Microsoft PowerPoint - Eigen.pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint - Eigen.pptx"

Transcription

1 固有値解析 中島研吾 東京大学情報基盤センター同大学院情報理工学系研究科数理情報学専攻数値解析 ( 科目番号 -58)

2 行列の固有値問題 べき乗法 対称行列の固有値計算法 : ヤコビ法

3 A 行列の固有値問題 標準固有値問題 (Stndrd vlue Prolem を満足する と を求める : 固有値 (eigenvlue) : 固有ベクトル (eigenvector) 一般固有値問題 (Generl vlue Prolem) A M ここでは標準固有値問題を扱う固有値 固有振動数 行列の性質に影響 : スペクトル半径 条件数

4 固有値問題の計算 (/) 4 A の固有値 固有ベクトルを求めよ. A I A det I A 特性方程式 ) det( I A 特性方程式 = 5 5 5

5 固有値問題の計算 (/) 5 A より この連立方程式は 必ず不定したがって のどちらか一方を定数をおく. たとえば =c とおけば =(-λ)c 固有ベクトル : c c c c

6 6 固有値問題の計算例 (/) 一般の n 元の正方行列 A の固有値 固有ベクトルは 前述したような方法で求めることができる 特性方程式は固有値 λ についての n 次の代数方程式 ( 非線形 ) det( A I) 大規模な次元 (> 6 ) を有する行列の固有値問題も扱える方法が開発されている : 実に様々な解法がある 実用上重要なのは ( 絶対値 ) 最大 最小固有値重根があると特別な扱い必要 - 本講義では基本的に重根は無しとする

7 7 べき乗法 逆べき乗法 標準固有値問題の解法 小規模問題 : ヤコビ法 中規模問題 : ハウスホルダー法 ( 対称 )QR 法 大規模問題 : 逆反復法 同時反復法 ( べき乗法の拡張 )

8 行列の固有値問題 べき乗法 対称行列の固有値計算法 : ヤコビ法 8

9 9 べき乗法 (Power Method) 絶対値最大の実固有値とそれに対応する固有ベクトルを求める方法 適当な初期ベクトル () から始めて () () ( ) A A () () A ( ) A をどんどん乗じていく但し 単に乗じていくだけでは 発散したり 原点に収束したりしてしまうので 常に () の大きさを一定 ( 例えば =) に保つ必要がある. () は絶対値最大の固有値に対応する固有ベクトルに収束していく

10 べき乗法のアルゴリズム Step : () = である初期ベクトル () を選び = とする Step : 以下のように (+) を更新する : y ( ) A ( ) Step : =+ として Step を繰り返す ( ) y ( ) ( ) y y ( ) ( ) () :A の絶対値最大の実固有値に収束 :A の絶対値最大の実固有値に対応する固有ベクトルに収束

11 べき乗法が最大固有値に収束する理由 (/) n c n c c c y () n n c n c c c Ay () () n n n c c c c y A Ay () ) ( ) ( n n 固有値 ( 絶対値の大きさ順 ) それに対応する固有ベクトル ( 一次独立と仮定 )

12 べき乗法が最大固有値に収束する理由 (/) c if n n n c c c c c c c y ) ( lim i i n i ) ( : y c if べき乗法によって求められるベクトル () の 方向 が最大固有値 に対応する固有ベクトル のそれに収束していく

13 べき乗法が最大固有値に収束する理由 (/) ) ( ) ( ) ( ) ( ) ( c c y y y y ) ( ) ( ) ( c y Α y c c c c y y y y y ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( y y

14 べき乗法の収束 i i i n lim i / が より充分小さいことが収束に影響 特に以下の成立が高速な収束に必要 4

15 A べき乗法の例 (/) の絶対値最大の固有値およびその固有ベクトルをべき乗法により求めよ. 回目 y A y y 5

16 べき乗法の例 (/) 回目 y A y y

17 べき乗法の例 (/) 回目 y A 5 8 y y 前述した厳密解

18 8 逆べき乗法 (Inverse Power Method) 絶対値 最小 の実固有値とそれに対応する固有ベクトルを求める方法 A A A ' A ' として ' A ' にべき乗法を適用する LU A として LU 分解を求めておくと効率が良い LU 分解による前進後退代入 :A - を乗じるのと同じこと

19 べき乗法の加速手法 : 原点移動 (Shift) / の値を小さくすることにより収束を加速する A A B B : p B pi pi A pi where p : constnt p : 行列 Bの固有値 (: 行列 Aの固有値 ) 行列 Bの固有ベクトル (Aの固有ベクトルに一致) 適当な定数 pを選択することにより行列 Bの絶対値最大 / 番目に大きな固有値の比を小さくできれば 行列 Bにべき乗法を適用した方が良い p p 行列 B の固有値行列 A 9

20 Solver-Direct Scil によるプログラム (/) クリックして.zip をダウンロード

21 Solver-Direct Scil によるプログラム (/) を解凍 直下に というディレクトリ Scilプログラムのソースファイル (*.sce*.sci) README.tt( 下記 : 必ず読むこと ) eigen-p.sce: Power Method with/without shift eigen-p.sce: Power Method 66 with/without shift eigen-p.sce: Inverse Power Method 66 with/without shift lu.sci : LU fctoriztion fs.sci: Forwrd/Bcwrd Sustitution LU 分解前進後退代入 プログラム名 内容

22 原点移動の効果 :eigen-p.sce 下記の条件において A の絶対値最大の固有値およびその固有ベクトルをべき乗法 原点移動付きべき乗法により求めよ. A () p. 4 原点移動無し 原点移動有り.E+.E+.5E E+.6585E+.684E E+ 5.68E E+ SHIFT? -->.4

23 べき乗法の例 ( シフト無し ) eigen-p.sce n=; A=[-;-]; X=[;]; printf("shift?? n"); Shift= scnf("%f"); printf(" n"); printf("shift %e n" Shift); printf(" n"); printf("#originl n"); for iter= : Y()= A()*X() + A()*X(); Y()= A()*X() + A()*X(); = X()*Y() + X()*Y(); DL= sqrt(y()*y()+y()*y()); X()= Y()/DL; X()= Y()/DL; printf ("Iters %d %e %e %e n"iter X() X()); end y A ( ) ( )

24 べき乗法の例 ( シフト無し ) eigen-p.sce n=; A=[-;-]; X=[;]; printf("shift?? n"); Shift= scnf("%f"); printf(" n"); printf("shift %e n" Shift); printf(" n"); printf("#originl n"); for iter= : Y()= A()*X() + A()*X(); Y()= A()*X() + A()*X(); = X()*Y() + X()*Y(); DL= sqrt(y()*y()+y()*y()); X()= Y()/DL; X()= Y()/DL; printf ("Iters %d %e %e %e n"iter X() X()); end ( ) y ( ) 4

25 べき乗法の例 ( シフト無し ) eigen-p.sce n=; A=[-;-]; X=[;]; printf("shift?? n"); Shift= scnf("%f"); printf(" n"); printf("shift %e n" Shift); printf(" n"); printf("#originl n"); for iter= : Y()= A()*X() + A()*X(); Y()= A()*X() + A()*X(); = X()*Y() + X()*Y(); DL= sqrt(y()*y()+y()*y()); X()= Y()/DL; X()= Y()/DL; printf ("Iters %d %e %e %e n"iter X() X()); end ( ) y y ( ) ( ) 5

26 べき乗法の例 ( シフト有り ) eigen-p.sce X()=.; X()=.; A()= A() - Shift; A()= A() - Shift; for iter= : Y()= A()*X() + A()*X(); Y()= A()*X() + A()*X(); EIGEN= X()*Y() + X()*Y() + Shift; DL= sqrt(y()^+y()^); X()= Y()/DL; X()= Y()/DL; printf ("Iters %d %e %e %e %e n"iter EIGEN X() X() Shift); end A A B B : p B pi pi : A pi where p p p p : constnt 行列 Bの固有値 (: 行列 Aの固有値 ) 行列 Bの固有ベクトル (Aの固有ベクトルに一致) 6

27 計算例 A =.7E+ {5.57E- 5.87E E-.678E-.578E-.7E-} =.988E+ {5.87E-.578E- -.7E E E E-} = 7.747E- {4.565E- -.7E E E-.678E- 5.87E-} 4 = 4.46E- {.678E E E- 5.87E-.7E E-} 5 =.89E- {.578E E-.678E-.7E E E-} 6 =.65E- {.7E E- 5.87E E E E-}

28 べき乗法の例 ( シフト無し ) eigen-p.sce n=6; X=[;;;;;]; Y=[;;;;;]; EIG=.; for iter= : for i=:n Y(i)=.; end for i=:n for j=:n Y(i)= Y(i) + A(ij)*X(j); end end RDL=./sqrt(DL); for i= :n X(i)= Y(i)*RDL; end RESID= sqrt((-eig)*.. (-EIG)/(EIG*EIG)); if RESID < EPS then re; end; EIG= ; end =.; DL =.; for i= :n = + X(i)*Y(i); DL = DL + Y(i)*Y(i); end RESID 8

29 原点移動付きべき乗法の例 eigen-p.sce n=6; X=[;;;;;]; Y=[;;;;;]; for i=:n A(ii)= A(ii) - Shift; end EIG=.; for iter= : for i=:n Y(i)=.; end for i=:n for j=:n Y(i)= Y(i) + A(ij)*X(j); end end = Shift; DL =.; for i= :n = + X(i)*Y(i); DL = DL + Y(i)*Y(i); end RDL=./sqrt(DL); for i= :n X(i)= Y(i)*RDL; end RESID= sqrt((-eig)*.. (-EIG)/(EIG*EIG)); if RESID < EPS then re; end; EIG= ; end 9

30 逆べき乗法の例 ( シフト無し ) eigen-p.sce eec( C: eigen lu.sci ); eec('c: eigen fs.sci'); n=6; X=[;;;;;]; Y=[;;;;;]; 外部関数 [A]=lu(An); LU 分解 ( 関数呼び出し ) EIG=.e-; for iter= : for i=:n Y(i)=X(i); end [Y]=fs (AYn); REIG=.; DL =.; for i= :n REIG= REIG + X(i)*Y(i); DL = DL + Y(i)*Y(i); end =./REIG; 前進後退代入 RDL=./sqrt(DL); for i=:n X(i)= Y(i)*RDL; end RESID= sqrt((-eig)*.. (-EIG)/(EIG*EIG)); if RESID < EPS then re; end; EIG= ; end A A ' ' A A ' ' A にべき乗法適用

31 逆べき乗法の例 ( シフト無し ) eigen-p.sce eec( C: eigen lu.sci ); eec('c: eigen fs.sci'); n=6; X=[;;;;;]; Y=[;;;;;]; 外部関数 [A]=lu(An); LU 分解 ( 関数呼び出し ) EIG=.e-; for iter= : for i=:n Y(i)=X(i); end [Y]=fs (AYn); REIG=.; DL =.; for i= :n REIG= REIG + X(i)*Y(i); DL = DL + Y(i)*Y(i); end =./REIG; 前進後退代入 RDL=./sqrt(DL); for i=:n X(i)= Y(i)*RDL; end RESID= sqrt((-eig)*.. (-EIG)/(EIG*EIG)); if RESID < EPS then re; end; EIG= ; end y A ' A 逆行列をかけるかわりに LU 分解の前進後退代入を実施する

32 逆べき乗法の例 ( シフト無し ) eigen-p.sce eec( C: eigen lu.sci ); eec('c: eigen fs.sci'); n=6; X=[;;;;;]; Y=[;;;;;]; 外部関数 [A]=lu(An); LU 分解 ( 関数呼び出し ) EIG=.e-; for iter= : for i=:n Y(i)=X(i); end [Y]=fs (AYn); REIG=.; DL =.; for i= :n REIG= REIG + X(i)*Y(i); DL = DL + Y(i)*Y(i); end =./REIG; 前進後退代入 RDL=./sqrt(DL); for i=:n X(i)= Y(i)*RDL; end RESID= sqrt((-eig)*.. (-EIG)/(EIG*EIG)); if RESID < EPS then re; end; EIG= ; end [A]= lu(an) 出力変数 関数入力変数 [y...yn]= foo(...m)

33 行列の固有値問題 べき乗法 対称行列の固有値計算法 : ヤコビ法

34 4 対称行列の固有値計算法 実対称行列の固有値 実数 弾性振動問題等 相似変換 N N の正方行列 A B に対して以下を満たすような正則行列 P が存在するとする : B= P - A P このときAとBは相似 (similr) であると呼び BはAを相似変換した行列であると言う AとBが相似であればそれらの固有値は一致する 任意の固有値に対するBの固有ベクトルを とすると Aの固有ベクトルは P となる ( 証明略 )

35 ヤコビ法 (Jcoi)(/5) 実対称行列 Aに対して二次元の回転に相当する相似変換を繰り返しながら対角行列へ近づけて行く方法 結果は合成されたn 次元の回転となる 繰り返しの段階で得られる行列において指定した行列成分がになるような相似変換 B= P - A P p 列目 q 列目 P =P = P = P =- それ以外は単位行列と同じ P - = P T 直交行列 B= P - A P 直交変換 B T = (P - A P) T = P T A (P - ) T = P - A P = B 対称 P 5 p 行目 q 行目

36 ヤコビ法 (Jcoi)(/5) 6 q p q q q p p p ij ij q p q p q p j i 4 tn tn if 繰り返すことによって行列全体の非対角成分が最終的に全て に収束することが期待される

37 7 q p B= P - A P A = P - A q p q p q q q p p p q p q q p p ' ' ' ' A :p 行 P: 列 ( = 他は ) A :q 行 P: 列 ( = 他は ) A :q A :p

38 8 q p B= P - A P A = P - A q p q p q q q p p p q p q q p p ' ' ' ' A :p 行 P: 列 ( = 他は ) A :q 行 P: 列 ( = 他は ) A :q A :p

39 ' ' ' ' p q ' ' 9 B= P - A P A = P - A A :p A :q A :p 行 P: 列 ( = 他は ) A :q 行 P: 列 ( = 他は ) ' ' p q p q p q p p ' ' p q q q p q p q

40 4 B= P - A P A = P - A ' ' ' ' (A :p P:p 列 ) (A :p )

41 B= P - A P A = P - A ' ' ' ' ' ' (A :p ) 4 ' ' (A :p P:p 列 )

42 B= P - A P A = P - A ' ' ' ' (A :q P:q 列 ) (A :q ) 4

43 B= P - A P A = P - A ' ' ' ' ' ' ' ' (A :q P:q 列 ) (A :q ) 4

44 44 B= P - A P A = P - A ' ' ' ' (A :p P:q 列 ) (A :p )

45 B= P - A P A = P - A ' ' ' ' 45 ' ' (A :p ) ' ' (A :p P:q 列 )

46 46 B= P - A P A = P - A ' ' ' ' (A :q P:p 列 ) (A :q )

47 B= P - A P A = P - A ' ' ' ' 47 ' ' (A :q ) ' ' (A :q P:p 列 )

48 48 tr B tr n 実行列の要素の平方和 T T T T A A A A ij A ij A ji ij ji ij P AP i tr: trce 対角和 P AP n n i j n n i j T T T T T T T T B B tr P A P P AP tr P A AP tr P A AP tr T T A AP P tr tr T AB trba n n i j T T T T B B tr A AP P tr A A ij ij n n i j n n i j 直交変換によって行列成分の平方和 ( 二乗和 ) は一定に保たれる

49 ヤコビ法 (Jcoi)(/5) 49 i j p q ij ij ij ij p q p q p q 直交変換 ( 相似変換 ) によって対角成分の二乗和が増加 行列全体の成分の二乗和は直交変換 ( 相似変換 ) によって一定に保たれている 非対角成分の二乗和が減少している 繰り返すことによって に近づく

50 ヤコビ法 (Jcoi)(4/5) 5 以下のように相似変換 行列に番号をつける (A=A ) A T これまでの結果から : Λ m lim m T P m P P P AT A P m m P m m... ここでは下記の対角行列である 行列の固有値は相似変換により不変に保たれるため の対角成分が行列 Aの固有値に他ならない Λ n

51 ヤコビ法 (Jcoi)(5/5) 5 前ページの相似変換は下記のように表される : TΛ AT 行列 T の第 列からなる列ベクトルを t とすると 下記が成立 : At t 列ベクトル t は固有値 に対応する固有ベクトルとなる

52 A 回目の反復で になった () () 成分の絶対値が再び大きくなっている ### Originl Mtri.E+.E+.E+.E+.E+.E+.E+.E+.E+.E+.E+.E+.E+.E+.E+.E+ の絶対値最大成分 () -7.88E- 回転角度 ### ITERATIONS E+ -.54E E-6.89E E- -.E E+.99E+.7E+.89E+.99E+.E+.E E-.7E+.E+.E+ の絶対値最大成分 () E- ### ITERATIONS 4.489E E E-.E E E- 4.54E+.79E+.7E+.E+.79E+.954E+ 7.94E E-.7E+ 7.94E-.E E- 5

53 A 回 になった成分の絶対値が再び大きくなっているが全体としては に近づいている ### ITERATIONS.7559E E+ -.48E+.E E- -.48E+ 5.57E+.96E+ -.97E-6.E+.96E+.954E+ -.8E E-.E+ -.8E- -.94E- 5.86E- ### ITERATIONS 4.684E E+ -8.7E- 5.8E E- -8.7E- 6.85E+ -.E E- 5.8E E-6.675E E E E E- -.94E E- ### ITERATIONS 5.688E E+.E E- -4.7E-.665E-6 6.9E+ -5.5E- -.88E E- -5.5E-.675E E- -4.7E- -.88E E- -.94E E-8 5

54 A ### ITERATIONS 7.94E- -.77E+ -.6E-.46E E- -.6E- 6.94E+.99E-6-4.9E-7 -.E- 4.45E-8.745E E- -.77E E E-.867E-.6797E- 54 ### ITERATIONS E- -.77E+ -.46E-6.46E E E E+.99E-6-4.9E-7 -.E- 4.45E-8.745E E- -.77E-.E E-.867E E- ### ITERATIONS E- -.77E+ -.46E-6.46E-6.E E E+.99E-6-4.9E E- 4.45E-8.745E E-.E+.E E-.867E- 4 絶対値最大成分 <.e- のため終了

55 55 A ### ITERATIONS E- -.77E+ -.46E-6.46E-6.E E E+.99E-6-4.9E E- 4.45E-8.745E E-.E+.E E-.867E- 4 ### vlues/vectors -.77E+ 7.7E E E-.9E- 6.94E+ 5.8E E- 5.45E-.56E-.745E+.994E- -6.E- 7.8E E E E- -.7E-.E E- 固有値 ~ に対応する固有ベクトル に対応する固有ベクトル に対応する固有ベクトル に対応する固有ベクトル

56 レポート課題 56 提出期限 : 月 日 ( 月 ):( レポートボックス設置 ) 下記の対称行列の固有値をヤコビ法によって求めよ 算出手順の概要 プログラムリスト ( プログラムを作成する場合 ) p.5-55 に相当する算出経過を添付すること 更に固有ベクトルを求めた場合は加点する 固有値のみ :7 点 ( 合格 ) + 固有ベクトル : 点 (T を保存しておく ) A

57 プログラム例 Fortrn(/4) suroutine JACOBI (AEVNOUTMAX) implicit REAL*8 (A-HO-Z) dimension A(NN) E(N) V(NN) integer P Q NM= N do iter= MAX 57 P= Q= do i= NM do j= i+ N if (ds(a(ij)).gt.ds(a(pq))) then P= i Q= j endif enddo enddo 最大の A(PQ) を探索 (P Q)

58 do iter= MAX ( ) プログラム例 Fortrn(/4) if (ds(a(pq)).lt..d-) eit if (ds(a(pp)-a(qq)).lt..d-4) then T= dtn(.d) else R=.d*A(PQ)/(A(PP)-A(QQ)) T= dtn(r)*.5d endif T : if tn 4 tn. 58 最大の A(PQ) が - 未満だったら終了

59 do iter= MAX プログラム例 Fortrn(/4) 59 ( ) S= d(t) C= d(t) do = N Ap= A(P) Aq= A(Q) A(P)= Ap*C + Aq*S A(Q)= -Ap*S + Aq*C enddo do = N Ap= A(P) Ap= A(Q) A(P)= Ap*C + Aq*S A(Q)= -Ap*S + Aq*C enddo

60 do iter= MAX プログラム例 Fortrn(/4) 6 ( ) S= d(t) C= d(t) do = N Ap= A(P) Aq= A(Q) A(P)= Ap*C + Aq*S A(Q)= -Ap*S + Aq*C enddo B= P - A P A = P - A p q

61 do iter= MAX プログラム例 Fortrn(/4) 6 ( ) S= d(t) C= d(t) B= P - A P A = P - A B = A P do = N Ap= A(P) Ap= A(Q) A(P)= Ap*C + Aq*S A(Q)= -Ap*S + Aq*C enddo ' ' ' p ' ' ' q

62 do iter= MAX プログラム例 Fortrn(4/4) 6 ( ) VAL=.d do i= N do j= N if (i.ne.j) VAL= VAL + A(ij)** enddo enddo [A] の非対角成分の二乗和の平方根を計算 VAL= dsqrt(val) write (*'(i8 pe6.6)') iter VAL enddo return end

Microsoft PowerPoint - Eigen.ppt [互換モード]

Microsoft PowerPoint - Eigen.ppt [互換モード] 固有値解析 中島研吾 東京大学情報基盤センター同大学院情報理工学系研究科数理情報学専攻数値解析 ( 科目番号 58) 行列の固有値問題 べき乗法 対称行列の固有値計算法 Eige Eige A 行列の固有値問題 標準固有値問題 (Stdrd Eigevle Problem を満足する と を求める : 固有値 (eigevle) : 固有ベクトル (eigevetor) 一般固有値問題 (Geerl

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

C言語による数値計算プログラミング演習

C言語による数値計算プログラミング演習 5. 行列の固有値問題 n n 正方行列 A に対する n 個の固有値 λ i (i=1,,,n) と対応する固有ベクトル u i は次式を満たす Au = λ u i i i a11 a1 L a1 n u1i a1 a a n u i A =, ui = M O M M an 1 an L ann uni これらはまとめて, つぎのように書ける 5.1 ヤコビ法 = Λ, = [ u1 u u

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

( ) 5 Reduction ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) A M n (R) n A λ

( ) 5 Reduction ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) A M n (R) n A λ 125 11 ( ) 5 Reduction 11.1 11.1.1 ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) 11.1.2 A M n (R) n A λi = 0 A C n 5 126 11 A n λ 1 (A) λ 2 (A) λ n (A) A

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 (008 年度版 ) 008/5/6 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数指南書第七の巻 直交行列, 実対称行列とその対角化, 次曲線池田勉龍谷大学理工学部数理情報学科 実行列, 正方行列, 実対称行列, 直交行列 a a N A am a MN 実行列 : すべての成分 a が実数である行列 ij ji ij 正方行列 : 行の数と列の数が等しい (

More information

12.pptx

12.pptx 数値解析 第 1 回 15 年 7 月 8 日 水 ) 理学部物理学科情報理学コース 1 講義内容 1. 非線形方程式の数値解法 1.1 はじめに 1. 分法 1.3 補間法 1.4 ニュートン法 1.4.1 多変数問題への応用 1.4. ニュートン法の収束性. 連立 1 次方程式の解法.1 序論と行列計算の基礎. ガウスの消去法.3 3 重対角行列の場合の解法.4 LU 分解法.5 特異値分解法.6

More information

本日の講義内容 固有値 ( 線形代数 ) と応用問題 振動問題 ネットワーク定常問題 固有値計算アルゴリズム 密行列 べき乗法 ヤコビ法 ハウスホルダー三重対角 + 分割統治法 + 逆変換 疎行列 ランチョス法 ヤコビ デビッドソン法 その他 固有値計算ソフトウェア ScaLAPACK EigenE

本日の講義内容 固有値 ( 線形代数 ) と応用問題 振動問題 ネットワーク定常問題 固有値計算アルゴリズム 密行列 べき乗法 ヤコビ法 ハウスホルダー三重対角 + 分割統治法 + 逆変換 疎行列 ランチョス法 ヤコビ デビッドソン法 その他 固有値計算ソフトウェア ScaLAPACK EigenE Computer simulations create the future 固有値計算法 RIKEN AICS HPC Spring School 今村俊幸理化学研究所 AICS 2014/3/6 9:00~12:00 本日の講義内容 固有値 ( 線形代数 ) と応用問題 振動問題 ネットワーク定常問題 固有値計算アルゴリズム 密行列 べき乗法 ヤコビ法 ハウスホルダー三重対角 + 分割統治法 +

More information

行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行

行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行 行列の反復解法 1. 点 Jacobi 法 数値解法の重要な概念の一つである反復法を取り上げ 連立一次方程式 Au=b の反復解法を調べる 行列のスペクトル半径と収束行列の定義を与える 行列のスペクトル半径行列 Aの固有値の絶対値の最大値でもって 行列 Aのスペクトル半径 r(a) を与える 収束行列 B が正方行列で のとき B を収束行列と呼ぶ 定理収束行列のスペクトル半径は である 簡単な証明もし

More information

行列、ベクトル

行列、ベクトル 行列 (Mtri) と行列式 (Determinnt). 行列 (Mtri) の演算. 和 差 積.. 行列とは.. 行列の和差 ( 加減算 ).. 行列の積 ( 乗算 ). 転置行列 対称行列 正方行列. 単位行列. 行列式 (Determinnt) と逆行列. 行列式. 逆行列. 多元一次連立方程式のコンピュータによる解法. コンピュータによる逆行列の計算.. 定数項の異なる複数の方程式.. 逆行列の計算

More information

スライド 1

スライド 1 数値解析 平成 30 年度前期第 10 週 [6 月 12 日 ] 静岡大学工学研究科機械工学専攻ロボット 計測情報分野創造科学技術大学院情報科学専攻 三浦憲二郎 講義アウトライン [6 月 12 日 ] 連立 1 次方程式の直接解法 ガウス消去法 ( 復習 ) 部分ピボット選択付きガウス消去法 連立 1 次方程式 連立 1 次方程式の重要性 非線形の問題は基本的には解けない. 非線形問題を線形化して解く.

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

åłºæœ›å•¤ï¼„åłºæœ›ã…Žã‡¯ã…‹ã…«ã†®æ±‡ã‡†æŒ¹

åłºæœ›å•¤ï¼„åłºæœ›ã…Žã‡¯ã…‹ã…«ã†®æ±‡ã‡†æŒ¹ 固有値と wxmaxima を使うと簡単に求めることができます. この頁 その他 固有値 固有ベクトル練習用の問題 (1) 2 次の正方行列が異なる 2 つの実固有値を持つ場合 引用元 : ラング 線形代数学 ( 下 ) ( 芹沢正三訳 / ちくま学芸文庫 )p.078 (2) 2 次の正方行列が 1 つの実固有値 (2 重解 ) を持つ場合 引用元 : ラング 線形代数学 ( 下 ) ( 芹沢正三訳

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

Microsoft PowerPoint - 三次元座標測定 ppt

Microsoft PowerPoint - 三次元座標測定 ppt 冗長座標測定機 ()( 三次元座標計測 ( 第 9 回 ) 5 年度大学院講義 6 年 月 7 日 冗長性を持つ 次元座標測定機 次元 辺測量 : 冗長性を出すために つのレーザトラッカを配置し, キャッツアイまでの距離から座標を測定する つのカメラ ( 次元的なカメラ ) とレーザスキャナ : つの角度測定システムによる座標測定 つの回転関節による 次元 自由度多関節機構 高増潔東京大学工学系研究科精密機械工学専攻

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

航空機の運動方程式

航空機の運動方程式 オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j]

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j] 機械振動論固有振動と振動モード 本事例では 板バネを解析対象として 数値計算 ( シミュレーション ) と固有値問題を解くことにより振動解析を行っています 実際の振動は振動モードと呼ばれる特定パターンが複数組み合わされますが 各振動モードによる振動に分けて解析を行うことでその現象を捉え易くすることが出来ます そこで 本事例では アニメーションを活用した解析結果の可視化も取り入れています 板バネの振動

More information

<4D F736F F F696E74202D C89F090CD8D758B D382E B93C782DD8EE682E890EA97705D>

<4D F736F F F696E74202D C89F090CD8D758B D382E B93C782DD8EE682E890EA97705D> 2005 年 6 月 8 日 ( 水 ) 数値解析講義前期水曜 3 限 3 年 (2005) システム情報学研究院情報理学専攻 青柳睦 aoyagi@cc.kyushu-u.ac.jp 研究室 : 情報基盤センター 5 階 502 講義内容 { 括弧 } の項目は Skip または参考程度 1. 超越方程式 ( 非線形方程式 ) の解法 1.1 2 分法 演習 1.2 { 補間法 } 1.3 ニュートン法

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

演習1

演習1 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2019.5.10 演習 1 山浦剛 (tyamaura@riken.jp) 講義資料ページ http://r-ccs-climate.riken.jp/members/yamaura/numerical_analysis.html Fortran とは? Fortran(= FORmula TRANslation ) は 1950

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

偏微分方程式、連立1次方程式、乱数

偏微分方程式、連立1次方程式、乱数 数値計算法 011/6/8 林田清 大阪大学大学院理学研究科 常微分方程式の応用例 1 Rutherford 散乱 ( 原子核同士の散乱 ; 金の薄膜に α 粒子をあてる ) 1 クーロン力 f= 4 0 r r r Ze y からf cos, si f f f y f f 粒子の 方向 y方向の速度と座標について dv Ze dvy Ze y, 3 3 dt 40m r dt 40m r d dy

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

スライド 1

スライド 1 数値解析 2019 年度前期第 13 週 [7 月 11 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [7 月 11 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ラグランジュ補間 T.Kanai, U.Tokyo 関数近似 p.116 複雑な関数を簡単な関数で近似する 関数近似 閉区間 [a,b] で定義された関数 f(x)

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

DVIOUT-17syoze

DVIOUT-17syoze 平面の合同変換と相似変換 岩瀬順一 要約 : 平面の合同変換と相似変換を論じる いま大学で行列を学び始めている大学一年生を念頭に置いている 高等学校で行列や一次変換を学んでいなくてもよい 1. 写像 定義 1.1 X, Y を集合とする X の各元 x に対し Y のただ一つの元 y を対応させる規則 f を写像とよび,f : X! Y のように書く f によって x に対応する Y の元を f(x)

More information

連立方程式の解法

連立方程式の解法 連立方程式の解法連立方程式をエクセルを用いて解く方法は以下の 2 種類が考えられます 1) エクセルの行列関数を用いる 2) VBA でヤコビ法やガウスザイデル法を用いる ここでは両方について説明します 1) エクセルの行列関数を用いる方法エクセルは表計算ですから行と列に並んだ数値を扱うのは得意です 連立方程式は次のように行列を用いて表すことができます 連立方程式が行列形式で表されることを考慮して解法を考えてみます

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - mp11-02.pptx

Microsoft PowerPoint - mp11-02.pptx 数理計画法第 2 回 塩浦昭義情報科学研究科准教授 shioura@dais.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題

More information

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード]

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード] ロボットの運動学 順運動学とは 座標系の回転と並進 同次座標変換行列 Denavit-Hartenberg の表記法 多関節ロボットの順運動学 レポート課題 & 中間試験について 逆運動学とは ヤコビアン行列 運動方程式 ( 微分方程式 ) ロボットの運動学 動力学 Equation of motion f ( ( t), ( t), ( t)) τ( t) 姿勢 ( 関節角の組合せ ) Posture

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

プログラミング基礎

プログラミング基礎 C プログラミング Ⅱ 演習 2-1(a) BMI による判定 文字列, 身長 height(double 型 ), 体重 weight (double 型 ) をメンバとする構造体 Data を定義し, それぞれのメンバの値をキーボードから入力した後, BMI を計算するプログラムを作成しなさい BMI の計算は関数化すること ( ) [ ] [ ] [ ] BMI = 体重 kg 身長 m 身長

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要 差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要になる その一つの方法が微分方程式を差分方程式におき直すことである 微分方程式の差分化 次の 1 次元境界値問題を考える

More information

memo

memo 数理情報工学演習第一 C プログラミング演習 ( 第 5 回 ) 2015/05/11 DEPARTMENT OF MATHEMATICAL INFORMATICS 1 今日の内容 : プロトタイプ宣言 ヘッダーファイル, プログラムの分割 課題 : 疎行列 2 プロトタイプ宣言 3 C 言語では, 関数や変数は使用する前 ( ソースの上のほう ) に定義されている必要がある. double sub(int

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数 指南書第壱の巻 モチベーションとゴール行列の和と積, 転置行列, ベクトルの内積行ベクトル 列ベクトル 池田勉龍谷大学理工学部数理情報学科 アルジェブラさんとリニアーくん ( Ms. Algebr nd Mr. Liner) アルジェブラさんとリニアーくんは, 線形代数 演習 Ⅰ の講義 演習 実習の手助けをするキャラクターです.

More information

2011年度 東京工大・数学

2011年度 東京工大・数学 東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

レッスン15  行列とグラフ

レッスン15  行列とグラフ レッスン 15 行列とグラフ このレッスンでは行列のグラフを定義し 簡単な応用例として 行列のグラフの強連結性 ( 各頂点から他のすべての頂点に至る道が存在する ) 行列の既約性 ( 順列行列相似変換による ブロック三角行列化が不可能 ) およびこの事実の 2 次元境界値問題の差分法による解法への応用をのべる グラフ理論入門のつもりで読んで頂きたい 15.1 行列のグラフ 与えられた次正方行列 =

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

フローチャートの書き方

フローチャートの書き方 アルゴリズム ( 算法 ) 入門 1 プログラムの作成 機械工学専攻泉聡志 http://masudahp.web.fc2.com/flowchart/index.html 参照 1 何をどのように処理させたいのか どのようなデータを入力し どのような結果を出力させるのか問題を明確にする 2 問題の内容どおりに処理させるための手順を考える ( フローチャートの作成 )~アルゴリズム( 算法 ) の作成

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - SolverDirect.ppt [互換モード]

Microsoft PowerPoint - SolverDirect.ppt [互換モード] 線形方程式の解法 : 直接法 中島研吾 東京大学情報基盤センター同大学院情報理工学系研究科数理情報学専攻数値解析 ( 科目番号 58) C 言語速習コース 以下の 日間実施 月 7 日 ( 金 )5:-8:( 予定 ) 翌日センター試験のため休講, 浅野地区は入試がなく施設利用可能 月 日 ( 火 ):-7:( 予定 ) 情報基盤センター ( 浅野 ) 本館 大演習室 http://www.tc.-too.c.jp/tcpge/ctmp/jhogo.pdf

More information

に対して 例 2: に対して 逆行列は常に存在するとは限らない 逆行列が存在する行列を正則行列 (regular matrix) という 正則である 逆行列が存在する 一般に 正則行列 A の逆行列 A -1 も正則であり (A -1 ) -1 =A が成り立つ また 2 つの正則行列 A B の積

に対して 例 2: に対して 逆行列は常に存在するとは限らない 逆行列が存在する行列を正則行列 (regular matrix) という 正則である 逆行列が存在する 一般に 正則行列 A の逆行列 A -1 も正則であり (A -1 ) -1 =A が成り立つ また 2 つの正則行列 A B の積 2 逆行列 逆行列の計算は 連立一次方程式を数値的に解くために利用される 気象学の分野では線形系の応答問題を数値的に解くときに用いられることも多い ここでは計算機を用いて逆行列を求める方法を学ぶ 2.1 はじめにたとえば 次のような連立一次方程式を解くことを考える このような 2 元連立一次方程式は 代入法や消去法によって容易に解くことができる 解法をプログラミング言語によって記述することも困難ではない

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

Microsoft PowerPoint - 7.pptx

Microsoft PowerPoint - 7.pptx 通信路 (7 章 ) 通信路のモデル 情報 送信者 通信路 受信者 A a,, a b,, b B m = P( b ),, P( b m ) 外乱 ( 雑音 ) n = P( a,, P( a ) n ) 送信情報源 ( 送信アルファベットと生成確率 ) 受信情報源 ( 受信アルファベッと受信確率 ) でもよい 生成確率 ) 受信確率 ) m n 2 イメージ 外乱 ( 雑音 ) により記号 a

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

Microsoft Word - reg2.doc

Microsoft Word - reg2.doc 回帰分析 重回帰 麻生良文. 前提 個の説明変数からなるモデルを考える 重回帰モデル : multple regresso model α β β β u : 被説明変数 epled vrle, 従属変数 depedet vrle, regressd :,,.., 説明変数 epltor vrle, 独立変数 depedet vrle, regressor u: 誤差項 error term, 撹乱項

More information

cp-7. 配列

cp-7. 配列 cp-7. 配列 (C プログラムの書き方を, パソコン演習で学ぶシリーズ ) https://www.kkaneko.jp/cc/adp/index.html 金子邦彦 1 本日の内容 例題 1. 月の日数配列とは. 配列の宣言. 配列の添え字. 例題 2. ベクトルの内積例題 3. 合計点と平均点例題 4. 棒グラフを描く配列と繰り返し計算の関係例題 5. 行列の和 2 次元配列 2 今日の到達目標

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

複素数平面への誘い

複素数平面への誘い いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示

More information

今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講?

今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講? 今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講? 数理生物学演習 第 11 回パターン形成 本日の目標 2 次元配列 分子の拡散 反応拡散モデル チューリングパタン 拡散方程式 拡散方程式 u t = D 2 u 拡散が生じる分子などの挙動を記述する.

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

untitled

untitled 主成分分析 (Prncpal Component Analy) で情報を集約する マルチスペクトル画像 なし が情報を集約する 69.68 77.97 85.73 96.7 98.8 画像 : NASA 除去できる一部に集約 あり.24.35 4.63 7.65 3.9 分散の比率 最大を 255, 最小を に正規化して表示 3 つの成分から画像を再生した 信号処理の手順 行列 A 共分散行列に対する

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

gengo1-11

gengo1-11 関数の再帰定義 自然数 n の階乗 n! を計算する関数を定義してみる 引数は整数 返却値も整数 n! = 1*2*3*... * (n 1)*n である ただし 0! = 1 とする int factorial(int n) int i, tmp=1; if( n>0 ) for(i=1; i

More information

NumericalProg09

NumericalProg09 数値解析および プログラミング演習 [08 第 9 回目 ] の解法 - 4. Ruge-Kua( ルンゲ クッタ 法 Ruge-Kua-Gill( ルンゲ クッタ ジル / ギル 法 5. 多段解法 解法の対象 常微分方程式 d( d 初期値条件 (, の変化に応じて変化する の値を求める. ( 0 ( 0 と 0 は,give 0 常微分方程式の初期値問題 と言う. 3 Ruge-Kua 法の導出

More information

進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2

進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2 連立 1 次方程式の数値解法 小規模な連立 1 次方程式の解法 消去法 Gauss 消去法 Gauss-Jordan 法 ( 大規模な連立 1 次方程式の解法 ) ( 反復法 ) (Jacobi 法 ) 講義では扱わない 1 進捗状況の確認 1. gj も gjp も動いた 2. gj は動いた 3. gj も動かない 2 パターン認識入門 パターン認識 音や画像に中に隠れたパターンを認識する 音素

More information

Microsoft PowerPoint - 4.pptx

Microsoft PowerPoint - 4.pptx while 文 (1) 繰り返しの必要性 while の形式と動作 繰り返しにより平 根を求める ( 演習 ) 繰り返しにより 程式の解を求める ( 課題 ) Hello. をたくさん表示しよう Hello. を画面に 3 回表示するには, 以下で OK. #include int main() { printf("hello. n"); printf("hello. n");

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a 9 8 m n mn N.J.Nigham, Accuracy and Stability of Numerical Algorithms 2nd ed., (SIAM) x x = x2 + y 2 = x + y = max( x, y ) x y x () (norm) (condition number) 8. R C a, b C a b 0 a, b a = a 0 0 0 n C n

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

2015年度 金沢大・理系数学

2015年度 金沢大・理系数学 05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と

More information

2010年度 筑波大・理系数学

2010年度 筑波大・理系数学 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

NS NS Scalar turbulence 5 6 FEM NS Mesh (A )

NS NS Scalar turbulence 5 6 FEM NS Mesh (A ) 22 3 2 1 2 2 2 3 3 4 NS 4 4.1 NS............ 5 5 Scalar turbulence 5 6 FEM 5 6.1 NS.................................... 6 6.2 Mes A )................................... 6 6.3.....................................

More information

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重 半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

Microsoft PowerPoint - program.ppt [互換モード]

Microsoft PowerPoint - program.ppt [互換モード] プログラミング演習 バージョン 1 担当教員 : 綴木馴 プログラムの決まりについて学ぶ おすすめする参考書 ザ C 戸川隼人サイエンス社 本日の予定 1. 授業の説明. 2. コンパイラーのインストール. プログラムの決まりについて学ぶ,P31 /* The most in C */ /* hello.c */ printf("hello,world n"); プログラムの決まり ( コメント )

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information