共通鍵ブロック暗号CLEFIAの安全性評価報告書

Size: px
Start display at page:

Download "共通鍵ブロック暗号CLEFIAの安全性評価報告書"

Transcription

1 CLEFIA

2 CLEFIA 2007 SONY [5] /192/256 4 Type-2 Feistel ,256 22,26 CLEFIA [1] [12] CLEFIA 2 S-box S 0,S 1 ) CLEFIA 2 truncate S 0,S 1 truncate Viterbi DSM(Difffusion Switching Mechanism) active S-box truncate 2 S-box DSM Viterbi 1 128,192, , , , , ,2 192, ,16,20 CLEFIA truncate 2 S-box S 0,S 1 ) truncate S 0,S 1 Viterbi truncate 2 S-box DSM Viterbi 128,192, , , [13] DSM truncate [13] DSM 1

3 , , ,2 192, ,16,21 CLEFIA CLEFIA , , , 2 155,2 220 CLEFIA S-box (=128 ) 1 (=32 ) 2 (=64 ) 1 SP Feistel m n XOR m 2n [8] CLEFIA CLEFIA ,256 11, , ,2 223 CLEFIA S-box (S 0,S 1 ) S 0 6 S 1 7 F i F i F i F i 3 6 7) 2 F i S-box GF (2 8 ) 2

4 128 4 Type2 Feistel Type2 Feistel 10 truncate ,192, CLEFIA 128 3

5 1 6 2 CLEFIA CLEFIA truncate active Sbox CLEFIA Sbox F i CLEFIA truncate truncate CLEFIA Sbox F i CLEFIA truncate CLEFIA XOR F CLEFIA

6 CLEFIA CLEFIA CLEFIA XOR (m, n) (6.16) F i S-box S 0 S F i F i F i S box F i S-box S 0 S 1 GF(2 8 ) GF N 8,10 DCP GF N 8,10 DCP GF N 8,10 DCP GF N 8, A : 70 5

7 1 CLEFIA SONY FSE CRYPTREC CLEFIA CLEFIA CLEFIA CLEFIA 6

8 2 CLEFIA CLEFIA 4-way Feistel 4( 8)-way Feistel CLEFIA CLEFIA CLEFIA 4 Feistel 1 F 0 F 1 2 F CLEFIA 128bit X (0) 0 X (0) 1 X (0) 2 X (0) 3 32bit 2r RK 0,, RK 2r 1 4 WK 0,, WK 3 128bit r bit F 2.2 F 0 F F 0 F 1 S 0 S 1 8 S-box 2 M 0 M 1 0x01 0x02 0x04 0x06 M 0 = 0x02 0x01 0x06 0x04 0x04 0x06 0x01 0x02, (2.1) 0x06 0x04 0x02 0x01 0x01 0x08 0x02 0x0a M 1 = 0x08 0x01 0x0a 0x02 0x02 0x0a 0x01 0x08. (2.2) 0x0a 0x02 0x08 0x01 M 0 M 1 5 DSM Diffusion Swiching Mechanism) S-box (M 0 M 1 ) 5 z 8 + z 4 + z 3 + z GF(2 8 ) 2.2 L CLEFIA 128bit r ,256bit 8 Feistel L bit r bit GF N 8,10 WK i (0 i < 4) 7

9 2.1: CLEFIA 2.2: F 0, F 1 8

10 RK j (0 j < 2r) K L 2.3: GF N 8,10 9

11 3 CLEFIA [1] CLEFIA (DSM) CLEFIA 2 S-box 2 128,192,256bit CLEFIA , , , , [14] f(x) x y DP f n x DP f ( x, y) = {x {0, 1}n f(x) f(x x) = y} 2 n (3.1) f(x) DP max DP max = max DP f ( x, y) (3.2) x 0, y f(x) R i x i x i+1 DCP max DCP max = R 1 max x 0 0 x 1,, x i=0 R DP fi ( x i, x i+1 ) (3.3) x0 x1 xr 10

12 3.1.3 truncate truncate truncate DCP T max bit 1bit active Sbox bit 8bit truncate,4 4 = ( 0, 1, 2, 3 ) (3.4) ( 3.1) ( 3.2) active = ( 0, 1, 2, 3) (3.5) = ( 0, 1, 2, 3) (3.6) truncate i = i i (3.7) truncate : truncate or1 Δ Δ Δ 3.1: Δ Δ Δ Δ Δ 0 Δ 0 Δ 3.2: 11

13 3.1.4 active Sbox Sbox active Sbox active Sbox t active Sbox as (t) active Sbox AS(=Σas (t) ) AS AS min 3.2 CLEFIA CLEFIA 8bit truncate Sbox 2 Sbox S 0, S 1 S 0 : DP max = (3.8) S 1 : DP max = (3.9) S 0, S 1 DP max 3.2, : S 0 : DP max x 0x97 0xE2 0xE3 0x32 0xC6 0xF3 0x8 y 0xA 0xD 0x1E 0x20 0x30 0x7D 0x7E 3.3: S 1 : DP max x 0xA6 0xBE 0xEA 0xA2 0xFB 0xA9 0x2 y 0x14 0x1 0x13 0x2 0x3 0xFF 0xE F i F i truncate DP F T max 2 Sbox (S 0 : DP = , S 1 : DP = ) S 0 DP = , 3.5 DP F T max ( ) AS 0 ( ) AS 0 ( ) AS 1 (AS 0, AS 0, AS 1 ) (2 4.67, , ) active Sbox F 0 ( )=0xB,( )=0x3 DP F T max (AS 0 = 2, AS 1 = 1) DP F T max (AS 0 = 1, AS 0 = 1, AS 1 = 1) (log 2 DP F T max ) 12

14 3.4: F0 [log2] 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x x x x x x x x x x xA xB xC xD xE xF : F1 [log2] 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x x x x x x x x x x xA xB xC xD xE xF

15 3.2.3 CLEFIA truncate Sbox DCP T max F i CLEFIA Viterbi Viterbi DCP T max 3.3 F 8 truncate X i X i active D i X i 4 D i (0 D i 4) 2 st(0) = ( X 0, X 1, X 2, X 3 ) (3.10) 0 t = 1 st(1) = ( X 2, X 3, X 4, X 5, D 0, D 1 ) (3.11) st(0) st(1) truncate D 0 D 1 DSM t = 2 st(2) = ( X 4, X 5, X 6, X 7, D 0, D 1, D 2, D 3 ) (3.12) D 2 D 3 DSM t 2 st(t) = ( X 2t, X 2t+1, X 2t+2, X 2t+3, (3.13) D 2t 4, D 2t 3, D 2t 2, D 2t 1 ) M(DSM) CLEFIA MDS viterbi M 0, M 1 M 0, M 1 (M 0 ), (M 1 ), (M 0 M 1 ) 5 (M 0 M 1 ) (M 0 ) (M 1 ) [1], p.24, 2.2 2,3 14

16 X 0 X1 F 0 F 1 X 2 X3 F 0 F 1 X 4 X 5 F 1 F 0 X 6 X 7 F 1 F 0 X 8 X 9 F 0 F 1 4 bit 3.3: 1 t = 2a 1(a 1) D 2t+2 + D 2t+1 + D 2t 2 5 (D 2t+1 0) D 2t+3 + D 2t + D 2t 1 5 (D 2t 0) t = 2a(a 1) D 2t+2 + D 2t + D 2t 2 5 (D 2t 0) D 2t+3 + D 2t+1 + D 2t 1 5 (D 2t+1 0) 2 t = 2a 1(a 2) D 2t+2 + D 2t+1 + D 2t 3 + D 2t 6 5 (D 2t+1 + D 2t 3 0) D 2t+3 + D 2t + D 2t 4 + D 2t 5 5 (D 2t + D 2t 4 0) t = 2a(a 2) D 2t+2 + D 2t + D 2t 4 + D 2t 6 5 (D 2t + D 2t 4 0) D 2t+3 + D 2t+1 + D 2t 3 + D 2t 5 5 (D 2t+1 + D 2t 3 0) 1 F F st(t) st(t + 1) st(t) truncate X 2t, X 2t+1, X 2t+2, X 2t DP F T max 3.1, st(5) = ( X 10, X 11, X 12, X 13, D 6, D 7, D 8, D 9 ) =(0xB,0x7,0x1,0xA,0x0,0x4,0x2,0x1) X 14 ( X 14 = F ( X 12 ) X 10 ) F ( X 12 ) F (0x4, 0x5, 0x6, 0x7, 0xC, 0xD, 0xE, 0xF) 8 2 (3.14) (0x5,0x6,0x7,0xC,0xD,0xE,0xF) 7 D 14 (D 12 + D 8 + D 6 ) = 2 (3.14) 15

17 3.6: DCP T max [log 2 ] r AS min bit CLEFIA DCP 18round T max = bit CLEFIA DCPT 22round max = bit CLEFIA DCPT 26round max = AS min log 2 (DCP T max ) S 0 DCP T max S 0 S 1 DCP T max active Sbox AS min Sbox CLEFIA 2 Sbox DSM Viterbi truncate truncate 1 Sbox 2 Sbox CLEFIA 16

18 3.7: 18 t F 1 ( X 0 X 1 ) = 0x01 2 ( X 2 X 3 ) = 0x00 3 ( X 4 X 5) = 0x01 4 ( X 6 X 7) = 0x0f 5 ( X 8 X 9) = 0xb1 6 ( X 10 X 11 ) = 0x67 7 ( X 12 X 13 ) = 0x0b 8 ( X 14 X 15 ) = 0x60 9 ( X 16 X 17 ) = 0x00 10 ( X 18 X 19 ) = 0x60 11 ( X 20 X 21 ) = 0x0b 12 ( X 22 X 23) = 0x6a 13 ( X 24 X 25) = 0xb5 14 ( X 26 X 27) = 0x07 15 ( X 28 X 29 ) = 0x05 16 ( X 30 X 31 ) = 0x00 17 ( X 32 X 33 ) = 0x05 18 ( X 34 X 35 ) = 0x07 17

19 4 CLEFIA S-box active S-box CLEFIA (DSM) CLEFIA 2 Sbox 4.1 n bit f(x) Γ x Γ y f(x) LP (Γ x, Γ y ) LP (Γ x, Γ y ) = (2 #{x {0, 1}n x Γ x = y Γ y } 2 n 1) 2 (4.1) # (x Γ x = y Γ y ) GF(2) LP max LP max LP max = max LP (Γx, Γy) (4.2) Γx,Γy 0 (4.2) f(x) R i Γ xi Γ xi+1 LCP max LP (Γ xi, Γ xi+1 ) LCP max = max Γ x0,γ x1,,γ xr Γ xi 0 R 1 i=0 LP (Γ xi, Γ xi+1 ) (4.3) Γ x0 Γ x1 Γ x2 Γ xr 18

20 4.2 truncate truncate bit 1bit 1bit 1 active 0 non-acive passive Sbox bit 8bit truncate 1 (4 ) 4 Γ Γ = (Γ 0, Γ 1, Γ 2, Γ 3 ), Γ i GF(2). (4.4) active Γ Γ 4.1 Γ Γ Γ 4.1 truncate Γ i XOR Γ = Γ Γ (4.5) Sbox Sbox active Sbox active Sbox Γ Γ' Γ Γ Γ 0 0 Γ Γ' ' 0 Γ Γ 4.1: Γ Γ Γ 4.2: 4.1: truncate XOR or1 4.3 CLEFIA Sbox CLEFIA S-box S 0 S 1 (4.2) S 0 LP max = S 1 LP max =

21 LP max = , LP S1 max = S 0 LP max (Γ x, Γ y ) S 1 LP max (Γ x, Γ y ) : S 0 (Γ x, Γ y ) (0x1,0xdd) (0x2,0x7c) (0x3,0x6a) (0x3,0xe6) (0x7,0x7f) (0xb,0xe7) (0x1c,0xac) (0x1d,0x80) (0x2a,0x7d) (0x2b,0xec) (0x35,0x6) (0x35,0x6c) (0x3e,0xa0) (0x40,0xd1) (0x49,0x6f) (0x4b,0xfe) (0x53,0x90) (0x54,0x49) (0x5c,0x7a) (0x5f,0xc1) (0x69,0xe2) (0x6d,0xa2) (0x75,0x9) (0x79,0xe0) (0x7f,0x2b) (0x81,0x59) (0x85,0x11) (0x8c,0xd2) (0x95,0x20) (0x9d,0xa8) (0xa1,0x90) (0xa8,0xc7) (0xa8,0xf1) (0xb4,0xc0) (0xb9,0x23) (0xc0,0x39) (0xc3,0x16) (0xc4,0xbe) (0xc9,0x50) (0xd8,0x31) (0xdd,0x2c) (0xe5,0x68) (0xe6,0x6e) (0xed,0x30) (0xee,0x5) (0xee,0x19) (0xef,0x55) (0xf5,0x38) (0xf7,0x66) (0xf7,0xb0) (0xfc,0x5f) (0xff,0x22) 4.3: S 1 (Γ x, Γ y ) (0x1,0x1) (0x1,0x10) (0x1,0x11) (0x1,0x88) (0x1,0x98) (0x2,0x3) (0x2,0x10) (0x2,0x13) (0x2,0x88) (0x2,0x9b) (0x3,0x2) (0x3,0x10) (0x3,0x8a) (0x3,0x98) (0x3,0x9a) (0x4,0xc) (0x4,0x42) (0x4,0x4e) (0x4,0xa0) (0x4,0xee) (0x5,0xd) (0x5,0x47) (0x5,0x4a) (0x5,0x64) (0x5,0x69) (0x6,0x9) (0x6,0x62) (0x6,0xb5) (0x6,0xbc) (0x6,0xde) (0x7,0x29) (0x7,0x30) (0x7,0xc9) (0x7,0xe0) (0x7,0xf9) (0x8,0x5c) (0x8,0x85) (0x8,0xa1) (0x8,0xd9) (0x8,0xfd) (0x9,0x44) (0x9,0x77) (0x9,0x84) (0x9,0xc0) (0x9,0xf3) (0xa,0x18) (0xa,0x2c) (0xa,0x34) (0xa,0xdd) (0xa,0xe9) (0xb,0x20) (0xb,0x28) (0xb,0x52) (0xb,0x72) (0xb,0x7a) (0xc,0x2) (0xc,0x10) (0xc,0x11) (0xc,0x12) (0xc,0x13) (0xd,0x1) (0xd,0x10) (0xd,0x8b) F i Sbox F i 4.4, 4.5 log 2 LP F max 0x03, 0x07 F i

22 F i S-box 21

23 4.4: F0 [log2] 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x x x x x x x x x x xA xB xC xD xE xF : F1 [log2] 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x x x x x x x x x x xA xB xC xD xE xF

24 4.3.3 CLEFIA truncate Sbox LCP T max F i truncate CLEFIA Viterbi Viterbi DCP T max 4.3 F 8 truncate Γx i,γy i Γx i active L i Γx i,γy i 4 L i 0 L i 4 2 st(0) = (Γy 0, Γy 1, Γy 2, Γy 3 ) (4.6) 0 t=1 st(1) = (L 0, L 1, L 2, L 3, Γy 2, Γy 3, Γy 4, Γy 5 ) (4.7) st(0) st(1) 4.2 truncate L 0, L 1, L 2, L 3 DSM t 1 st(t) = (L 2t 2, L 2t 1, L 2t, L 2t+1, Γy 2t, Γy 2t+1, Γy 2t+2, Γy 2t+3 ) (4.8) M 0, M 1 (DSM) CLEFIA 2 DSM Viterbi M 0, M 1 M 0, M 1 ( t M0 1 ),(t M1 1 ), ( t M0 1 t M1 1 ) (t M0 1 )=(M 0), ( t M1 1 )=(M 1),( t M0 1 t M1 1 )= (M 0 M 1 ) 5 ( t M0 1 t M1 1 ) (M 0 M 1 ) ( t M0 1 ) ( t M1 1 ),(M 0) (M 1 )

25 4.3: t = 2a 1(a 1) { = 0 L 2t 2 + L 2t + L 2t+2 5 { = 0 L 2t 1 + L 2t+1 + L 2t+3 5 t = 2a(a 1) { = 0 L 2t 2 + L 2t+1 + L 2t+2 5 { = 0 L 2t 1 + L 2t + L 2t+3 5 (4.9) (4.10) (4.11) (4.12) 4.1, bit CLEFIA LCPT 18round max = bitCLEFIA LCPT 22round max = bitCLEFIA LCPT 26round max = AS log 2 (LCP T max ) S 0 LCP T max S 0, S 1 LCP T max 2 active Sbox S 0 S 1 AS 0,AS 1,AS 4.7,4.8, 4.9,

26 4.6: active Sbox LCP T max ( AS AS AS 0 AS 1 LCP T max LCP T max CLEFIA 2 Sbox DSM 8bit truncate Viterbi truncate truncate 1 Sbox 2 Sbox CLEFIA 25

27 4.7: 12 t F 1 (Γy 0 Γy 1 )=0x07 2 (Γy 2 Γy 3 )=0x00 3 (Γy 4 Γy 5 )=0x07 4 (Γy 6 Γy 7 )=0xb0 5 (Γy 8 Γy 9 )=0x57 6 (Γy 10 Γy 11 )=0xfb 7 (Γy 12 Γy 13)=0x77 8 (Γy 14 Γy 15)=0x5f 9 (Γy 16 Γy 17)=0x0f 10 (Γy 18 Γy 19 )=0x0f 11 (Γy 20 Γy 21 )=0x00 12 (Γy 22 Γy 23 )=0x0f 4.8: 18 t F 1 (Γy 0 Γy 1)=0xb0 2 (Γy 2 Γy 3 )=0x00 3 (Γy 4 Γy 5 )=0xb0 4 (Γy 6 Γy 7 )=0x07 5 (Γy 8 Γy 9 )=0xba 6 (Γy 10 Γy 11 )=0x7f 7 (Γy 12 Γy 13 )=0xba 8 (Γy 14 Γy 15)=0x0b 9 (Γy 16 Γy 17)=0xb0 10 (Γy 18 Γy 19)=0x00 11 (Γy 20 Γy 21 )=0xb0 12 (Γy 22 Γy 23 )=0x07 13 (Γy 24 Γy 25 )=0xbb 14 (Γy 26 Γy 27 )=0x3f 15 (Γy 28 Γy 29 )=0x0f 16 (Γy 30 Γy 31 )=0x0f 17 (Γy 32 Γy 33)=0x00 18 (Γy 34 Γy 35)=0x0f 26

28 4.9: 22 t F 1 (Γy 0 Γy 1 )=0xb0 2 (Γy 2 Γy 3)=0x00 3 (Γy 4 Γy 5)=0xb0 4 (Γy 6 Γy 7)=0x07 5 (Γy 8 Γy 9 )=0xba 6 (Γy 10 Γy 11 )=0x7f 7 (Γy 12 Γy 13 )=0xbb 8 (Γy 14 Γy 15 )=0xfb 9 (Γy 16 Γy 17 )=0xab 10 (Γy 18 Γy 19 )=0xb0 11 (Γy 20 Γy 21)=0x0b 12 (Γy 22 Γy 23)=0x00 13 (Γy 24 Γy 25)=0x0b 14 (Γy 26 Γy 27)=0x70 15 (Γy 28 Γy 29 )=0xab 16 (Γy 30 Γy 31 )=0xf7 17 (Γy 32 Γy 33 )=0xbb 18 (Γy 34 Γy 35 )=0xaf 19 (Γy 36 Γy 37 )=0x0f 20 (Γy 38 Γy 39)=0x0f 21 (Γy 40 Γy 41)=0x00 22 (Γy 42 Γy 43)=0x0f 4.10: 26 t F 1 (Γy 0 Γy 1 )=0xf0 2 (Γy 2 Γy 3)=0x00 3 (Γy 4 Γy 5)=0xf0 4 (Γy 6 Γy 7)=0x0f 5 (Γy 8 Γy 9 )=0xfa 6 (Γy 10 Γy 11 )=0x77 7 (Γy 12 Γy 13 )=0x7f 8 (Γy 14 Γy 15 )=0x57 9 (Γy 16 Γy 17 )=0x07 10 (Γy 18 Γy 19 )=0x07 11 (Γy 20 Γy 21)=0x00 12 (Γy 22 Γy 23)=0x07 13 (Γy 24 Γy 25)=0x0e 14 (Γy 26 Γy 27 )=0x37 15 (Γy 28 Γy 29 )=0xbb 16 (Γy 30 Γy 31 )=0x0a 17 (Γy 32 Γy 33 )=0xb0 18 (Γy 34 Γy 35 )=0x00 19 (Γy 36 Γy 37 )=0xb0 20 (Γy 38 Γy 39)=0x07 21 (Γy 40 Γy 41)=0xbb 22 (Γy 42 Γy 43)=0x3f 23 (Γy 44 Γy 45)=0x0f 24 (Γy 46 Γy 47 )=0x0f 25 (Γy 48 Γy 49 )=0x00 26 (Γy 50 Γy 51 )=0x0f 27

29 5 CLEFIA CLEFIA [6] , , ,2 220 CLEFIA Feistel [7] Feistel F 5 Feistel HIGHT HIGHT CLEFIA F XOR ( ) XOR F F : Zero 0 Fix 0 Delta 0 (Zero ) Random (Zero ) Z F D R 28

30 XOR F 5.2 XOR x y = z x Z y D z D CLEFIA F S-box MDS F 1 F x y = F( x) 5.2 F x F y D 5.2: XOR F XOR y F Z F D R Z Z F D R Z x F F Z R R D D D R R R D R R R R R R F MDS : Zero 0 Fix 0 Delta 0 (Delta Fix) Delta2 0 (Delta2 = Fix Delta) Delta3 0 Random (Zero ) Delta2 Delta3 D2 D3 XOR F : XOR F x XOR y Z F D D2 D3 R F Z Z F D D2 D3 R Z F F Z D2 D R R D D D D2 R R R R D3 D2 D2 D R R R R D3 D3 D3 R R R R R D3 R R R R R R R R

31 [6] : Zero 0 Fix 0 Delta 0 (Delta Fix) Delta2 0 (Delta2 = Fix Delta) Delta3 0 (Delta3 = Delta Delta) Delta4 0 (Delta4 = Delta Delta2) Delta5 0 Random (Zero ) Delta4 Delta5 D4 D5 XOR F : XOR F XOR y F Z F D D2 D3 D4 D5 R x Z Z F D D2 D3 D4 D5 R Z F F Z D2 D R R R R D D D D2 D3 D4 R R R R D5 D2 D2 D D4 R R R R R D5 D3 D3 R R R R R R R D5 D4 D4 R R R R R R R D5 D5 D5 R R R R R R R D5 R R R R R R R R R R ( ) ( ) 2 F k Feistel α=(α 0, α 1,, α k 1 ) α a=(a 0, a 1,, a k 1 ) α r α (r) =(α (r) 0, α(r) 1,, α(r) k 1 ) α(r) a (r) =(a (r) 0, a(r) 1,, a (r) k 1 ) a i a (r) i (0 i k 1) α, α i, α (r), α (r) i, a, a i, a (r), a (r) i β, β i, β (r), β (r) i, b, b i, b (r), b (r) i 30

32 r e a (re) =(a (r e) 0, a (r e) 1, a (r e) 2, a (r e) 3 ) r d b (rd) =(b (r d) 0, b (r d) 1, b (r d) 2, b (r d) 3 ) ( ) b (r d) 0 = a (r e) 1 F 0 a (r e) 0 (5.1) b (r d) 1 = a (re) 2 (5.2) ( ) b (r d) 2 = a (r e) 3 F 1 a (r e) 2 (5.3) b (r d) 3 = a (re) 0 (5.4) (5.2) (5.4) (5.1) (5.3) ( ) a (re) 1 = b (r d) 0 F 0 b (r d) 3, (5.5) a (r e) 3 = b (r d) 2 F 1 ( b (r d) 1 ). (5.6) (5.1) (5.5) (5.3) (5.6) a (re) 1 = b (r d) 0 {Z, F } a (re) 3 = b (r d) 2 {Z, F } XOR F F 0 ( F 1 ( a (re) 0 a (r e) 2 ) = F 0 ( ) = F 1 ( b (r d) 3 b (r d) 1 ) = Z, (5.7) ) = Z, (5.8) a (re) 0 b (r d) 3 a (re) 2 b (r d) 1 Z (5.7) (5.8) (r e + r d + 1) 0 0 r e a (re) =(a (r e) 0, a (r e) 1, a (r e) 2, a (r e) 3 ) r d b (rd) =(b (r d) 0, b (r d) 1, b (r d) 2, b (r d) 3 ) (a (re) i )(0 i 3) 1 (r e + r d ) b (r d) i Step1 a=(a 0, a 1, a 2, a 3 ) { (Z, Z, Z, F), (Z, Z, F, Z),, (F, F, F, F)} XOR F Step2 b=(b 0, b 1, b 2,b 3 ) { (Z, Z, Z, F), (Z, Z, F, Z),, (F, F, F, F)} XOR F Step3 31

33 5.2 CLEFIA F CLEFIA (Z, Z, Z, F) (Z, Z, Z, F) (Z, F, Z, Z) (Z, F, Z, Z) 9 (Z, Z, Z, F) (Z, Z, Z, F) F MDS 5.1: 9 (Z, Z, Z, F) (Z, Z, Z, F) (Z, F, Z, Z) (Z, F, Z, Z) CLEFIA 32

34 6 CLEFIA ( ) 10, 11,12 CLEFIA [15] n ( m bit) XOR ( ) (m, n) (m, n) [16] CLEFIA 33

35 6.1 CLEFIA CLEFIA bit 10 CLEFIA bit CLEFIA Daemen SQUARE [9] AES [10] X GF(2) n K GF(2) s Y GF(2) m Y = E(X; K) E(X; K) X i (i) V (i) E(X; K) = α V (i) E(X α; K) (6.1) V (i) GF(2) n i V (i) α (i) V (i) (i) 1 E(X; K) X N { (N) E(X; K) = const (6.2) (N+1) E(X; K) = 0 const X i {0, 1} j (0 i < 2 j ) 2 j j X i Y i X i 5 Constant : i 0, i 1 ; X i0 = X i1 All : i 0, i 1 ; i 0 i 1 X i0 X i1 Even/odd : i 0, i 1 ; Y i0 = Y i1 (mod 2) Balance : X i = 0 Unknown : i Constant C All A Even/odd E Balance B Unknown U 34

36 2 E : GF(2) n GF(2) s GF(2) n Y GF(2) n C A E B n 0 R E R X GF(2) n (R 1) Y (R 1) (X) GF(2) m Y (R 1) (X) = E (R 1) (X; K 1, K 2,, K (R 1) ) (6.3) K i GF(2) s i C GF(2) n R K R Y (R 1) Ẽ( ) : GF(2)n GF(2) s GF(2) m Y (R 1) (X) = Ẽ(C(X); K R) (6.4) E (R 1) ( ) 1 2 (N) Y (R 1) (X) = 0 (6.5) (6.4) (6.5) Ẽ(C(X α); K R ) = 0 (6.6) a V (N) (6.6) (6.6) K R 1 2 m K R CLEFIA [12] 6 [11] 8 ( C, A, C, C ) 6r ( B, U, U, U ), ( C, C, C, A ) 6r ( U, U, B, U ), ( A 0, C, A 1, A 2 ) 8r ( B, U, U, U ), ( A 0, A 1, A 2, C ) 8r ( U, U, B, U ). A 0 A 1 A 2 All 96bit F SP m 2n 4 Type-2 Feistel 6 8 [8] m S-box n S-box ( C, A, C, C ) 6r ( B, U, B, U ), ( C, C, C, A ) 6r ( B, U, B, U ), ( A 0, A 1, C, A 2 ) 8r ( B, U, B, U ), ( C, A 0, A 1, A 2 ) 8r ( B, U, B, U ). 35

37 CLEFIA 4 Type-2 Feistel 1 F F SP CLEFIA 6 Type-2 Feistel CLEFIA 128bit X 4 X i GF(2) 32 (1 i 4) 1 8bit 4 X ij GF(2) 8 (1 j 4) X = (X 1, X 2, X 3, X 4 ), X i = (X i1, X i2, X i3, X i4 ) GF N 8, CLEFIA (d 1) ( (C C C C) (A C C C) (C C C C) (C C C C) ) 5r ( (U U U U) (U U U U) (B B B B) (U U U U) ) (d 2) ( (C C C C) (C C C C) (C C C C) (A C C C) ) 5r ( (B B B B) (U U U U) (U U U U) (U U U U) ) (A C C C) (C A C C), (C C A C) (C C C A) CLEFIA (d 1) (d 2) 8 5 (d 3) ( (C C C C) (A C C C) (C C C C) (A C C C) ) 5r ( (B B B B) (U U U U) (B B B B) (U U U U) ) CLEFIA (d 4) (EEEE) (d 4) ( (C C C C) (A A A A) (C C C C) (C C C C) ) 6r ( (B B B B) (U U U U) (B B B B) (U U U U) ) 36

38 (d 5) ( (C C C C) (C C C C) (C C C C) (A A A A) ) 6r ( (B B B B) (U U U U) (B B B B) (U U U U) ) (I) ( (A A A A) (A A A A) (C C C C) (A A A A) ) 8r ( (B B B B) (U U U U) (B B B B) (U U U U) ) (II) ( (C C C C) (A A A A) (A A A A) (A A A A) ) 8r ( (B B B B) (U U U U) (B B B B) (U U U U) ) 6.1: 6 CLEFIA CLEFIA B [8] 37

39 6.1.3 CLEFIA CLEFIA 8 (I) (II) CLEFIA (I) CLEFIA 9 [12] 10 CLEFIA 9 F 0 M M0 1 M 0 M0 1 = M 0 6.2: 10 CLEFIA i C (i) = (C (i) 0, C(i) 1, C(i) 2, C(i) 3 ) 6.2 (6.6) ( ) ) F0 (F 1 C (10) 2 ; RK 19 C (10) 3 ; RK 16 C (10) 0 = 0, (6.7) ( ) ) F1 (F 0 C (10) 0 ; RK 18 C (10) 1 ; RK 17 C (10) 2 = 0, (6.8) 38

40 RK 16 = WK 3 RK 16 RK 17 = WK 2 RK 17 (6.7) 64bit RK 16=RK 16(0) RK 16(1) RK 16(2) RK 16(3) RK C (10) XOR M 1 0 Y = Y 0 Y 1 Y 2 Y 3 2. ( A 0, A 1, C, A 2 ) 2 96 C (10) 2 C (10) 3 64bit LIST(C (10) 2, C (10) 3 ) = LIST(C (10) 2 ) LIST(C (10) 3 ) 3. l (10) C LIST(C (10) 2 ) l (10) 2 C LIST(C (10) 3 ) RK 19 3 X i (0 i 3) 8bit LIST(X i ) l C (10) 3 ) F 1 (l (10) C ; RK 19 = X, (6.9) 2 X = X 0 X 1 X 2 X l Xi LIST(X i ) RK 16(i) ( ) Sj l Xi RK 16(i) = Y i (0 i 3) (6.10) RK 16 RK 19 j i 0 1 (6.8) RK 17 RK 18 (6.10) 8bit 4 ( 2 8) 4 = 2 32 (6.9) 64bit RK 16 RK 19 3(> ) XOR S-box F 1 2 Y LIST(C (10) 2, C (10) 3 ) = 2 97 F bit RK 19 64bit LIST(C (10) 2, C (10) 3 ) X X 8bit LIST(X i ) (0 i 3) LIST(X i ) 8bit RK 16(i) 232 ( ) 2 96 F 64bit F CLEFIA 20 F F = (6.8) = bit 10 CLEFIA 64bit LIST(C (10) 2, C (10) 3 ) 32bit LIST(X) bit 39

41 11/12 11/12 10 LIST(C (10) 2, C (10) 3 ) LIST(X i ) RK 19 RK 16(i) 11/ bit 96 5(> ), 7(> 32 ) 11/12 CLEFIA , bit CLEFIA : CLEFIA ,192, , RK B B CLEFIA CLEFIA 6 8 CLEFIA 128bit 10 CLEFIA bit CLEFIA CLEFIA 128bit /256bit CLEFIA 40

42 6.2 XOR (m, n) (m, n) (m, n) n ( m bit) XOR ( ) XOR (m, n) m < 2n m = 2n (m, n) (m, n) Type-2 Feistel [8] (m, n) (m, n) (m, n) 6.3 (m, n) (m 2, n 1) bit m x i u i g i (i = 0, 1, 2,, n 1) X = x 0 x 1 x n 1 (m, n) ( ) (m, n) y u i XOR ( ) g i u i 2 m 1 i=0 u i = 0. (6.11) u i y x i = 0, 1, 2,, 2 m 1 u i ( ) f i (u) ( f i (u) = 2 m ) X = 0, 1, 2,, 2 mn 1 y f y (y) ( f y (y) = 2 mn ) f i (u) mod2 f (2) i (u) mod2 f i (u) f (2) i (u) (m, n) (m 2, n 1) [ 1] m < 2n f y (y) y [ 2] m = 2n (f y (0) + f y (y)) y f y (τ) f y (τ) = 2 m 1 2 m 1 u 0=0 u 1=0 2 m 1 u n 2=0 f 0 (u 0 )f 1 (u 1 ) f n 2 (u n 2 ) f n 1 (u 0 u 1 u n 2 τ). (6.12) f i (u) φ i (t) f i (u) φ i (t) H 2 m H 2 m H 1 2m (6.12) f y (τ) = H 1 2 m { φ0 (t)φ 1 (t) φ n 2 (t)φ n 1 (t) }. (6.13) 41

43 X x 0 x 1 x n-1 m m m g 0 g 1 g n-1 m m m u 0 u 1 u n-1 m y 6.3: (m, n). H 2 m, H 1 2m ( ) f (2) i (u) f i (u) g i f (2) i (u) 2 m, 2 m m 1 H 2 m H 2 mf (2) i = 0, f (2) i = (f (2) i (0), f (2) i (1),, f (2) i (2 m 1)) t. (6.14) ( ) t (6.14) XOR (6.14) H 2 mf i = ( ), f i = (f i (0), f i (1),, f i (2 m 1)) t. (6.15) (6.15) φ i (t) = H 2 mf i (u) ( ) φ i (t) 4. (6.16) (6.13) H 1 2 m = 1 2 m H f y (τ) 4 n /2 m = 2 2n m m < 2n f y (τ) τ ( 1 ) 2 y =

44 f y (0) + f y (τ) f y (0) + f y (τ) = 2 m 1 2 m 1 u 0=0 u 1=0 f y (0) + f y (τ) = u 0 U(τ) u 1 U(τ) 2 m 1 u n 2=0 f 0 (u 0 )f 1 (u 1 ) f n 2 (u n 2 ) {f n 1 (u 0 u 1 u n 2 ) +f n 1 (u 0 u 1 u n 2 τ) }. (6.17) u n 2 U(τ) {f 0 (u 0 ) + f 0 (u 0 τ)} {f 1 (u 1 ) + (f 1 (u 1 τ)} {f n 2 (u n 2 ) + f n 2 (u n 2 τ)} {f n 1 (u 0 u 1 u n 2 ) +f n 1 (u 0 u 1 u n 2 τ) }. (6.18) U = {0, 1, 2,, 2 m 1} τ U(τ) {U(τ), U(τ) τ} = U F i (u) = (f i (u) + f i (u τ)) (u u τ) φ Fi (t) = H 2 m 1F i (u) (6.16) φ Fi (t) f y (0) + f y (τ) φ Fi (t) 4. (6.19) f y (0) + f y (τ) = 1 2 m 1 H 2 m 1φ(t), φ(t) = φ F0 (t)φ F1 (t) φ Fn 1 (t). (6.20) 1 0 (6.22) x=0 (6.19) φ(t) 4 n f y (0) + f y (τ) 4 n /2 m 1 = 2 2n m+1 m 2n f y (0) + f y (τ) τ ( 2 ) GF(2) m 2 p i (x) (i = 0, 1) (x GF(2) m, p i (x) R) p i (x) P i (t) = H 2 m p i (x) (t GF(2) m, P i (t) R) H 2 m P i (t) = x p i (x)( 1) x t. (6.21) 43

45 H 1 2 m p i (x) = 1 2 m P i (t)( 1) x t. (6.22) p 0 (x) p 1 (x) q(τ ) q(τ ) t q(τ ) = p 0 (x) p 1 (x) = x p 0 (x)p 1 (x τ ). (6.23) q(τ ) Q(t) Q(t) Q(t) = τ = τ q(τ )( 1) τ t p 0 (x)p 1 (x τ )( 1) τ t. (6.24) x (6.24) σ = x τ Q(t) = p 0 (x)p 1 (σ)( 1) (x σ) t σ x = p 0 (x)p 1 (σ)( 1) x t σ t. (6.25) σ x (-1) 0 = 1 (6.25) ( 1) x t σ t = ( 1) x t ( 1) σ t (6.25) Q(t) = p 0 (x)( 1) x t p 1 (σ)( 1) σ t σ x = p 0 (x)( 1) x t p 1 (σ)( 1) σ t x σ = P 0 (t) P 1 (t). (6.26) (6.22) (6.26) (6.23) q(τ ) i = 0, 1, 2, (6.16) (6.16) H H 1 H 1 = 1, [ H 2 m = H 2 m 1 H 2 m 1 H 2 m 1 H 2 m 1 ], H 1 2 = 1 m 2 m H 2m, (1 m N). (6.27) H H 2 m m m 1 H 2 m 2 m H 2 m ( H 2 m

46 ) φ = H 2 m f i φ 0 φ 0 2 m ( 2 m 1 u=0 f i (u) = 2 m. f i (u) f i ) 1 φ 1 2 m m 1 2 φ 1 = f i (2u) f i (2u + 1). (6.28) u=0 1 2 (6.15) (6.28) u=0 φ 1 = ( 2 m 1 + 2a ) ( 2 m 1 2a ) = 4a, (a Z). (6.29) φ 1 φ (6.29) 4 (6.16) 45

47 7 S-box S 0 S 1 GF(2 8 ) CLEFIA 7.1 F 0 F 0 F 1 F 1 P 0 3 F 0 P 1 F 1 3 F i S-box 7 ( 6 ) : CLEFIA 46

48 7.1 F i S-box S 0 S bit S-box: GF(2) 8 GF(2) 8 x i, y i GF(2) (i = 0, 1, 2,, 7) y i S 0 6 S 1 7 S i 7.1, y 0 y , 7.2 (i )/2 7.1, 7.2 S 0 y i 6 S 1 y i 7 S 0 y 1 S 1 y 3 S 0 y 6 S 1 y 4 7.2: 8bit S-box 47

49 7.1: S 0 y0 y1 y2 y3 y4 y5 y6 y C 6 /2= C 5 /2= C 4 /2= C 3 /2= C 2 /2= C 1 /2= C 0 /2= : S 1 y0 y1 y2 y3 y4 y5 y6 y C 7 /2= C 6 /2= C 5 /2= C 4 /2= C 3 /2= C 2 /2= C 1 /2= C 0 /2= F i F S box F i 4 4MDS F i 32 (i=0,1) F i 2 F i CLEFIA 2 F i 7.3 x i (i = 0, 1, 2,, 63) y i (i = 0, 1, 2,, 31) XOR 48

50 7.3: F i F i 32 7 (i = 0,1) XOR (i = 0,1) 2 F i = F i 7.3 x i (i = 32, 33,, 63) 2 F i x i (i = 0, 1,, 31) y i (i = 0, 1,, 31) y i x i (i = 0, 1,, 31) 31 y i x i (i = 32, 33,, 63) 7 F i S box 7.3 y i x i (i = 32, 33,, 63) 32 2 F i ( 7.4) x i, y i, z i 1 x 0 = (x 00, x 01,, x 07 ) x 1, x 2, x 3 x 0 z 0 z 0 x 0j 7 z 1, z 2, z 3 x 0j 7 x 1, x 2, x 3 z i (i = 0, 1, 2, 3) x ij (i = 0, 1, 2, 3, j = 0, 1,, 7) 7 4 = 28 MDS y i

51 7.4: 32 2 F i F (X; K) X N X,K (N+1) F (X; K)=0 deg X {F (X; K)}=N (N) F (X; K)=const F i x i (i = 0, 1, 2, 3) x ij (j = 0, 1,, 7) x i (i = 0, 1, 2, 3) x i0 x i1 x i2 x i3 x i4 x i5 x i6 x i C 28 4 x i (i = 0, 1, 2, 3) 7 ( 8 C 7 ) 4 = y i (i = 0, 1,, 31) y i (i = 0, 1,, 31) , (x 0, x 1, x 2, x 3 ) 32 (x 0, x 1,, ) x 1 7 x 0 x 2 x 3 x 4 x 5 x 6 x 7 x 7 [1] 28 x 28 [2,11,18,24] x 2, x 11, x 18, x x 28 [2,11,18,24] F DEF 7BDD 28 y i (i = 0, 1, 2,,31) 1, 0 1 MDS (36) 2 =

52 F i F 0 F F i 28 x i 8 8 x 28 [14,18,22,26] 7.3: 28 F y i (i = 31, 30,, 1, 0) x 28 [2,11,18,24] DFEFDF7F x 28 [1,13,23,31] BFFBFEFE x 28 [5,10,19,29] FBDFF7FB x 28 [5,13,17,26] FBFBFBDF x 28 [5,10,17,26] FBDFBFDF x 28 [1,10,17,26] BFDFBFDF x 28 [1,9,19,24] BFBFEF7F x 28 [14,18,22,26] FFFDDDDF : 28 F y i (i = 31, 30,, 1, 0) x 28 [2,11,18,24] DFEFDF7F x 28 [1,13,23,31] BFFBFEFE x 28 [5,10,19,29] FBDFF7FB x 28 [5,13,17,26] FBFBFBDF x 28 [5,10,17,26] FBDFBFDF x 28 [1,10,17,26] BFDFBFDF x 28 [1,9,19,24] BFBFEF7F x 28 [14,18,22,26] FFFDDDDF F i F i

53 7.5: 26 F y i (i = 31, 30,, 1, 0) x 26 [6,11,16,21,26,30] FDEF7BDD x 26 [3,7,11,16,20,27] EEEF77EF x 26 [2,6,12,18,21,26] DDF7DBDF x 26 [4,14,21,25,27,30] F7FDFBAD x 26 [1,2,9,17,21,29] 9FBFBBFB x 26 [1,4,8,11,23,29] B76FFEFB x 26 [3,8,15,20,23,31] EF7EF6FE x 26 [1,6,7,10,24,28] BCDFFF : 27 F y i (i = 31, 30,, 1, 0) x 27 [5,10,16,23,27] FBDF7EEF x 27 [4,9,15,21,30] F7BEFBFD x 27 [2,10,23,26,29] DFDFFEDB x 27 [6,8,13,20,27] FD7BF7EF x 27 [4,7,12,21,24] F6F7FB7F x 27 [1,9,16,20,26] BFBF77DF x 27 [4,12,18,23,25] F7F7DEBF x 27 [1,2,3,15,16] 8FFE7FFF : 26 F y i (i = 31, 30,, 1, 0) x 26 [6,11,16,21,26,30] FDEF7BDD x 26 [3,7,11,16,20,27] EEEF77EF x 26 [2,6,12,18,21,26] DDF7DBDF x 26 [4,14,21,25,27,30] F7FDFBAD x 26 [1,2,9,17,21,29] 9FBFBBFB x 26 [1,4,8,11,23,29] B76FFEFB x 26 [3,8,15,20,23,31] EF7EF6FE EFEEEF x 26 [0,4,11,19,23,27] x 26 [1,6,7,10,24,28] BCDFFF

54 7.8: 27 F y i (i = 31, 30,, 1, 0) x 27 [5,10,16,23,27] FBDF7EEF x 27 [4,9,15,21,30] F7BEFBFD x 27 [2,10,23,26,29] DFDFFEDB x 27 [6,8,13,20,27] FD7BF7EF x 27 [4,7,12,21,24] F6F7FB7F x 27 [1,9,16,20,26] BFBF77DF x 27 [4,12,18,23,25] F7F7DEBF x 27 [1,2,3,15,16] 8FFE7FFF , y i (i = 0, 1,, 31)

55 7.9: 31 F y i (i = 31, 30,, 1, 0) [0] 7FFFFFFF [1] BFFFFFFF [2] DFFFFFFF [3] EFFFFFFF [4] F7FFFFFF [5] FBFFFFFF [6] FDFFFFFF [7] FEFFFFFF [8] FF7FFFFF [9] FFBFFFFF [10] FFDFFFFF [11] FFEFFFFF [12] FFF7FFFF [13] FFFBFFFF [14] FFFDFFFF [15] FFFEFFFF [16] FFFF7FFF [17] FFFFBFFF [18] FFFFDFFF [19] FFFFEFFF [20] FFFFF7FF [21] FFFFFBFF [22] FFFFFDFF [23] FFFFFEFF [24] FFFFFF7F [25] FFFFFFBF [26] FFFFFFDF [27] FFFFFFEF [28] FFFFFFF [29] FFFFFFFB [30] FFFFFFFD [31] FFFFFFFE

56 7.10: 31 F y i (i = 31, 30,, 1, 0) [0] 7FFFFFFF [1] BFFFFFFF [2] DFFFFFFF [3] EFFFFFFF [4] F7FFFFFF [5] FBFFFFFF [6] FDFFFFFF [7] FEFFFFFF [8] FF7FFFFF [9] FFBFFFFF [10] FFDFFFFF [11] FFEFFFFF [12] FFF7FFFF [13] FFFBFFFF [14] FFFDFFFF [15] FFFEFFFF [16] FFFF7FFF [17] FFFFBFFF [18] FFFFDFFF [19] FFFFEFFF [20] FFFFF7FF [21] FFFFFBFF [22] FFFFFDFF [23] FFFFFEFF [24] FFFFFF7F [25] FFFFFFBF [26] FFFFFFDF [27] FFFFFFEF [28] FFFFFFF [29] FFFFFFFB [30] FFFFFFFD [31] FFFFFFFE

57 7.4 S-box S 0 S 1 GF(2 8 ) CLEFIA S-box S 0 S 1 GF(2 8 ) [1] 7.11, 7.12 S-box S i (i = 0, 1): GF(2 8 ) GF(2 8 ) y = S i (x) y x 244 (i = 0), 252 (i = 1) 7.13, 7.14 GF(2 8 ) cp(x): 0x11b (= x 8 + x 4 + x 3 + x + 1) S (x 255, x 254, x 253, x 251, x 247, x 239, x 223, x 191, x 127 ) [1] [1] 7.11: S a.b.c.d.e.f d1 c6 2f fb 95 6d 82 ea 0e b0 a8 1c d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af 2. bf a f7 7a ce e4 83 9d 5b 4c d d 2e e8 d4 9b 0f 13 3c c0 71 aa b6 f5 4. a4 be fd 8c da 78 e1 cf 6b cc dd eb 54 b3 8f 4e 16 fa 22 a d6 2a c1 6c ae ef b 1d f2 b4 7. e9 c7 9f 4a fe 7c d3 a2 bd b 8. cd e e dc b b7 a9 48 ff 66 8a f1 6a a7 40 c2 b9 2c db 1f e ed a. fc 1b a0 04 b8 8d e e ca 21 df 47 b. 15 f3 ba 7f a6 69 c8 4d 87 3b 9c 01 e0 de c. 7b 0c 68 1e 80 b2 5a e7 ad d5 23 f4 46 3f 91 c9 d. 6e bb 0d 18 d9 96 f0 5f 41 ac 27 c5 e3 3a e. 81 6f 07 a3 79 f6 2d 38 1a 44 5e b5 d2 ec cb 90 f. 9a 36 e5 29 c3 4f ab f8 10 d7 bc 02 7d 8e 56

58 7.12: S a.b.c.d.e.f 0. 6c da c3 e9 4e 9d 0a 3d b8 36 b c d9 1. bf f b7 9c e5 dc 9e f 98 2c b eb cd b3 92 e e b e6 19 d2 0e c7 3f 2a 8e a1 bc 2b c8 c5 0f 5b f3 87 8b 4. fb f5 de 20 c6 a7 84 ce d c9 a4 ef d 9b 31 e8 3e 0d d7 80 ff 69 8a ba 0b 73 5c 6. 6e f a3 16 d fa aa 5e 7. cf ea ed b 63 c0 c1 46 1e df a c ec dd 83 1f 9. 9a c a d ca 6f a. 7e 6a b6 71 a d1 45 8c 23 1c f0 ee 89 ad b. 7a 4b c2 2f db 5a 4d d f4 cb b1 4a a8 c. b a d5 10 4c 72 cc 00 f9 e0 fd e2 fe ae d. f8 5f ab f1 1b d6 be a6 57 b9 af f2 e. d bb 68 9f c 7f 8d 1a 88 bd ac f. f7 e a2 fc 6d b2 6b 03 e1 2e 7d d 57

59 7.13: S 0 cp(x) 11b d b d f d f b b d f a a b bd c cf d dd e f f f

60 7.14: S 1 cp(x) 11b d b d f d f b b d f a a b bd c cf d dd e f f f

61 Type2 Feistel Type2 Feistel ,192, CLEFIA

62 8.1 (DCP) DCP /256bit GF N 8,10 ( ) 32bit k i (i = 0, 1,, 7) l i (i = 0, 1,, 7) k 0 = k 0 l 0 = l 0 x j y j (j = 0, 1,, 39) F i (i = 0, 1) x j = x j (j = 0, 1, 2, 3, 4) DCP DCP 8.1 DCP 128bit GF N 4,12 GF N 4,12 DCP 3.6 GF N 4,12 DCP (DCP ) < 2 128bit 2 S-box (S 0, S 1 ) k 0 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 0 x 0 y 0 x 10 y 10 x 20 y 20 x 30 y 30 x 0 x 5 y 5 x 15 y 15 x 25 y 25 x 35 y 35 x 1 y 1 x 11 y 11 x 21 y 21 y 31 x 1 x 6 y 6 x 16 y 16 x 26 y 26 x 36 y 36 x 2 y 2 x 12 y 12 x 22 y 22 x 32 y 32 x 2 x 7 y 7 x 17 y 17 x 27 y 27 x 37 y 37 x 3 y 3 x 13 y 13 x 23 y 23 x 33 y 33 x 3 x 8 y 8 x 18 y 18 x 28 y 28 x 38 y 38 x 4 y 4 x 14 y 14 x 24 y 24 x 34 y 34 x 4 x 9 y 9 x 19 y 19 x 29 y 29 x 39 y 39 l 0 l 1 l 2 l 3 l 4 l 5 l 6 l 7 l 0 8.1: GF N 8, GF N 8,10 DCP DCP 8bit truncation DSM DCP Vterbi 61

63 F i F i k i l i 2 F i x i ( 8 ) 2 F i x i ( 8 ) ( x i, x i+10, x i+20, x i+30, x i+5, x i+15, x i+25, x i+35, x i+1, x i+11, x i+21, x i+31, x i+6, x i+16, x i+26, x i+36 ) x i 0 0xf 16 x i (= ) GF N 8,10 DCP GF N 8,10 DCP 8.1 ( x 0, x 1, x 2, x 3, x 4 ) 5 (DCP ) ( x 0, x 1, x 2, x 3, x 4) x i = x i (i = 0, 1, 2, 3, 4) 8.2 Step0: ( x 0, x 1, x 2, x 3, x 4 ), k 1 Step5: ( x 5, x 6, x 7, x 8, x 9 ) x 0 = x 1 =0 f=0, f=1 Step1: (f, k 1 + x 0, x 1, x 2, x 3, x 4, x 5 = y 0 k 1 ) : DP( x 1 y 1 ) Step2: ( x 1, x 2, x 3, x 4, x 5, x 6 = y 1 x 5 ) Step3: ( x 2, x 3, x 4, x 5, x 6, x 7 = y 2 x 6 ) Step4: ( x 3, x 4, x 5, x 6, x 7, x 8 = y 3 x 7 ) Step5: ( x 5, x 6, x 7, x 8, x 9 = y 4 x 8 ) : DP( x 0 y 0 ) DSM : f=1 k 1 + x 0 + x 1 + x 6 5 : DP( x 2 y 2 ) DSM : x 1 0 or x 2 0 x 1 + x 2 + x 5 + x 7 5 : DP( x 3 y 3 ) DSM : x 2 0 or x 3 0 x 2 + x 3 + x 6 + x 8 5 : DP( x 4 y 4 ) DSM : x 3 0 or x 4 0 x 3 + x 4 + x 7 + x 9 5 : DP( x 9 y 9 ) Step6: ( x 5, x 6, x 7, x 8 ), x 10 : DP( x 5 y 5 ) Step7: ( x 5, x 6, x 7, x 8, x 10, x 11 = y 5 x 10 ) : DP( x 6 y 6 ) DSM : x 5 0 or x 6 0 x 5 + x 6 + x 10 + x 12 5 Step8: ( x 6, x 7, x 8, x 10, x 11, x 12 = y 6 x 11 ) : DP( x 7 y 7 ) DSM : x 6 0 or x 7 0 x 6 + x 7 + x 11 + x 13 5 Step9: ( x 7, x 8, x 10, x 11, x 12, x 13 = y 7 x 12 ) : DP( x 8 y 8 ) DSM : x 7 0 or x 8 0 x 7 + x 8 + x 12 + x 14 5 Step10: ( x 10, x 11, x 12, x 13, x 14 = y 8 x 13 ) Step10=Step0 Step0 k 1 = k 3 4 ( x 0, x 1, x 2, x 3, x 4 ) 8.2: GF N 8,10 DCP. Step0 ( x 0, x 1, x 2, x 3, x 4 ) k 1 x 5 Step1 62

64 2 f f 1 f f f f f 0 2 f f 0 2 f f f 1 f 0 2 f 0 f f 1 f 2 f 0 8.3: GF N 8,10 DCP. DP ( x 0 y 0 ) Step2 f k 1 + x 0 (5 5 ) Step1 Step2 x 6 DP ( x 1 y 1 ) DSM ( x 0 0 or x 1 0) k 1 + x 0 + x 1 + x 6 5. (8.1) Step1 Step2 (8.1) Step Step40 ( x 0, x 1, x 2, x 3, x 4) Step Step (= ) k i l i ( 2 20 ) ( ) 1 DCP 8.2 1/ GF N 8,10 DCP 8.3 GF N 8,10 DCP ( ) truncated 16 63

65 DCP S-box S 0 17 Active S 1 12 Active 192/256bit (5 ) DSM SONY [13] 8.3 ( ) x 2 + x 3 + x 4 + x 6 + x 9 5 (8.2) 8.3 (8.2) 4 (8.2) x 9 = 8( 1) x 9 = a( 2) DCP DSM [13] bit 64

66 Type2 Feistel Type2 Feistel GF N 8,10 GF N 8, GF N 8, GF N 8,10 (k 1) ( (C C C C) (A C C C) (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) ) 9r ( (U U U U) (U U U U) (B B B B) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) ) (k 2) ( (C C C C) (C C C C) (C C C C) (A C C C) (C C C C) (C C C C) (C C C C) (C C C C) ) 9r ( (U U U U) (U U U U) (U U U U) (U U U U) (B B B B) (U U U U) (U U U U) (U U U U) ) (k 3) ( (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (A C C C) (C C C C) (C C C C) ) 9r ( (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) (B B B B) (U U U U) ) (k 4) ( (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (A C C C) ) 9r ( (B B B B) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) ) (A C C C) (C A C C), (C C A C) (C C C A) GF N 8,10 (k 5) 8.4 (k 5) ( (C C C C) (A A A A) (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) ) 10r ( (B B B B) (U U U U) (B B B B) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) ) (k 6) ( (C C C C) (C C C C) (C C C C) (A A A A) (C C C C) (C C C C) (C C C C) (C C C C) ) 10r ( (U U U U) (U U U U) (B B B B) (U U U U) (B B B B) (U U U U) (U U U U) (U U U U) ) (k 7) ( (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (A A A A) (C C C C) (C C C C) ) 10r ( (U U U U) (U U U U) (U U U U) (U U U U) (B B B B) (U U U U) (B B B B) (U U U U) ) (k 8) ( (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (C C C C) (A A A A) ) 10r ( (B B B B) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) (B B B B) (U U U U) ) 65

67 8.4: 10 GF N 8,10 66

68 8 Type-2 Feistel (III) ( (A A A A) (A A A A) (C C C C) (C C C C) (C C C C) (A A A A) (A A A A) (A A A A) ) 14r ( (B B B B) (U U U U) (B B B B) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) ) (VI) ( (A A A A) (A A A A) (A A A A) (A A A A) (C C C C) (C C C C) (C C C C) (A A A A) ) 14r ( (U U U U) (U U U U) (B B B B) (U U U U) (B B B B) (U U U U) (U U U U) (U U U U) ) (V) ( (C C C C) (A A A A) (A A A A) (A A A A) (A A A A) (A A A A) (C C C C) (C C C C) ) 14r ( (U U U U) (U U U U) (U U U U) (U U U U) (B B B B) (U U U U) (B B B B) (U U U U) ) (VI) ( (C C C C) (C C C C) (C C C C) (A A A A) (A A A A) (A A A A) (A A A A) (A A A A) ) 14r ( (B B B B) (U U U U) (U U U U) (U U U U) (U U U U) (U U U U) (B B B B) (U U U U) ) F SP m 2n l Type-2 Feistel l 4 l + 2 l 2 B l/2 (3l/2 + 2) l 67

69 [1], 128 CLEFIA Version 1.0, , [2] A.Biryukov and D.Khovratovich, Related-Key Cryptanalysis of the Full AES-192 and AES- 256, ASIACRYPT 2009, LNCS 5912, pp. 1-18, [3], (2001 ) CRYPTREC Report 2001, [4] / /, (Telecommunications Advancement Organization of Japan), pp , June [5] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, The 128-bit Blockcipher CLEFIA, FSE 2007, LNCS 4593, pp , Springer-Verlag, [6] CLEFIA vol.108, no38, ISEC2008-3, pp15-22, [7] Feistel SCIS2007-4A2-2, [8] Feistel A vol.j93-a, No.4, pp , 2010 [9] J. Daemen, L.R. Knudsen, and V. Rijmen, The block cipher SQUARE, FSE 97, LNCS 1267, pp , Springer-Verlag, [10] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting, Improved Cryptanalysis of Rijndael, in Proceedings of Fast Software Encryption-FSE2000, vol.1987 of Lecture Notes in Computer Science, pp , Springer, [11] K. Hwang, W. Lee, S. Lee, and J. Lim, Saturation attacks on reduced round Skipjack, FSE2002, LNCS 2365, pp , Springer-Verlag, [12] Sony Corporation, The 128-bit blockcipher CLEFIA, security and performance evaluations, revision 1.0, June 1(2007), Products/cryptography/clefia/. [13],, CLEFIA. SCIS2011, 2B1-2, (2011.1). 68

70 [14],,, CLEFIA,SCIS2011, 2B1-3, (2011.1). [15],,,, CLEFIA, SCIS2011, 2B1-4, (2011.1). [16],, XOR, SCIS2011, 3B2-1, (2011.1) 69

71 A : 1,, : CLEFIA, SCIS 2011, 2B1-3, (2011.1) 2,,, : CLEFIA, SCIS 2011, 2B1-4, (2011.1) 3, : XOR, SCIS 2011, 3B2-1, (2011.1) 70

72 All rights are reserved and copyright of this manuscript belongs to the authors. This manuscript has been published without reviewing and editing as received from the authors: posting the manuscript to SCIS 2011 does not prevent future submissions to any journals or conferences with proceedings. SCIS 2011 The 2011 Symposium on Cryptography and Information Security Kokura, Japan, Jan , 2011 The Institute of Electronics, Information and Communication Engineers CLEFIA Differential characteristic property of CLEFIA Naoto Kobayashi Yasutaka Igarashi Toshinobu Kaneko CLEFIA FSE2007 SONY [1] [2] CLEFIA (DSM) CLEFIA 2 Sbox 2 128,192,256bit CLEFIA , , , , CLEFIA (MDS) viterbi 1 CLEFIA FSE2007 SONY CLEFIA [2] CLEFIA (DSM) CLEFIA 2 Sbox 2 2 CLEFIA [4] 2.1 CLEFIA 32bit 4 r Feistel r 128,192,256bit 18,22,26 P,C 128 i P (i) C (i) P=P (i),c=c (i) P (i) 32 4 P {i,0},p {i,1},p {i,2},p {i,3} C (i) 32 4, , Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, JAPAN, j @ed.noda.tus.ac.jp, yasutaka@rs.noda.tus.ac.jp, kaneko@ee.noda.tus.ac.jp C {i,0},c {i,1},c {i,2},c {i,3} WK i (0 i < 4) 32 RK i (0 i < 2r) 32 ENC r 1 Step1. T 0 T 1 T 2 T 3 P {0,0} (P {0,1} WK 0 ) P {0,2} (P {0,3} WK 1 ) Step2. i = 0 r 1 : Step2.1 T 1 T 1 F 0 (RK 2i,T0 ) T 3 T 3 F 1 (RK 2i+1,T 2 ) Step2.2 T 0 T 1 T 2 T 3 T 1 T 2 T 3 T 0 Step3. C {r,0} C {r,1} C {r,2} C {r,3} F T 3 T 0 WK 2 T 1 T 2 WK S 0,S 1 8 Sbox M 0,M MDS k i (i = 0,1,2,3) Rk i = k 0 k 1 k 2 k 3 ( ) F 0 1 F 1 F 0 S 0 S 1 M 0 M 1 1 t a a 71 1

1 IPA Hierocrypt-L1 Hierocrypt-L Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 2 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-

1 IPA Hierocrypt-L1 Hierocrypt-L Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 2 Hierocrypt-L1 Hierocrypt-L1 Hierocrypt- Hierocrypt-L1 : Hierocrypt-L1 Hierocrypt-L1 Hierocrypt-L1 Abstract: In this report, we address our security evaluation of Hierocrypt-L1. As a result, we found no critical security flaw during the limited

More information

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00

More information

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】 B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01

More information

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語 A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE

More information

日立液晶プロジェクター CP-AW2519NJ 取扱説明書- 詳細版-

日立液晶プロジェクター CP-AW2519NJ 取扱説明書- 詳細版- PAGE UP DOWN D- ESC ENTER 1 1 2 2 3 COMPUTER IN1 USB TYPE A DC5V 0.5A USB TYPE B HDMI COMPUTER IN2 LAN CONTROL MONITOR OUT MIC AUDIO IN1 AUDIO IN3 AUDIO OUT R R L L S-VIDEO AUDIO IN2 VIDEO PAGE UP DOWN

More information

HyRAL®FPGA設計仕様書

HyRAL®FPGA設計仕様書 HyRAL Encryption FPGA HyRAL FPGA 2009/12/ 13 2 2010/01/11 3. FPGA 3.1. Const1, 2,3 3.3.ciphergen 3.3.6. 3.4. Decrypt 4 3 2010/01/26 1. i 1.... 1 2.... 1 2.1. FPGA... 1 2.2.... 1 2.3.... 1 2.4. IP... 1

More information

MS-1J/MS-1WJ(形名:MS-1/MS-1W)取扱説明書 - 詳細- 技術情報編

MS-1J/MS-1WJ(形名:MS-1/MS-1W)取扱説明書 - 詳細- 技術情報編 720 x 400 37.9 85.0 VESA TEXT 640 x 480 31.5 59.9 VESA VGA (60Hz) 640 x 480 37.9 72.8 VESA VGA (72Hz) 640 x 480 37.5 75.0 VESA VGA (75Hz) 640 x 480 43.3 85.0 VESA VGA (85Hz) 800 x 600 35.2 56.3 VESA SVGA

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

補足情報

補足情報 1 危 険 警 告 注 意 2 3 4 5 6 7 8 1 2 3 4 5 9 6 7 8 9 10 10 1 2 11 1 12 1 2 13 3 4 14 1 2 15 3 4 5 16 1 2 3 17 1 2 3 4 18 19 20 21 22 23 1 2 3 4 5 24 6 7 8 9 10 25 26 27 28 6 1 2 7 8 9 3 4 5 29 1 2 警 告 3 4 5

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

‚å™J‚å−w“LŁñfi~P01†`08

‚å™J‚å−w“LŁñfi~P01†`08 156 2003 2 3 4 5 6 7 8 9 c f c a g 10 d c d 11 e a d 12 a g e 13 d fg f 14 g e 15 16 17 18 19 20 21 db de de fg fg g gf b eb g a a e e cf b db 22 d b e ag dc dc ed gf cb f f e b d ef 23 f fb ed e g gf

More information

CP-X4021NJ,WX4021NJ_.indd

CP-X4021NJ,WX4021NJ_.indd ESC 1 2 ENTER PAGE UP DOWN ESC 1 2 ENTER PAGE UP DOWN PAGE UP 1 2 ENTER DOWN ESC ESC 1 2 ENTER PAGE UP DOWN 1 2 ESC ENTER PAGE UP DOWN 1 2 ESC ENTER PAGE UP DOWN ESC 1 2 ENTER PAGE UP DOWN

More information

05‚å™J“LŁñfi~P01-06_12/27

05‚å™J“LŁñfi~P01-06_12/27 2005 164 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 g a 9 f a 10 g e g 11 f g g 12 a g g 1 13 d d f f d 14 a 15 16 17 18 r r 19 20 21 ce eb c b c bd c bd c e c gf cb ed ed fe ed g b cd c b 22 bc ff bf f c f cg

More information

取扱説明書<詳細版>

取扱説明書<詳細版> B5FK-4681-01 1 2 3 4 5 6 7 8 危 険 警 告 注 意 9 10 11 警 告 注 意 12 警 告 13 注 意 14 注 意 警 告 警 告 15 注 意 注 意 16 17 18 19 20 21 22 23 1 24 2 25 26 27 28 1 2 3 4 29 5 30 6 7 8 31 9 10 32 11 33 12 13 34 14 35 15 16

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

6.1号4c-03

6.1号4c-03 6.1 0 1 1 1 1 BF 1 C DB C 1* F E C 1 F 1 E C 1 E D 1 D 1 BF C G 1 DF 1 E 1 BF 1 BF 1 BF 1 BG 1 BG 1 BG 1 BF 1 BG 1 E 1 D F BF 1 BF 1 F 1 BF 1 F C 1 d 0 1 A 0 1 14 A G 0 1 A 1 G 0 1 1 1 E A 01 B 1 1 1 1

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000

007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000 EDOGAWA ITY Y @ Y 60 7 66997 00 00 00 00 600 000 000 4900 900 700 000 f 004000 00 000 7f 70g 0 0 007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040

More information

h1-4_cs5.5.indd

h1-4_cs5.5.indd SIMATIC HMI SIMATIC HMI SIMATIC HMI Comfort Panel All-in-One SIMATIC Comfort Panel all-in-one 4 22 1677 0 100% IP65 CEULKCRCMATEX HMI VB HMI ATEX 4 12 SIMATIC HMI Basic Panel 2 nd Generation SIMATIC Basic

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

Microsoft PowerPoint - 6-盛合--日文.ppt

Microsoft PowerPoint - 6-盛合--日文.ppt CLEFIA Sony s s Lightweight Block Cipher Shiho Moriai Sony Corporation 1 目次 ソニーにおける暗号技術 ソニーのブロック暗号 :CLEFIA 設計の背景 アルゴリズム仕様 設計方針 実装性能評価 まとめ 2 ソニーにおける暗号技術 暗号 / 情報セキュリティ技術搭載製品の増加 各種暗号アルゴリズム 著作権保護 機器認証 電子マネー

More information

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B 2000 8 3.4 p q θ = 80 B E a H F b θ/2 O θ/2 D A B E BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF :

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

学習の手順

学習の手順 NAVI 2 MAP 3 ABCD EFGH D F ABCD EFGH CD EH A ABC A BC AD ABC DBA BC//DE x 4 a //b // c x BC//DE EC AD//EF//BC x y AD DB AE EC DE//BC 5 D E AB AC BC 12cm DE 10 AP=PB=BR AQ=CQ BS CS 11 ABCD 1 C AB M BD P

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

, ,279 w

, ,279 w No.482 DEC. 200315 14 1754,406 100.0 2160,279 w 100 90 80 70 60 50 40 30 20 10 28.9 23.8 25.0 19.3 30.4 25.0 29.5 80.7 75.0 75.0 70.5 71.1 69.6 76.2 7 8 9 10 11 12 13 23.2 76.8 14 14 1751,189 100.0 2156,574

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

しんきんの現況H30.PS

しんきんの現況H30.PS テ ィスクローシ ャー 2018 氷見伏木しんきんの現況 > くらしのとなりに いつもしんきん氷見伏木信用金庫 http://www.shinkin.co.jp/himifusi/ ab cdef a a a å æ б d d de aef д aef aef ф aef ф aef aef a dfb d ff ab cdeb f å a a a c

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

‚å™J‚å−w“LŁñ›Ä

‚å™J‚å−w“LŁñ›Ä 2007 172 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 c d e cc bd b fb ag ag ed ed ed bd b b ef bf f df bd f bff d D f F d f 19 bd 20 21 F C e e f b b b 22 d d e f e f bf bd 23 24 222222222222222222222222222222222222222222222222222222222222222222222222

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

あさひ indd

あさひ indd 2006. 0. 2 2006. 0. 4 30 8 70 2 65 65 40 65 62 300 2006. 0. 3 7 702 22 7 62802 7 385 50 7 385 50 8 385 50 0 2 390 526 4 2006. 0. 0 0 0 62 55 57 68 0 80 5000 24600 37200 0 70 267000 500000 600 2 70 70 267000

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

01…†…C…fi_1224

01…†…C…fi_1224 182 2009 FFFFFFFFFF FFFFFFFFFF 11 2 2010 2009 201012 603-8143 075411-8115 FAX075411-8149 URL http://www.otani.ac.jp/ 3 4 2010 5 CM 2010 Q 30 2010 6 50203 12d 7 UFO 50 2009 203 203 203 50 8 ea 2005 08-

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Catalog No.AR006-e DIN EN ISO 9001 JIS Z 9901 Certificate: 販売終了

Catalog No.AR006-e DIN EN ISO 9001 JIS Z 9901 Certificate: 販売終了 Catalog No.AR006-e DIN EN ISO 9001 JIS Z 9901 Certificate:09 100 5919 DJ!0 DF DF @3 q w e 130 230 TR RA 0H R 130 230 RA TR R R RA 0.02MPa RA 130 230 130 230 R 0.06MPa RA 0.15MPa q R #1 TR #6 I N D E X

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

12~

12~ R A C D B F E H I J K A A A A A A A A A A AD B C BD AD E A DB DB ADB D D DB BD A C D B F E AD B B B B BF AD B B DB B B B B DB B DB D D ADB D D D D D AB AD D DB AB B B B F D D B B D D BF DBF B B B FD

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 = x n 1 1.,,.,. 2..... 4 = 2 2 12 = 2 2 3 6 = 2 3 14 = 2 7 8 = 2 2 2 15 = 3 5 9 = 3 3 16 = 2 2 2 2 10 = 2 5 18 = 2 3 3 2, 3, 5, 7, 11, 13, 17, 19.,, 2,.,.,.,?.,,. 1 , 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

FMV活用ガイド

FMV活用ガイド B5FJ-8721-01 トラブルの予防から解決まで B5FJ-8721-01 4 5 6 7 8 10 1 11 1 12 2 1. Floppy Disk Drive: 2. HDD0: 3. CD/DVD: 4. NETWORK: 5. USB MO: 3 4 5 13 6 14 16 17 18 19 20 1 2 3 21 4 5 6 7 22 8 9 10 11 12 23 24

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

1122 1015 1 Voices 11 11 1 1 1 1 1 1 7 3 4 3 4 3 4 1 1 1 1 1 e 1 f dd 1 d 1 1 1 1 de 1 f 1 d b b bb ef f bb 1 1 882-1111 882-1160 1 1 a 6 1 1 1 f 1 1 c 1 f 1 1 f 1 cf 1 bf 1 1 1 1 a 1 g 1 g 1 af g 1 11

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

‚å™J‚å−w“LŁñ›ÄP1-7_7/4

‚å™J‚å−w“LŁñ›ÄP1-7_7/4 2006 167 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 9 d ca 10 c f e 11 e g e 12 d b 13 f bf 14 15 16 17 b c d cc bc e ef gf gf dc dc bc f f cd bf e df bd f bf c C d E c e 18 19 bc b b f 20 d d e d e bf ec d e ef

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

05‚å™J‚å−w“LŁñ‘HP01-07_10/27

05‚å™J‚å−w“LŁñ‘HP01-07_10/27 2005 163 FFFFFFFFF FFFFFFFFF 2 3 4 5 6 7 8 9 10 g a 11 c e a 12 c g a f d 13 e f g g 1 2 f 14 bf e bd 15 bd bd bdf f b 16 17 18 bb 19 fe 20 21 ag 22 bb dd 23 EA e f g a 24 25 25 ea e a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

More information

2

2 2 6 7 9 4 6 7 2 3 4 5 6 7 8-0 - G G G G G G f f 9 e f - e f 0 5 e fe e c c cc B FD F 5 2 5 D F C e e e b 3 f f 5 ff ff f f f f b b bb b b b c c c ee ee e ee ee e f f 4 e e 7 5 5 e bb 6 7 f GE 8 f 9 5 F

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

fx-3650P_fx-3950P_J

fx-3650P_fx-3950P_J SA1109-E J fx-3650p fx-3950p http://edu.casio.jp RCA500002-001V04 AB2 Mode

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

SIRIUS_CS3*.indd

SIRIUS_CS3*.indd SIRIUS Innovations SIRIUS SIRIUS Answers for industry. SIRIUS SIRIUS S00 S0 SIRIUS SIRIUS ZX0-ORAZ-0AB0 7.5kW 6 S00 7 8 7.5kW 9 S00 0 8.5kW S0 8.5kW S0 5 6 7 IO-Link AS-InterfaceRT 8 8US 5 6 SIRIUS SIRIUS

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information