31 4a ) y 2

34 4 32 D h + (D) h + (D) = 2 h + (D) 41 f(x, y) = ax 2 + bxy + cy 2 c > a b > a c = a b 0 (41) ( ) 41 D f(x, y) = ax 2 + bxy + cy 2 D b 3 Proof b a c b 2 ac D = b 2 4ac < 0 D = b 2 4ac = 4ac b 2 4b 2 b 2 = 3b 2 D b 3 b, 4ac = b 2 D a, c D 42 f(x, y) = ax 2 + bxy + cy (i) f(x, y) = x 2 + y 2 ±, ± (ii) (iii) 1 0 f(x, y) = x 2 + xy + y 2 ± f(x, y) ± 0 1, ± , ±

35 4 33 r s Proof X = f(x, y) t u r t a b/2 r s a b/2 s u b/2 c t u = b/2 c a b/2 r s u t a b/2 b/2 c t u = s r b/2 c a(r u) + bt = 0 as + ct = 0 c(r u) bs = 0 (42) s = 0 t = 0 as + ct = 0 a, c > 0 s = t = ru st = ru = 1 X = ± 0 1 s 0 t 0 as + ct = 0 a, c > 0 st < 0 (i) (ii) r = u st 1 ru st = r 2 st = 1 r = u = 0 st = X = ± (42) b = a = c a, b, c a = c = 1, b = 0 f(x, y) = x 2 + y 2 r u b = 0 a(r u) + bt = 0 r = u b 0 r = 0 bt = au, bs = cu, st = 1 a, b, c a = c = b = 1, u = ±1 X = 0 1 ±, f(x, y) = x 2 + xy + y u = 0 X = ±, f(x, y) = x 2 + xy + y 2 1 0

36 4 34 r 0 u 0 st < 0 ru st = 1 ru < 0 b 0 t = a ( r + u ) r + u, b s = c ( r + u ) r + u b st r r u + u 2 > ur + 2, ru st = 1 ru = st 1 r, s, t, u ξ (i) ξ = i ±, ± (ii) (iii) ξ = 1 + 3i ± ± 0 1, ± , ± f ξ = X + Y i f 1 2 X < 1, ξ > X 0, ξ = 1 Proof f(x, y) = ax 2 + bxy + cy 2 ξ = X Y i 2X = b a, ξ 2 = X 2 + Y 2 = c a

37 4 35 f (41) c > a b > a c = a b 0,, 1 2 X < 1 2, ξ > X 0, ξ = 1 ξ = X +Y i 1 2 X < 1 2, ξ > 1 1 X 2 0, ξ = 1 i 1+ 3i 2, Proof f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x y a > c a b/2 b/2 c = c b/2 b/2 a ( ) a c b > a a b + 2na > a n 1 0 n 1 a b/2 b/2 c 1 n 0 1 = a (b + 2na)/2 (b + 2na)/2 c + nb + n 2 a ( )

38 4 36 a c + nb + n 2 a a > c + nb + n 2 a ( ) a b /2 b /2 c, a = c + nb + n 2 a < c = a, b = (b + 2na), ( ) a b /2 b /2 c, a = a, a b > a,, (1, 1) a 46 f(x, y) = ax 2 + bxy + cy 2 0 < f(x, y) a (x, y) (i) (ii) (iii) c > a (x, y) = (±1, 0) c = a > b (x, y) = (±1, 0), (0, ±1) c = a = b (x, y) = (±1, 0), (0, ±1), ±(1, 1) f(x, y) 0 a Proof 0 < f(x, y) a ( f(x, y) = ax 2 + bxy + cy 2 = a x + b 2a y ) 2 + ( 4ac b 2 4a ) y 2 a 4ac 4a 2, b 2 a 2 y 2 y = 0, ±1 ( ) 4a a 4a2 4ac b 2 3a y = 0 x = ±1 0 < f(x, y) a (±1, 0) y = ±1 f(x, ±1) = ax 2 ± bx + c a b ax 2 ± bx 0 f(x, ±1) c c > a f(x, ±1) > a (±1, 0)

39 4 37 c = a ax 2 ± bx = 0 f(x, ±1) = a ax 2 ± bx = 0 a > b x = 0, (0, ±1) a = b x = ±1 ax 2 ± bx = 0 ±(1, 1) 47 Proof f(x, y) = ax 2 + bxy + cy 2 f (x, y) = a x 2 + b xy + c y 2 f = f 46 f, f 0 a, a a = a r t s u a b/2 b/2 c r s t u = a b /2 b /2 c r s (1, 1) f(r, t) = ar 2 + t u brt + ct 2 = a c > a 46 r = ±1, t = 0 b = ±2sa + b a b, b > a b = b c = c f = f c = a b c > a = a f = f c = a = a b 2 = D + 4ac = (b ) 2 c = a b, b 0 b = b f = f 45, h + (D) D 49 D < 0 h + (D)

40 4 38 ξ, D = 20 f(x, y) = ax 2 + bxy + cy 2 41 b 20 = 2 3 b b = 0, ±1, ±2, 4ac = b 2 D 4ac = 20, 21, 24 ac = 5, 6 (41) (a, b, c) (a, b, c) = (1, 0, 5), (2, 2, 3) D = 20 f 1 (x, y) = x 2 + 5y 2, f 2 (x, y) = 2x 2 + 2xy + 3y 2 h + ( 20) = 2 D = 36 f(x, y) = ax 2 + bxy + cy 2 41 b 36 = 3 3

41 4 39 b b = 0, ±1, ±2, ±3 4ac = b 2 D 4ac = 36, 37, 40, 45 ac = 9, 10 (41) (a, b, c) (a, b, c) = (1, 0, 9), (3, 0, 3), (2, 2, 5) D = 36 f 1 (x, y) = x 2 + 9y 2 f 3 (x, y) = 2x 2 + 2xy + 5y 2 h + ( 36) = 3 f 2 (x, y) = 3x 2 + 3y 2 D = 47 f(x, y) = ax 2 + bxy + cy 2 41 b 47 = 3 3 b b = 0, ±1, ±2, ±3 4ac = b 2 D 4ac = 47, 48, 51, 56 ac = 12, 14 (41) (a, b, c) (a, b, c) = (1, 1, 12), (2, 1, 6), (2, 1, 6), (3, 1, 4), (3, 1, 4) D = 47 f 1 (x, y) = x 2 + xy + 12y 2 f 2 (x, y) = 2x 2 + xy + 6y 2 f 3 (x, y) = 2x 2 xy + 6y 2 f 4 (x, y) = 3x 2 + xy + 4y 2 f 5 (x, y) = 3x 2 xy + 4y 2 h + ( 47) = 5

42 4 40 D < 0 D h + (D) D D h + (D) 3 f(x, y) = x 2 + xy + y f(x, y) = x 2 + y f(x, y) = x 2 + xy + 2y f(x, y) = x 2 + 2y f(x, y) = x 2 + xy + 3y f 1 (x, y) = x 2 + 3y 2, f 2 (x, y) = 2x 2 + 2xy + 2y 2 2 f 1 (x, y) = x 2 + xy + 4y 2, f 2 (x, y) = 2x 2 + xy + 2y 2 2 f 1 (x, y) = x 2 + 4y 2, f 2 (x, y) = 2x 2 + 2y f(x, y) = x 2 + xy + 5y f 1 (x, y) = x 2 + 5y 2, f 2 (x, y) = 2x 2 + 2xy + 3y 2 2 f 1 (x, y) = x 2 + xy + 6y 2, f 2 (x, y) = 2x 2 + xy + 3y 2 3 f 3 (x, y) = 2x 2 xy + 3y 2 f 1 (x, y) = x 2 + 6y 2, f 2 (x, y) = 2x 2 + 3y 2 2 f 1 (x, y) = x 2 + xy + 7y 2, f 2 (x, y) = 3x 2 + 3xy + 3y 2 2 f 1 (x, y) = x 2 + 7y 2, f 2 (x, y) = 2x 2 + 2xy + 4y 2 2 f 1 (x, y) = 2x 2 + xy + 4y 2, f 2 (x, y) = 2x 2 xy + 4y 2 3 f 3 (x, y) = x 2 + xy + 8y 2 f 1 (x, y) = x 2 + 8y 2, f 2 (x, y) = 3x 2 + 2xy + 3y 2 3 f 3 (x, y) = 2x 2 + 4y 2 f 1 (x, y) = x 2 + xy + 9y 2, f 2 (x, y) = 3x 2 + xy + 3y 2 2 f 1 (x, y) = x 2 + 9y 2, f 2 (x, y) = 3x 2 + 3y 2 3 f 3 (x, y) = 2x 2 + 2xy + 5y 2 f 1 (x, y) = x 2 + xy + 10y 2, f 2 (x, y) = 2x 2 + xy + 5y 2 4 f 3 (x, y) = 2x 2 xy + 5y 2, f 4 (x, y) = 3x 2 + 3xy + 4y 2 f 1 (x, y) = x y 2, f 2 (x, y) = 2x 2 + 5y f(x, y) = x 2 + xy + 11y f 1 (x, y) = x y 2, f 2 (x, y) = 2x 2 + 2xy + 6y 2 4 f 3 (x, y) = 3x 2 + 2xy + 4y 2, f 4 (x, y) = 3x 2 2xy + 4y 2 f 1 (x, y) = x 2 + xy + 12y 2, f 2 (x, y) = 2x 2 + xy + 6y 2 5 f 3 (x, y) = 2x 2 xy + 6y 2, f 4 (x, y) = 3x 2 + xy + 4y 2 f 5 (x, y) = 3x 2 xy + 4y 2

43 5 D, D,, 51,, D 52,,, m ξ ξ = k 0, k 1,, k n 1, ξ n (n = 1, 2,, m 1) ξ ξ 0 = ξ, ξ 1, ξ 2,,ξ m 1 51 f(x, y) = ax 2 + bxy + cy 2, a > 0, b < 0, c < 0, a + b + c < 0, a b + c > 0 (51) 41

44 5 42 f(x, y) g(x) = ax 2 + bx + c g(1) = a + b + c, g(0) = c, g( 1) = a b + c (51) a > 0, g( 1) > 0, g(0) < 0, g(1) < 0 (52) (52) a > 0, c = g(0) < 0, a + b + c = g(1) < 0, a b + c = g( 1) > 0 2b = g(1) g( 1) < 0 b < 0 (51) (51) (52) g(x) = ax 2 + bx + c ξ, ξ ξ = b + D, ξ = b D 2a 2a (52) ξ > 1 0 > ξ > 1 ξ > 1 > ξ > 0 (53) D (53) a = ξ ξ > 0 a > 0 g( 1) > 0, g(0) < 0, g(1) < 0 51 f(x, y) = ax 2 + bxy + cy 2 b + D 2a > 1 > b + D 2a g(x) = ax 2 + bx + c 1 ξ, ξ > 0 ξ > 1 > ξ > 0 ξ f(x, y) ξ f(x, y), ξ

45 D Proof f(x, y) = ax 2 + bxy + cy 2 D 51 b + D > 0 D > b = b b, 4ac = b 2 D a, c D (p26), 36 ( ) ω p16, (26), (27) ω = k 0, k 1,, k n 1, ω n = p nω n + p n 1 q n ω n + q n 1, p n q n 1 p n 1 q n = ( 1) n ω n 54 ω ω = k 0, k 1,, k n 1, ω n n ω ω n, n ω ω n

46 ξ η η = T (ξ) = rξ + s r s tξ + u, T = t u SL(Z) ±, t > u > 0, ξ > 1 T n η = k 0, k 1,, k n 1, ξ, r = p n, s = p n 1, t = q n, u = q n 1 T = 1 n, T = 1 n Proof r t r t = k 0, k 1,, k n 1 t > u > 0 t > 1 ru st = ±1 (r, t) = 1 r 0 n 2 21 T j = kj 1 1 0, T 0 T 1 T j 2 T j 1 = pj p j 1 q j q j 1 r t = k 0, k 1,, k n 1 = p n 1k n 1 + p n 2 = p n q n 1 k n 1 + q n 2 q n r (p n, q n ) = 1 q n > 0 t = p n r = p n, t = q n q n, 23 n T n ru st = p n q n 1 p n 1 q n = ( 1) n (54) ru st = p n u q n s = p n q n 1 p n 1 q n p n (u q n 1 ) = q n (s p n 1 ) q n u q n 1 q n = t > u > 0, n 2

47 5 45 q n q n 1 > 0 u q n 1 < q n u = q n 1, s = p n 1 k 0, k 1,, k n 1, ξ = p nξ + p n 1 q n ξ + q n 1 = rξ + s tξ + u = η k 0, k 1,, k n 1, ξ η q j j t = q n n T = 1 n, T = 1 n (54) η = , ξ = η = 1, ξ = 1, 3, 1, 1, ξ η ξ 4 2, 55 n η ξ 56 ξ, η ξ, η ξ = k 0, k 1,, k l 1, ξ l, η = h 0, h 1,, h m 1, η m ξ l = η m ξ η l, m, ξ η l, m, Proof ξ η η = T (ξ) = rξ + s r s tξ + u, T = t u SL(Z) ± T T T tξ + u > 0 T = T T ξ ξ = k 0, k 1,, k n 1, ξ n = p nξ n + p n 1 q n ξ n + q n 1 η = T (ξ) = r s t u pn p n 1 q n q n 1 (ξ n ) An B n C n D n = r s t u pn p n 1 q n q n 1

48 5 46 An B n An B n η = A nξ n + B n C n ξ n + D n = C n D n (ξ n ), C n D n SL(Z) ± 25 ξ p n q n < 1 q n q n+1 ξq n p n < q n q n+1 q n, q n q n+1 < 1 p n = ξq n + δ n, δ n < 1 q n C n = tp n + uq n = t(ξq n + δ n q n ) + uq n = (tξ + u)q n + tδ n q n, D n = tp n 1 + uq n 1 = (tξ + u)q n 1 + tδ n 1 q n 1, tξ + u > 0, lim n q n = + l q l > q l 1 > 0 tδ l 1 tδ l q l 1 q l < tξ + u C l > D l > 0 η = A lξ l + B l C l ξ l + D l, (C l > D l > 0, ξ l > 1) 55 m η = h 0, h 1,, h m 1, ξ l ξ η l ξ ξ l η ξ l 55 m l ξ ξ l η ξ l m ξ η l ξ ξ l, η ξ l m l ξ ξ l, η ξ l m

49 5 47 ω = k 0, k 1,, k n, m, l n > l k n+m = k n, m ω ω = k 0, k 1,, k n 1, ω n n > l ω n+m = ω n m ω = k 0, k 1,, k l, h 1, h 2,, h m, h 1, h 2,, h m, h 1, h 2, m ω = k 0, k 1,, k l, h 1, h 2,, h m ω = k 0, k 1,, k l, 57 ω ω Proof ω, m, l ω = k 0, k 1,, k l, h 1,, h m η = h 1, h 2,, h m 54 ω η η = h 1,, h m, η (26) η = rη + s tη + u, r s t u SL(Z) ±, t > 0

50 5 48 tη 2 + (u r)η s = 0, t > 0 η η ω 58 2 ω Proof ω aω 2 + bω + c = ω, 1 a b/2 ω b/2 c 1 = 0 a 0, b, c ω (26) ω = k 0, k 1,, k n 1, ω n = p nω n + p n 1 q n ω n + q n 1 aω 2 + bω + c = 0, (q n ω n + q n 1 ) 2 a b/2 pn ω n + p n 1 0 = p n ω n + p n 1, q n ω n + q n 1 b/2 c q n ω n + q n 1 p n q n a b/2 pn p n 1 ωn = ω n, 1 p n 1 q n 1 b/2 c q n q n 1 1 A n B n /2 ωn = ω n, 1 B n /2 1 C n A n = ap n 2 + bp n q n + cq n 2, B n = 2ap n p n 1 + b(p n q n 1 + p n 1 q n ) + 2cq n q n 1, C n = ap n bp n 1 q n 1 + cq n 1 2, B n 2 4A n C n = b 2 4ac, 25 ω p n q n < 1 qn 2 p n = ωq n + δ n q n, ( δ n < 1)

51 5 49 ( A n = a ωq n + δ ) 2 ( n + bq n ωq n + δ ) n 2 + cq n q n q n = (aω 2 + bω + c)q n 2 + (2aω + b)δ n + a aω 2 + bω + c = 0 A n = (2aω + b)δ n + a ( δn 2 q n 2 ) ( δn 2 q n 2 ) A n < 2 aω + b + a C n < 2 aω + a + b, B n 2 = 4A n C n + (b 2 4ac) 4(2 aω + a + b ) 2 + b 2 4ac A n, B n, C n n (A p, B p, C p ) = (A q, B q, C q ) = (A r, B r, C r ) p, q, r ω p, ω q, ω r A p x 2 + B p x + C p = 0, ω p = ω q, p < q ω ω = k 0, k 1,, k p 1, ω p = k 0, k 1,, k p 1,, k q 1, ω q ω 59 ω Proof ω 57 ω, n ω = k 0, k 1,, k n 1, ω

52 5 50 (26) ω = p nω + p n 1 q n ω + q n 1 q n ω 2 + (q n 1 p n )ω p n 1 = 0 g(x) = q n x 2 + (q n 1 p n )x p n 1 = 0 p42, (52) n 1 q n > 0, g(0) = p n 1 < 0 q n q n 1 0, p n > p n 1 1 g( 1) = (q n q n 1 ) + (p n p n 1 ) > 0 p 1 = k 0 q 1 = 1 p n+1 = p n k n + p n 1, q n+1 = q n k n + q n 1 n 1 p n > q n > 0 ( g(1) = q n + q n 1 p n p n 1 = q n 1 p ) ( n + q n 1 1 p ) n 1 < 0 q n q n 1 ω 510 ω ω = k 0, k 1,, k n 1, ω n (n = 1, 2, ) ω 1, ω 2, 2 Proof ω g(x) g(x) = ax 2 + bx + c, g(ω) = 0, a > 0, g( 1) > 0, g(0) < 0, g(1) < 0 ω = k g(ω) = 0 ω 2 1 ω 1 (ak bk 0 + c)ω (2ak 0 + b)ω 1 + a = 0 A = (ak bk 0 + c), B = (2ak 0 + b), C = a, h(x) = Ax 2 + Bx + C h(ω 1 ) = 0 1 k 0 = ω 0 k 0 1 < k 0 < ω < k 0 + 1

53 5 51 g(k 0 1) < 0, g(k 0 ) < 0, g(k 0 + 1) > 0 A = g(k 0 ) > 0 h(1) = g(k 0 + 1) < 0, h( 1) = g(k 0 1) > 0, h(0) = a < 0 h ω 1 ω 2, ω 3, 511 ω Proof ω ω > 1 k 0 1 ω ω = k 0, k 1,, k n 1, ω n ω 58, m, n(m > n) ω m = ω n n = 0 ω n > 0 ω n 1 = k n ω n, ω m 1 = k m ω m ω n 1 ω m 1 = k n 1 k m 1 Z ω j ω j ω n 1 = b n 1 + D, ω m 1 = b m 1 + D 2a n 1 2a m 1, ω n 1 ω m 1 Z ω n 1 ω m 1 D 0 D 2a n 1 = ω n 1, ω m 1 D 2a m 1 ω n 1 = b n 1 D, ω m 1 = b m 1 D 2a n 1 2a m 1 ω n 1 ω m 1 = ω n 1 ω m 1 = k n 1 k m 1 Z

54 ω n 1, ω m 1 1 < ω n 1 < 0, 1 < ω m 1 < 0 ω n 1 ω m 1 < 1, ω n 1 ω m 1 ω n 1 ω m 1 = 0 k n 1 = k m 1, ω n 1 = ω m 1 ω m = ω n ω n 1 = ω m 1 ω 0 = ω m n ω 53 D h(d), 512 Proof ξ ξ ξ = k 0, k 1,, k n 1, ξ n 58, m, n(m > n) ξ n = ξ m ξ = k 0, k 1,, k n 1, ξ n = k 0, k 1,, k m 1, ξ m = k 0, k 1,, k m 1, ξ n ξ n = k n,, k m 1, ξ n ξ n 59 ξ n n 510 ξ n+1 n n + 1, n ξ = p nξ n + p n 1 q n ξ n + q n 1, p n q n 1 p n 1 q n = ( 1) n = 1 ξ ξ n

55 D h(d), h + (D) 514 ξ, ξ = k 0, k 1,, k n 1, ξ n ξ m ξ 0 = ξ, ξ 1,, ξ m 1, m ξ 0, ξ 1,, ξ m 1 m ξ 0, ξ 2,, ξ m 2, ξ ξ 1, ξ 3,, ξ m 1 Proof ξ 0,, ξ m 1 54, 510 m ξ ξ 0, ξ 1,, ξ m 1 54 ξ ξ 2n m ξ n = ξ m+n n m + n ξ ξ m+n = ξ n m ξ 0, ξ 1,, ξ m 1 m 54 ξ 0, ξ 2,, ξ m 2, ξ ξ 1, ξ 3,, ξ m 1 n ξ ξ n 56, r s ξ r = ξ n+s n + s r, m n ξ ξ n 515 ξ, ξ = k 0, k 1,, k n 1, ξ n, m ξ ξ 0 = ξ, ξ 1,, ξ m 1 Proof η ξ, η = u 0, u 1,, u n 1, η n, 56 ξ r = η s r, s η η s = u j, u j+1,, η = ξ r η s η ξ 0 = ξ, ξ 1,, ξ m 1 ξ ξ 0 = ξ, ξ 1,, ξ m 1 η s

56 D = 60 f(x, y) = ax 2 + bxy + cy = 7 53 b = 1, 2, 3,, 7 4ac = b 2 D b, 4ac = 56, 44, 24 ac = 14, 11, 6 p41 (51) (a, b, c) (6, 6, 1), (3, 6, 2), (2, 6, 3), (1, 6, 6) 4 f(x) f 1 (x, y) = 6x 2 6xy y 2, f 2 (x, y) = 3x 2 6xy 2y 2, f 3 (x, y) = 2x 2 6xy 3y 2, f 4 (x, y) = x 2 6xy 6y 2 ξ 1 = , ξ 2 = ,, ξ 3 = , ξ 4 = ξ 1 = 1, 6, ξ 2 = 2, 3, ξ 3 = 3, 2, ξ 4 = 6, ξ 1 ξ 4, ξ 2 ξ 3, ξ 1 ξ 2 h(d) = h + (D) = 4 D = 136 f(x, y) = ax 2 +bxy +cy = 11 b = 1, 2, 3,, 11 4ac = b 2 D 4ac = 132, 120, 100, 72, 36 ac = 33, 30, 25, 18, 9 (51) (a, b, c) 10 (5, 6, 5), (5, 4, 6), (6, 4, 5), (2, 8, 9), (3, 8, 6), (6, 8, 3), (9, 8, 2), (1, 10, 9), (3, 10, 3), (9, 10, 1)

57 5 55 f(x, y) = ax 2 + bxy + cy 2 f 1 (x, y) = 5x 2 6xy 5y 2, f 2 (x, y) = 5x 2 4xy 6y 2, f 3 (x, y) = 6x 2 4xy 5y 2, f 4 (x, y) = 2x 2 8xy 9y 2, f 5 (x, y) = 3x 2 8xy 6y 2, f 6 (x, y) = 6x 2 8xy 3y 2, f 7 (x, y) = 9x 2 8xy 2y 2, f 8 (x, y) = x 2 10xy 9y 2, f 9 (x, y) = 3x 2 10xy 3y 2, f 10 (x, y) = 9x 2 10xy y 2 ξ 1 = ξ 5 = , ξ 2 = , ξ 6 = ξ 9 = , ξ 10 = ,, ξ 3 = , ξ 4 = , 2, ξ 7 = , ξ 8 = , 9 ξ 1 = 1, 1, 3, 3, 1, 1, ξ 2 = 1, 1, 1, 3, 3, 1, ξ 3 = 1, 3, 3, 1, 1, 1, ξ 4 = 4, 1, 10, 1, ξ 5 = 3, 3, 1, 1, 1, 1, ξ 6 = 1, 1, 1, 1, 3, 3, ξ 7 = 1, 10, 1, 4, ξ 8 = 10, 1, 4, 1, ξ 9 = 3, 1, 1, 1, 1, 3, ξ 10 = 1, 4, 1, 10 ξ 1 ξ 2 ξ 3 ξ 5 ξ 6 ξ 9, ξ 4 ξ 7 ξ 8 ξ 10, ξ 1 ξ 4 h(d) = 2 h + (D) = 4

58 5 56 D, D, D D h(d) h + h(d) h + (D) 5 f(x, y) = x 2 xy y 2 ξ = ξ = f(x, y) = x 2 2xy y 2 ξ = ξ = f 1 (x, y) = 2x 2 2xy y 2 ξ 1 = ξ 1 = 1, f 2 (x, y) = x 2 2xy 2y 2 ξ 2 = ξ 2 = 2, 1 13 f(x, y) = x 2 3xy y 2 ξ = ξ = f 1 (x, y) = x 2 3xy 2y 2 ξ 1 = ξ 1 = 3, 1, f 2 (x, y) = 2x 2 xy 2y 2 ξ 2 = ξ 2 = 1, 3, 1 f 3 (x, y) = 2x 2 3xy y 2 ξ 3 = ξ 3 = 1, 1, 3 20 f 1 (x, y) = 2x 2 2xy 2y 2 ξ 1 = ξ 1 = f 2 (x, y) = x 2 4xy y 2 ξ 2 = ξ 2 = 4 21 f 1 (x, y) = x 2 3xy 3y 2 ξ 1 = ξ 1 = 3, f 2 (x, y) = 3x 2 3xy y 2 ξ 2 = ξ 2 = 1, 3 24 f 1 (x, y) = x 2 4xy 2y 2 ξ 1 = ξ 1 = 4, f 2 (x, y) = 2x 2 4xy y 2 ξ 2 = ξ 2 = 2, 4 28 f 1 (x, y) = x 2 4xy 3y 2 ξ 1 = ξ 1 = 4, 1, 1, f 2 (x, y) = 2x 2 2xy 3y 2 ξ 2 = ξ 2 = 1, 1, 4, 1 f 3 (x, y) = 3x 2 2xy 2y 2 ξ 3 = ξ 3 = 1, 4, 1, 1 f 4 (x, y) = 3x 2 4xy y 2 ξ 4 = ξ 4 = 1, 1, 1, 4 29 f(x, y) = x 2 5xy y 2 ξ = ξ = f 1 (x, y) = x 2 4xy 4y 2 ξ 1 = ξ 1 = 4, f 2 (x, y) = 2x 2 4xy 2y 2 ξ 2 = ξ 2 = 2 f 3 (x, y) = 4x 2 4xy y 2 ξ 3 = ξ 3 = 1, 4 33 f 1 (x, y) = 2x 2 3xy 3y 2 ξ 1 = ξ 1 = 2, 5, 2, f 2 (x, y) = 3x 2 3xy 2y 2 ξ 2 = ξ 2 = 1, 2, 5, 2 f 3 (x, y) = x 2 5xy 2y 2 ξ 3 = ξ 3 = 5, 2, 1, 2 f 4 (x, y) = 2x 2 5xy y 2 ξ 4 = ξ 4 = 2, 1, 2, 5 37 f 1 (x, y) = 3x 2 xy 3y 2 ξ 1 = ξ 1 = 1, 5, f 2 (x, y) = x 2 5xy 3y 2 ξ 2 = ξ 2 = 5, 1, 1 f 3 (x, y) = 3x 2 5xy y 2 ξ 3 = ξ 3 = 1, 1, 5 40 f 1 (x, y) = 3x 2 2xy 3y 2 ξ 1 = ξ 1 = 1, 2, f 2 (x, y) = 2x 2 4xy 3y 2 ξ 2 = ξ 2 = 2, 1, 1 f 3 (x, y) = 3x 2 4xy 2y 2 ξ 3 = ξ 3 = 1, 1, 2 f 4 (x, y) = x 2 6xy y 2 ξ 4 = ξ 4 = 6

59 6 f(x, y) = ax 2 + bxy + cy 2 n f(x, y) = n x, y n f n,, n f 0, f n f n, 61 f(x, y) = ax 2 + bxy + cy 2 D, n (r, t) f(x, y) = n f(r, t) = n r, t n f n f f(x, y) = x 2 + y = 8, 8 f, (α, β) f(x, y) = n, d, d 2 n α = α d, β = β d, n = n d 2 (α, β ) f(x, y) = n n, 1 f(x, y) = n 61 m 2 D (mod 4n), 0 m < 2n m, n D 57

60 6 58 Proof l = m2 D 4n, g(x, y) = nx 2 + mxy + ly 2 g m 2 4nl = D g(1, 0) = n, n D g 62 n, D m 2 D (mod 4n), 0 m < 2n m Proof 61 n D f(x, y) = ax 2 + bxy + cy 2 f(x, y) = n (r, t) r, t 1 r s x = s, y = u T = t u n m/2 m/2 l = T t a b/2 b/2 c ry tx = 1 (61) T, T x f(x, y) g(x, y ) = nx 2 + mx y + ly 2 y = r s t u x y n = ar 2 + brt + ct 2 m = 2ars + b(ru + st) + 2ctu l = as 2 + bsu + cu 2 (61) (s 0, u 0 ) s = s 0 + rk, u = u 0 + tk (k Z)

61 6 59 m = 2ars + b(ru + st) + 2ctu m = 2ar(s 0 + rk) + b(ru 0 + rtk + s 0 t + rtk) + 2ct(u 0 + tk) = 2ars 0 + b(ru 0 + s 0 t) + 2ctu 0 + 2nk m 2ars 0 + b(ru 0 + s 0 t) + 2ctu 0 (mod 2n) k m 0 m < 2n g f D = b 2 4ac = m 2 4nl m 2 D (mod 4n), 0 m < 2n m m 2 D (mod 4n) 0 m < 2n m, f(x, y) = ax 2 + bxy + cy 2 n 62 f n f(x, y) g(x, y ) = nx 2 + mx y + ly 2 D = b 2 4ac = m 2 4nl m 2 D (mod 4n), 0 m < 2n (62) (62) m, l, n m/2 m/2 l = r t s u a b/2 b/2 c r s t u

62 6 60 r s T = t u m, l T n f (r, t) f(x, y) = n D h + (D), f g m 2 D (mod 4n), (0 m < 2n) m n f, n f, 42 T, f(x, y) = n f(x, y) = n, 62 p ( ) { 1 1, p 1 (mod 4) = p 1, p 3 (mod 4) ( ) { 2 1, p 1, 3 (mod 8) = p 1, p 5, 7 (mod 8) ( ) { 3 1, p 1, 11 (mod 12) = p 1, p 5, 7 (mod 12) ( ) { 3 1, p 1 (mod 3) = p 1, p 2 (mod 3) ( ) { 5 1, p 1, 4 (mod 5) = p 1, p 2, 3 (mod 5) ( ) { 5 1, p 1, 3, 7, 9 (mod 20) = p 1, p 11, 13, 17, 19 (mod 20)

63 6 61 D = 3 p40 h + ( 3) = 1 3 f(x, y) = x 2 + xy + y 2 p 3 62 m 2 3 (mod 4p), 0 m < 2p m x 2 3 (mod p) x 2 3 (mod p) α (0 α < p), m α α + p m 2 3 (mod 4p), 0 m < 2p x 2 3 (mod p), p = 3 p 1 (mod 3) 100 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97 f(x, y) = x 2 + xy + y 2 3 = = f(1, 1) 7 = = f(2, 1) 13 = = f(3, 1) 19 = = f(3, 2) 31 = = f(5, 1) 37 = = f(4, 3) 43 = = f(6, 1) 61 = = f(5, 4) 67 = = f(7, 2) 73 = = f(8, 1) 79 = = f(7, 3) 97 = = f(8, 3) D = 4 p40 h + ( 4) = 1 4 f(x, y) = x 2 + y 2

64 6 62 p 4 62 m 2 4 (mod 4p), 0 m < 2p m m m = 2m 0 m (mod p), 0 m 0 < p m 0 m = 2m 0 m 2 4 (mod 4p), 0 m < 2p 4 p x 2 1 (mod p) ( ) 1, = 1 p 1 (mod 4) p 100 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97 f(x, y) = x 2 + y 2 5 = = f(1, 2) 13 = = f(2, 3) 17 = = f(1, 4) 29 = = f(2, 5) 37 = = f(1, 6) 41 = = f(4, 5) 53 = = f(2, 7) 61 = = f(5, 6) 73 = = f(3, 8) 89 = = f(5, 8) 97 = = f(4, 9) D = 20 p40 h + ( 20) = 2 20 f 1 (x, y) = x 2 + 5y 2, f 2 (x, y) = 2x 2 + 2xy + 3y 2

65 6 63, 1 f 1, f 2 f 1 f 2 p 20 m 2 20 (mod 4p), 0 m < 2p m m m = 2m 0 m (mod p), 0 m 0 < p m 0 m = 2m 0 m 2 20 (mod 4p), 0 m < 2p 20 p p = 5 p 1, 3, 7, 9 (mod 20) 100 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89 f 1, f 2 ( p f 1 (x, y) = x 2 + 5y 2 = p x 2 p (mod 5) p = 5 = 1 5) p = 5 p 1, 9 (mod 20) f 2 (x, y) = 2x 2 + 2xy + 3y 2 = p f 2 (x, y) 5 p 5 4x 2 + 4xy + ( 6y 2 ) = 2p (2x ( + y) ) 2 + 5y 2 = 2p, (2x + y) 2 2p (mod 5) 2p 2 ( p = 1 = 1 = ) p 3, 7 (mod 20)

66 f 1 (x, y) f 2 (x, y) f 1 (x, y) = x 2 + 5y 2 f 2 (x, y) = 2x 2 + 2xy + 3y 2 5 = = f 1 (0, 1) 3 = ( 1) + 3 ( 1) 2 = f 2 (1, 1) 29 = = f 1 (3, 2) 7 = = f 2 (1, 1) 41 = = f 1 (6, 1) 23 = ( 3) + 3 ( 3) 2 = f 2 (2, 3) 61 = = f 1 (4, 3) 43 = ( 1) + 3 ( 1) 2 = f 2 (5, 1) 89 = = f 1 (3, 4) 47 = ( 3) + 3 ( 3) 2 = f 2 (5, 3) 67 = ( 5) + 3 ( 5) 2 = f 2 (1, 5) 83 = ( 3) + 3 ( 3) 2 = f 2 (7, 3) D = 24 p40 h + ( 24) = 2 20 f 1 (x, y) = x 2 + 6y 2, f 2 (x, y) = 2x 2 + 3y 2, 1 f 1, f 2 f 1 f 2 p 24 f(x, y) m 2 24 (mod 4p), 0 m < 2p m m m = 2m 0 m (mod p), 0 m 0 < p m 0 m = 2m 0 m 2 24 (mod 4p), 0 m < 2p 24 p p = 3 ( ) 6 = 1 p

67 6 65, p = 3 p 1, 5, 7, 11 (mod 24) , 5, 7, 11, 29, 31, 53, 59, 73, 79, 83, 97 f 1, f 2 f 1 (x, y) = x 2 + 6y 2 = p p 3 x 2 p (mod 3), ( p = 1 p 1, 7 (mod 24) 3) f 2 (x, y) = 2x 2 + 3y 2 = p 2x 2 p (mod 3) p = 3 ( ( ) p 2x 2 = = 3) 3 ( ) 2 = 1 3 p = 3 p 5, 11 (mod 24) 100 f 1 (x, y) f 2 (x, y) f 1 (x, y) = x 2 + 6y 2 f 2 (x, y) = 2x 2 + 3y 2 7 = = f 1 (1, 1) 3 = = f 2 (0, 1) 31 = = f 1 (5, 1) 5 = = f 2 (1, 1) 73 = = f 1 (7, 2) 11 = = f 2 (2, 1) 79 = = f 1 (5, 3) 29 = = f 2 (1, 3) 97 = = f 1 (1, 4) 53 = = f 2 (5, 1) 59 = = f 2 (4, 3) 83 = = f 2 (2, 5) D = 5 p56 h(5) = h + (5) = 1, f(x, y) = x 2 xy y 2 p 5 m 2 5 (mod 4p), 0 m < 2p

68 6 66 m x 2 5 (mod p) 0 x < p α 2 5 (mod p), 0 α < p α α α + p m m 2 5 (mod 4p), 0 m < 2p 5 p = 5 p 1, 4 (mod 5) 100 5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89 f(x, y) = x 2 xy y 2 5 = ( 1) ( 1) 2 = f(2, 1) 11 = ( 1) ( 1) 2 = f(3, 1) 19 = = f(5, 1) 29 = ( 1) ( 1) 2 = f(5, 1) 31 = ( 2) ( 2) 2 = f(5, 2) 41 = ( 1) ( 1) 2 = f(6, 1) 59 = ( 2) ( 2) 2 = f(7, 2) 61 = ( 3) ( 3) 2 = f(7, 3) 71 = = f(9, 1) 79 = ( 3) 3 2 = f(8, 3) 89 = = f(10, 1) D = 12 p56 h(12) = 1, h + (12) = 2, f 1 (x, y) = 2x 2 2xy y 2, f 2 (x, y) = x 2 2xy 2y 2 p 12 m 2 12 (mod 4p), 0 m < 2p

69 6 67 m m, m = 2m 0 m 0 m (mod p), 0 m 0 < p m 0 m = 2m 0 m 2 12 (mod 4p), 0 m < 2p 12 p x 2 3 (mod p), p = 3 p 1, 11 (mod 12) 100 3, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97 f 1, f 2 f 1 (x, y) = 2x 2 2xy y 2 = p 4x 2 4xy 2y 2 = 2p (2x y) ( ) 2 3y 2 = 2p 2p (2x y) 2 2p (mod 3) p = 3 = 1 ( ) ( ) 3 2p 2 ( p = 1 = 1 = ) p = 3 p 2 (mod 3) f 2 (x, y) = x 2 2xy 2y 2 = p 3 f 2 ( ) p 3 (x y) 2 3y 2 = p (x y) 2 p (mod 3) p 1 (mod 3) 100 f 1 (x, y) f 2 (x, y) f 1 (x, y) = 2x 2 2xy y 2 f 2 (x, y) = x 2 2xy 2y 2 3 = = f 1 (2, 1) 13 = = f 2 (5, 1) 11 = ( 1) ( 1) 2 = f 1 (2, 1) 37 = ( 3) 2( 3) 2 = f 2 (5, 3) 23 = ( 1) ( 1) 2 = f 1 (3, 1) 61 = ( 1) 2( 1) 2 = f 2 (7, 1) 47 = ( 3) ( 3) 2 = f 1 (4, 3) 73 = ( 3) 2( 3) 2 = f 2 (7, 3) 59 = ( 1) ( 1) 2 = f 1 (5, 1) 97 = ( 1) 2( 1) 2 = f 2 (9, 1) 71 = ( 3) ( 3) 2 = f 1 (5, 3) 83 = = f 1 (7, 1)

70 6 68 D = 20 p56 h(20) = h + (20) = 2, f 1 (x, y) = 2x 2 2xy 2y 2, f 2 (x, y) = x 2 4xy y 2 p 20 m 2 20 (mod 4p), 0 m < 2p m m m = 2m 0 m (mod p), 0 m < p m 0 m = 2m 0 m 2 20 (mod 4p), 0 m < 2p 20 p x 2 5 (mod p), p = 5 p 1, 4 (mod 5) 100 5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89 f 1 (x, y) = 2x 2 2xy 2y 2, f 2 (x, y) = x 2 4xy y 2

71 f 2 (x, y) 5 = = f 2 (9, 2) 11 = = f 2 (6, 1) 19 = ( 3) ( 3) 2 = f 2 (2, 3) 29 = ( 2) ( 2) 2 = f 2 (3, 2) 31 = ( 1) ( 1) 2 = f 2 (4, 1) 41 = ( 4) ( 4) 2 = f 2 (3, 4) 59 = ( 1) ( 1) 2 = f 2 (6, 1) 61 = ( 2) ( 2) 2 = f 2 (5, 2) 71 = ( 5) ( 5) 2 = f 2 (4, 5) 79 = ( 7) ( 7) 2 = f 2 (4, 7) 89 = ( 4) ( 4) 2 = f 2 (5, 4)

72 References 1,, ,,, , 2,, ,, H MStark, (, ),,, W J LeVeque, Fundamentals of Number Theory, Dover,

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

, n

, n 008 11 19 1 , 1-1.. 3. 4. 5. 6. 7. n 8. 9. 10. 11. 1. 13. 14. 15. 16. 17. 1 5 1.1....................................... 5 1........................................ 7 1.3.........................................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

0 S S 1 P MSM0 MSM0 MSM0 3 MSM03 0 MSM00 0 MSM0 MSM BP MSB0 MSB0 MSB0 MSB03 MSB00 MSB0 MSB FFPFB MSF0 MSF0 MSF0 MSF03 MSF00 MSF0 MSF C MSC0 MSC0 MSC0

0 S S 1 P MSM0 MSM0 MSM0 3 MSM03 0 MSM00 0 MSM0 MSM BP MSB0 MSB0 MSB0 MSB03 MSB00 MSB0 MSB FFPFB MSF0 MSF0 MSF0 MSF03 MSF00 MSF0 MSF C MSC0 MSC0 MSC0 S S 3 0 0 0 3 0.01MPa 1.MPa 0s 0 JIS /g 1.0 0 SMBFFBCCBTTB SPMPPFPTP TTPTBCB 1 T1S YF F 0 0 0 0 0 M SSP MP 0 3..3. 3. 0.3 0.. 1 B P 0 10 3 0 0 F FP 3 0 3 FB 3 0 3 C 0 CB 1 T TP 1 3 TB 0 0 0 1 3 1 0 0 0

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM LCM,GCD 2017 4 21 LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM(a, b) = m 1 + m 2 CM(a, b), qm 1 CM(a, b) m 1, m 2

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

[] Tle () i ( ) e . () [].....[], ..i.et.. N Z, I Q R C N Z Q R C R i R {,,} N A B X N Z Q R,, c,,, c, A, B, C, L, y, z,, X, L pq p q def f () lim f ( ) f ( ) ( ), p p q r q r p q r p q r c c,, f ( )

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2016

2016 2016 1 G x x G d G (x) 1 ( ) G d G (x) = 2 E(G). x V (G) 2 ( ) 1.1 1: n m on-off ( 1 ) off on 1: on-off ( on ) G v v N(v) on-off G S V (G) N(v) S { 3 G v S v S G G = 1 OK ( ) G 2 3.1 u S u u u 1 G u S

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information