untitled
|
|
|
- あまめ しもとり
- 6 years ago
- Views:
Transcription
1 Sb-lattice -l [I.nsara, N.Dpin, H..kas, and.sndan, J.lloys and Coponds, 7(997, 0-0] by T.Koyaa
2 φ φ i i φ φ φ i= SER ref id ex x H (98.5K = + + ref id ex φ φ φ SER = x { H (98.5K} i= = RT x x φ φ φ φ, i i i φ φ φ i i i= = x x n φ ν φ φ φ ν, =, ( ν = 0 x x = + T + ν φ ν φ ν φ,,, fcc- -l φ φ SER i i i= x H = + + ref φ id φ ex φ (98.5K φ φ SER φ φ φ φ φ xi { i Hi (98.5K} xx, RT xi xi i= i= = + + = x ( H + x ( H + x x + RT( x x + x x SER SER l l l l l, l l = + ( x x + ( x x + ( x x 0 l, l, l, l l, l l, l [fcc-] 0 fcc l, fcc l, fcc l, fcc l, = T = T = T = T ' ( ( ( ( ( ( y y y y = + + ord ref ord id ord ex ord
3 ref ord ( ( ord = yi yj i : j i= j= id ord = RT y y + y y ( ( ( ( i i i i i= i= ex ord ( ( ( ord ( ( ( ord = yi yj yk i,: j k + yi yj yk k:, i j i= j> i k i= j> i k + i= j> i k= l> k y y y y ( ( ( ( i j k l ord i,:, j k l n ord ν ord ( ( ν i,: j k= i,: j k( i j ν = 0 y y n ord ν ord ( ( ν ki :, j = ki :, j( i j ν = 0 y y x = y + y ( ( i i i ( ( x = y = y i i i -l = + + ord ref ord id ord ex ord ( ( ord ( ( ( ord ( ( ( ord = yi yj i : j + yi yj yk i, j: k + yi yj yk k: i, j i= j= i= j> i k i= j> i k + y y y y + RT y i= j> i k= l> k ( ( ( ( ord ( ( ( ( i j k l i,:, j k l i yi + yi yi i= i= = y y + y y + y y + y y ( ( ( ( ( ( ( ( l l l: l l l: l : l : ( + y y y + y + y y y ( + y ( ( ( ( ( ( ( ( l l l, : l l, : l l l: l, : l, + y y y y ( ( ( ( l l l, : l, + RT y y + y y + y y + y y ( ( ( ( ( ( ( ( ( l l ( l l = + ( y y ord 0 ord ord ( ( l, : l l, : l l, : l l = + ( y y ord 0 ord ord ( ( l, : l, : l, : l = + ( y y ord 0 ord ord ( ( l: l, l: l, l: l, l = + ord 0 ord ord ( ( : l, : l, : l, l = ord 0 ord l, : l, l, : l, ( y y []
4 l, l, fcc fcc : l l l, fcc fcc l: l l, 0 0 l, : l l, : l, 0 0 l: l, = T = T = = = = 6 = = : l, l, : l l, = l, : l, = l: l, l, = : l, l, = 0 ( ( ( ( ( ( ( ( ( ( ( ( y y y y y y y y = + + ord ref ord id ord ex ord ref ord ( ( ( ( ord = yi yj yk yl i ::: j k l i= j= k= l= id ord = RT y y + y y + y y + y y ( ( ( ( ( ( ( ( i i i i i i i i i= i= i= i= ex ord ( ( ( ( ( ord ( ( ( ( ( ord = yi yj yk yl y i,::: j k l + yi yj yk yl y k:, i jl :: i= j> i k, l, i= j> i k, l, ( ( ( ( ( ord ( ( ( ( ( ord + yi yj yk yl y kli ::, j : + yi yj yk yl y kli :: :, j i= j> i k,, l i= j> i k,, l + + ( ( ( ( ( ( ord yi yj yk yl yp yq i,:,:: j k l p q i= j> i k= l> k p, q ( ( ( ( ( ( ( ord + yi yj yk yl yp yq yr i,:,: j k l p,: q r + i= j> i k= l> k p= q> p r + i= j> i k= l> k p= q> p r= s> r y y y y y y y ( ( ( ( ( ( ( ( i j k l p q r s y ord i,:,: j k l p,:, q r s dis ord ( ( ord = ( i + ( i, i ( i x y y x
5 ' d ( ( ( ( = ( l + ( + ( l + ( yl y yl y = y y + y y + y y + y y ord ( ( ( ( ( ( ( ( l l l: l l l: l : l : (, :, : ( :, :, + y y y + y + y y y + y ( ( ( ( ( ( ( ( l l l l l l l l l l ( ( ( ( ( ( ( ( ( ( ( ( ( ( + yl y yl y l, : l, + RT yl yl + y y + yl yl + y y = y y + y y + y y + y y ( ( ( ( ( ( ( ( l l l: l l l: l : l : ( ( (0 (0 ( ( (0 (0 + y ly ( yl ll, : + y l, : + yl y ( yl ll :, + y l :, + y y y y ( ( ( ( 0 l l l, : l, ( + y y ( y y ( y + y + y y ( y y y + y ( ( ( ( ( ( ( ( ( ( ( ( l l l l, : l l, : l l l l: l, : l, + RT y y + y y + y y + y y ( ( ( ( ( ( ( ( ( l l ( l l y y y ( l ( ( l ( ( ( = yl l: l + y l: + RT( yl + ( ( ( ( ( + y ( yl y ( yl + y y + y + y y + y y y ( ( 0 ( 0 ( ( 0 ( ( ( 0 l l, : l l, : l l: l, l l, : l, ( ( ( = yl : l + y : + RT( y + ( ( ( ( ( + yl ( yl y ( yl + y + y y ( y y ( ( ( ( ( l, : l l, : l l l: l, + y y + y + y y + y y y ( ( 0 ( 0 ( ( 0 ( ( ( 0 l l l, : l l, : l : l, l l l, : l, ( ( ( = yl l: l + y : l + RT( yl + + y + y y ( y y ( ( ( ( ( l, : l l, : l l : l, ( (0 ( (0 (0 ( ( (0 + yl y l, : l + y ( yl l: l, + y : l, + yl y y l, : l, ( ( ( ( + yl y ( yl y ( ( ( ( ( (, : ( ll+ y yl y yl ll :, + y l :,
6 y ( ( ( ( = yl l: + y : + RT( y + ( (0 ( (0 (0 ( ( (0 + yl y l, : + yl ( yl l: l, + y : l, + yl y yl l, : l, ( ( ( ( + yl y ( yl y ( ( ( ( ( (, : ( l+ yl yl y yl ll :, + y l :, = y + y, 0 = +, = = y + y, 0 = +, = x = y + y, 0 = +, = ( ( ( x = y + y, 0= +, = ( ( ( ( ( ( l l l ( ( ( ( ( ( l l l ( ( ( ( ( ( l l l l l l l y ( l ( ( ( y = y ( ( l ( ( yl = xl yl y = y = x + y ( ( ( l l l y ( l y ( l d ( ( ( ( = ( l + ( + ( l + ( yl y yl y d y y ( ( ( l = ( + + ( ( ( ( ( + ( ( l l l l yl y l = 0 ( + ( + ( ( = yl y yl y ( ( = ( yl y yl y ( 5
7 ( ( = ( ( yl y yl y ( ( ( yl l: l + y : l + RT( yl + + y y + y ( y + y + y y y ( ( ( ( ( ( ( ( ( + y y ( y y, : + y ( y y y :, + y :, ( ( ( yl l: + y : + RT( y + ( (0 ( (0 (0 ( ( (0 + y y + y ( y + y + y y y ( ( ( ( ( ( ( ( ( + yl y ( yl y l, : + yl ( yl y yl l: l, + y ( ( ( yl l: l + y l: + RT( yl + ( ( 0 ( 0 ( ( 0 ( ( ( 0 = + y ( y + y + y y + y y y ( ( ( ( ( ( ( ( ( + y ( yl y ( yl l, : l + y + y y ( y y ( ( ( yl : l + y : + RT( y + ( ( 0 ( 0 ( ( 0 ( ( ( 0 + yl ( yl l, : l + y l, : + yl y : l, + y y y ( ( ( ( ( ( ( ( ( + y ( y y ( y + y + y y ( y y ( ( 0 ( ( 0 ( 0 ( ( ( 0 l l, : l l l: l, : l, l l, : l, ( l l l l l l l l l l l, : l l l: l, : l, l l l, : l, ( : l, l l, : l l, : l l: l, l l, : l, l, : l l l: l, l l l, : l, l l l l, : l l, : l l : l, - y ( j = x i i 6
8 xll: l + x : l + RT( xl + + x x + x x + x + x x x + x x ( x x + x ( x x x + x xll: + x : + RT( x x x + x ( x + x + x x x xl x ( xl x l, : xl ( xl x xl l: l, + x xll: l + xl: + RT( xl = + x ( x + x + x x + x x x + x ( xl x ( xl l, : l + x l, : + x x ( x x xl: l + x : + RT( x x ( x + x + x x + x x x + xl ( xl x ( xl l, : + x + x x ( x x (, : ( :, :, l l, : l l l: l, : l, l l, : l, l l l l l l l l l l l, : l l l: l, : l, l l l, : l, + + ( : l, l l, : l l, : l l: l, l l, : l, l l l: l, l l l, : l l, : l : l, l l l, : l, l l, : l l : l, xll: l + x : l + x x + x ( x + x + x x x + xl x ( xl x l, : l + x ( xl x ( xl l: l, + x : l, l l, : l l l: l, : l, l : l, l l, : l, xll: + x : + x x + x ( x + x + x x x + xl x ( xl x l, : + xl ( xl x ( xl l: l, + x : l, l l, : l l: l, l: l, : l, l l l, : l, xll: l + xl: = + x ( x + x + x x + x x x + x ( xl x ( xl l, : l + x l, : + xl x ( xl x l: l, l l, : l l, : l l, : l l: l, l l, : l, xl : l + x : + x ( x + x + x x + x x x + xl ( xl x ( xl l, : l + x l, : + xl x ( xl x : l, l l, : l l, : l l, : l : l, l l l, : l, 7
9 0 0 xl ( l: l l: l: l, + x ( : l + : l, : xl x ( l, : l + l: l, : l, l, : + l: l, : l, 0 + xl x ( x xl l, : l, + xl x ( xl x ( l, : l l, : + x ( x x x + x x ( x x x + x ( :, :, ( :, :, l l l l l l l l l l l 0 xl ( l: l : l 0 l, : l + x ( l: + l, : : xl x ( l, : l l, : + l: l, + l, : l l, : : l, 0 = + xl x ( x xl l, : l, + x ( xl x xl l, : l + x x ( x x x + x + xl x ( xl x ( l: l, : l, ( l, : l l ( l l, : l l, : 0 0 xl ( l: l l: l: l, + x ( : l + : l, : xl x ( l, : l l, : + l: l, : l, + xl x ( x xl l, : l, + xl x ( xl x ( l, : l l, : + ( xl x x x xl xl ( xl l: l, + x : l, 0 0 xl ( l: l : l l, : l + x ( l: + l, : : 0 0 = + xl x ( l: l, : l, + ll, : l, : + xlx( x xl ll, :, + ( xl x x x xl xl ( xl l, : l + x l, : + xl x ( xl x ( l: l, : l, x ( + x ( l l: l l: l: l, : l : l, : x ( x ( l l: l : l l, : l l: l, : : + x x ( ( 0 + x x x x 0 0 l l, : l l, : l: l, : l, l l l, : l, x x ( + x x ( x x l l: l, : l, l, : l l, : l l l, : l, + x x ( x x ( + ( x x x x x x (x + x l l l, : l l, : l l l l l: l, : l, ( x x x x x x ( x + x x x ( x x ( = 0 l l l l l, : l l, : l l l: l, : l, x ( ( x + l l: : l l: l l: l, l, : l : l l: : : l, l, : + x x ( l l, : l l, : l: l, : l, + x x ( x x ( + 0 l l l, : l l: l, l, : : l, l, : l, + ( x x x x { x ( + x ( } = 0 l l l l: l, l, : l : l, l, : 8
10 + = l: : l l: l l: l, l, : l + = : l l: : : l, l, : = l, : l l, : l: l, : l, l, : l 0 l: l, l, : : l, l, : l, = 0 l: l, l, : l = 0 : l, l, : + = 0 = = 0 l: l : = l: = : l = + = 0 l: l, l: l, = : l, l, : l = = : l, l, : = l, : l l, : : l, + 0 l, : l l: l, l, : : l, l, : l, = 0 l, : l = 0 5 l, : = : l, = 0 0 : l, = + 0 l, : l = + + = + + = + = + + = l, : : l, 9
11 = l, : l = l, : 5 = ( + = ( = ( 5 0 l, : l, l, : l l: l, l, : : l, = = 0 l: l : = l: = : l = + + = = = = 0 l, : l 0 l, : 0 l: l, 0 : l, l: l, = : l, 5 = ( 0 l, : l, 5 = = = l: : l =, = l, : l l, : l: l, : l, 0
12 l: l : l: : l 0 l, : l 0 l, : 0 l: l, 0 : l, l: l, = = 0 = = = + + = + + = + w = + + = + + = + w = = + = w + = w = = : l, 5 = ( 0 l, : l, 5
2.
2. 10 2. 2. 1995/12006/111995/42006/12 2. 10 1995120061119954200612 02505 025 05 025 02505 0303 02505 250100 250 200 100200 5010050 100200 100 100 50100 100200 50100 10 75100100 0250512 02505 1 025051205
土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)
201022 1 18801970 19101970 19201960 1970-2 1975 1980 1986 1991 1994 3 1999 20022009 4 5 () () () () ( ( ) () 6 7 Ex Ex Ex 8 25 9 10 11 16619 123 12 13 14 5 18() 15 187 1811 16 17 3,000 2241 18 19 ( 50
syuryoku
248 24622 24 P.5 EX P.212 2 P271 5. P.534 P.690 P.690 P.690 P.690 P.691 P.691 P.691 P.702 P.702 P.702 P.702 1S 30% 3 1S 3% 1S 30% 3 1S 3% P.702 P.702 P.702 P.702 45 60 P.702 P.702 P.704 H17.12.22 H22.4.1
ID POS F
01D8101011L 2005 3 ID POS 2 2 1 F 1... 1 2 ID POS... 2 3... 4 3.1...4 3.2...4 3.3...5 3.4 F...5 3.5...6 3.6 2...6 4... 8 4.1...8 4.2...8 4.3...8 4.4...9 4.5...10 5... 12 5.1...12 5.2...13 5.3...15 5.4...17
1
1 - 2 - ... - 4 -... - 4 -... - 4 -... - 4 -... - 5 -... - 5 -... - 8 -... - 9 -... - 9 -... - 9 -... - 9 -... - 9 -... - 9 -... - 10 -... - 10 -... - 10 -... - 10 -... - 10 -... - 11 -... - 11 -... -
弾性定数の対称性について
() by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,
II 2 II
II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................
2
1 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234
○01 那覇市(7月変更)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 H26,2 H28.2 9 9 38 39 40 41 42 43 l ll 44 45 46 47 48 49 50 51 52 53 54 55 2733 14,500 56 57 58 59
2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)
1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a
DocuPrint C2424 取扱説明書(詳細編)
3 4 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1.1 1 1 2 3 4 5 30 1.2 1 31 1.3 1 32 33 1 1.4 1 1.4.1 34 1.4.2 1 2 35 1 1.5 1 1 2 3 4 36 5 6 7 8 9 37 1 1 10 11 12 13 38 14 15
特許侵害訴訟における無効の主張を認めた判決─半導体装置事件−
[*1847] 12 4 11 10 364 54 4 1368 1710 68 1032 120 X Y 6.8.31 29 3 875 X Y 9.9.10 29 3 819 Y 320275 391468 46 12 21 35 2 6 3513745 39 1 30 320249 1) 1 39 1 [*1848] 2) 3) Y 10 51 2 4 39 5 39 1 3 139 7 2
プリント
l l l l ll l l l l l l l l l l l 𩸽 l l l l l ll l l l l l l l l l ll l l l l l l l l ll ll l l l l l l ll ll ll l
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
sec13.dvi
13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2
1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2
2017 II 1 Schwinger Yang-Mills 5. Higgs 1
2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit
6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
Chap9.dvi
.,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim
Q E Q T a k Q Q Q T Q =
i 415 q q q q Q E Q T a k Q Q Q T Q = 10 30 j 19 25 22 E 23 R 9 i i V 25 60 1 20 1 18 59R1416R30 3018 1211931 30025R 10T1T 425R 11 50 101233 162 633315 22E1011 10T q 26T10T 12 3030 12 12 24 100 1E20 62
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (
1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +
- 1 - 2 ç 21,464 5.1% 7,743 112 11,260 2,349 36.1% 0.5% 52.5% 10.9% 1,039 0.2% 0 1 84 954 0.0% 0.1% 8.1% 91.8% 2,829 0.7% 1,274 1,035 496 24 45.0% 36.6% 17.5% 0.8% 24,886 5.9% 9,661 717 6,350 8,203 38.8%
IPA... 3... 4... 7... 8... 8... 10... 11... 13... 14... 21... 21... 23... 27 2
IPA 1 IPA... 3... 4... 7... 8... 8... 10... 11... 13... 14... 21... 21... 23... 27 2 IPA 2011103 3 1 139 2 4 10 4 5 6 7 8 9 2 ID 10 11 12 13 14 15 16 17 18 19 20 http://www.jpcert.or.jp/research/2008/inoculation_200808.pdf
layout_H1-H4
KI GOODS CATALOGUE 2012.8 304,500 77,700 7,350 174,700 156,700 71,400 9,450 6,970 7,350 389,550 269,870 251,870 71,400 133,400 9,450 6,970 787 787 294,000 9,450 303,450 612,270 178,500 77,700 140,700 203,700
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
untitled
1 4 4 6 8 10 30 13 14 16 16 17 18 19 19 96 21 23 24 3 27 27 4 27 128 24 4 1 50 by ( 30 30 200 30 30 24 4 TOP 10 2012 8 22 3 1 7 1,000 100 30 26 3 140 21 60 98 88,000 96 3 5 29 300 21 21 11 21
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i
i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6
) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)
4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7
0.1 I I : 0.2 I
1, 14 12 4 1 : 1 436 (445-6585), E-mail : [email protected] 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,
,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)
0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,
[ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
2
1 2 2005 15 17 21 22 24 25 67 95 3 1 2 3 4 17 4 5 6 7 8 9 PR PR PR 10 11 12 PR 419 844 1,490 950 590 20 12 50 13 12/20 2/28 3/30 14 17 349 666 15 59 6 11 15 17 14 15 15 17 3,525,992 15 59 15 17 18 910
『保守の比較政治学』
v vi vii viii ix x xi xii xiii xiv 3 3 3 9 20 25 25 27 30 32 37 xvi 43 47 57 57 60 66 72 74 81 81 83 86 91 xvii 98 101 111 111 111 115 118 125 128 135 135 136 143 151 157 xviii 163 163 167 173 179 185
Color MultiWriter 9900C/9800C ユーザーズマニュアル
l l l l l i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi xvii xviii xix xx xxi xxii xxiii xxiv xxv xxvi 1.1 1 2 3 1 1 4 5 1 1 6 7-1 1.2 1 8 1.3 1 9 1 1.3.1 10 1 2 11 1 1 1.3.2 12 13 1 1 14 1.4
_;-TIL._ I J --' ) /'. (t -/. a rlr. l 111!' Ir': i " b "It'_1_; -1r-_.-- I'!f' I :;(: 1 '1' 1 ' 't'l] S I) I "' :h "'t t-1-i ' J ilt'tt't 1 Jf(i - 7J_.1 _ f F FT'II 1 ' ft - JI '- ll i" ': "'1l li l!
1 I p2/30
I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)
V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H
199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)
