( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

Size: px
Start display at page:

Download "( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1"

Transcription

1 ( )/2 hara/lectures/lectures-j.html ( )/ sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S = {1, 2, 3, 4, 5, 6} i i i = 1, 2,..., 6 S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2),..., (6, 5), (6, 6)} = {(i, j) i, j = 1, 2,..., 6} (i, j) i j S = {,...} a) 1) 2 3

2 ( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1, 3, 5} {1, 2, 3, 4} {(1, j) j = 1, 2,..., 6} {(i, j) i + j = } {,..., } { } E, F E F E F E F EF E F E F E F = EF E F E c S\E E E E E = {H}, F = {F } E F = E c = {T } E F = S E = {(H, H), (H, T )}, F = {(H, T )}, G = {(T, H)}, D = {(T, T )} E F = {(H, T )} E G = E G = {(H, H), (H, T ), (T, H)} D c = E G A B = A B p j P (H) = P (T ) = 1/2 P (j) = 1/6 6 1 P (1) = 1 12, P (6) = 3 12, P (2) = P (3) = P (4) = P (5) = 1 6 S = {e 1, e 2,..., e N } e j p j j = 1, 2,..., N p j 0 1 S a 2) c 0 p j 1, N p j = 1 (1.2.1)

3 ( )/2 hara/lectures/lectures-j.html 3 E = {e 1, e 2, e 3,..., e m } m E = p j (1.2.2) E e 1 e 2... e m S p j (1.2.1) E (1.2.2) p j ( ) S S P S E P [E] 1. E S 0 P [E] 1 E 2. P (S) = 1 E 3. E 1, E 2 E 1 E 2 = P [ ] E 1 E 2 = P [E1 ] + P [E 2 ] S P P P P [E c ] = 1 P [E] E c E (1.2.3) E F = P [E] P [F ] (1.2.4) P [E F ] = P [E] + P [F ] P [EF ] (1.2.5) 2 p 1 p q 1 q {(H, H), (H, T ), (T, H), (T, T )} P [ ] = p, P [ ] = q (1.2.6) P [{(H, H), (H, T )}] = p, P [{(H, H), (T, H)}] = q (1.2.7) P [{(T, H), (T, T )}] = 1 p, P [{(H, T ), (T, T )}] = 1 q (1.2.8)

4 ( )/2 hara/lectures/lectures-j.html 4 P [{(H, H)}] = a, P [{(H, T )}] = b, P [{(T, H)}] = c, P [{(T, T )}] = d (1.2.9) a + b = p, a + c = q, c + d = 1 p, b + d = 1 q (1.2.10) P [{(H, H)}] = P [ ] = P [ ] P [ ] = pq (1.2.11) P [{(H, T )}] = P [ ] = P [ ] P [ ] = p(1 q) (1.2.12) P [{(T, H)}] = P [ ] P [ ] = (1 p)q (1.2.13) P [{(T, T )}] = P [ ] P [ ] = (1 p)(1 q) (1.2.14) n > 0 ( ) n! := n (n 1) (n 2) ! = 1 n n! 0 k n := k k!(n k)! ( ) r n n! 0 n i (i = 1, 2,..., r), n i = n := n 1 n 2 n 3 n r n 1! n 2! n 3! n r! 1 n n k Case 1: n k (a 1, a 2,..., a k ) a j j a j 1 n n n n n = n k (1.3.1) Case 2: n k (a 1, a 2,..., a k ) a j a 1 n a 2 a 1 (n 1) n P k n (n 1) (n 2) (n k + 1) = n! (n k)! (1.3.2) Case 3: n k case 2 (a 1, a 2,..., a k ) a j Case 2 k k! n! (n k)! 1 ( ) n k! = = n C k (1.3.3) k Case 3

5 ( )/2 hara/lectures/lectures-j.html ( ) 1 n (x + y) n = n k=0 ( ) n x k y n k k Case 4. Case 3 n n 1, n 2,..., n r r r n i = n n n 1 n n 1 n 2 n n 1 n 2 n 3 ( n n 1 ) ( n n1 n 2 ) ( ) ( ) n n1 n 2 n! 1 = n 3 n 1! n 2! n 3! n r! = n n 1 n 2 n 3 n r (1.3.4) ( ) (S, P ) E, F P [E F ] = P [E] P [F ] E F E, F (1.4.1) F E E F E F F E E, F F E ( ) (S, P ) E, F P [F ] 0 P [ E F ] := P [E F ] P [F ] (1.4.2) F E E F P [E F ] = P [E] E F F E P [E] P [E F ] P [F ] P [E] = P [E F ] P [F ] + P [E F c ] P [F c ] (1.4.3) P [E] 2.A b

6 ( )/2 hara/lectures/lectures-j.html 6 2.B C D E 2 6 1/ P [F E] E F E F (Bayes ) (S, P ) E, F S P [F E] = P [F E] P [E] = P [E F ] P [F ] P [E F ] P [F ] + P [E F c ] P [F c ] (1.5.1) 3 F i i = 1, 2,..., k F i F j = for k i j F i = S P [F j E] = P [F j E] P [E] = P [E F j] P [F j ] k P [E F i ] P [F i ] (1.5.2) (1.4.3) P [F E] = P [E] = P [F E] P [E] (1.5.3) k P [E F i ] P [F i ] (1.5.4) P [E] (1.5.4) E F i d

7 ( )/2 hara/lectures/lectures-j.html = r 1 I, II = r 2 I = r 0 I, II 0.9 = p 1 I 0.6 = p = p D A A I II II (1 p) p (1 q) q r p, q, r m A p P < 1/2 A m 1 1. A 2. A A 3. p, m

8 ( )/2 hara/lectures/lectures-j.html , 2, 3 1/3 i- p i p i 1 1- i- i = 1, 2, (Laplace) i = 0, 1, 2,..., k (k + 1) i i/k 1. i i = 0, 1, 2,..., k 2. n i i = 0, 1, 2,..., k 3. (n + 1) 4. 2, 3 k 2, , 2, 3 200m i p i i = 1, 2, 3 i p 1 = 0.2, p 2 = 0.4, p 3 = , 2

9 ( )/2 hara/lectures/lectures-j.html A X X 1, 2, 3, 4, 5, 6 P [X = 1] = P [X = 2] =... = P [X = 6] = 1 6 (2.1.1) Y 0 10 Y 0, 10 P [Y = 0] = 4 6 = 2 3, P [Y = 10] = 2 6 = 1 3 (2.1.2) 2.1.B Z Z 2, 3, 4,..., 12 P [Z = 2] = 1 36, P [Z = 3] = 2 36 = 1, (2.1.3) 18 X x 1, x 2,..., x n X x i P [X = x i ] i = 1, 2,..., n P [X = x i ] x i X x 1, x 2,..., x n n ) P [X = x i ] = p i ( p i = 1 (2.2.1) a b , b

10 ( )/2 hara/lectures/lectures-j.html 10 X n E[X] := X := x i p i (2.2.2) E[X] X X [ (X ) ] 2 Var[X] := E E[X] = E [ X 2] E[X] 2 = X 2 (X X 2 ) 2 = X (2.2.3) σ := Var[X] Var[X] = σ 2 X p i F I[F ] 1 (F ) I[F ] := 0 ( F ) (2.2.4) P [F ] = E[ I[F ] ] = I[F ] (2.2.5) F I[F ] 2.2 c A X [0, 1] 2.3.B Y 2.3.C Z 2.3.A X X X = 1 2 P [X = x i ] P [X = x i ] P [a X b] = f(x) d b a f(x)dx (2.3.1)

11 ( )/2 hara/lectures/lectures-j.html A f(x) = B 2.3.C X f(x) (2.2.2) X E[X] := X := x f(x) dx (2.3.2) X [ (X ) ] 2 Var[X] := E E[X] = E [ X 2] E[X] 2 = X 2 (X X 2 ) 2 = X (2.3.3) X σ := Var[X] Var[X] = σ e X x 1, x 2,..., x n Y y 1, y 2,..., y m P [X = x i Y = y j ] = p ij (2.4.1) Y X m m P [X = x i ] = P [X = x i Y = y j ] = p ij (2.4.2) X Y P [Y = y j ] = n n P [X = x i Y = y j ] = p ij (2.4.3) (S, P ) X, Y a > 0 E[X + Y ] = E[X] + E[Y ] (2.4.4) E[aX] = ae[x] (2.4.5)

12 ( )/2 hara/lectures/lectures-j.html 12 Var[aX] = a 2 Var[X] (2.4.6) X Y Cov(X, Y ) := (X X )(Y Y ) (2.4.7) Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X, Y ), (2.4.8) X, Y Proof. X x i i = 1, 2,..., N Y y j j = 1, 2,..., M P [X = x i Y = y j ] = p ij E[X + Y ] = ij p ij (x i + y j ) = ij p ij x i + ij p ij y j (2.4.9) M p ij = P [X = x i Y ] = P [X = x i ] N ( M ) N p ij x i = x i p ij = x i P [X = x i ] = E[X] (2.4.10) ij p ij y j = E[Y ] (2.4.11) ij E[X + Y ] = E[X] + E[Y ] E[aX] N N E[aX] = P [X = x i ](ax i ) = a P [X = x i ] x i = a E[X]. (2.4.12) Var[aX] E[(aX) 2 ] = E[a 2 X 2 ] = a 2 E[X 2 ] (2.4.13) Var[aX] = E[(aX) 2 ] ( E[aX] ) 2 = a 2 E[X 2 ] ( ae[x] ) 2 = a 2 E[X 2 ] a 2 ( E[X] ) 2 = a 2 Var[X]. (2.4.14) (2.4.8) X Y A, B R P [X A Y B] = P [X A] P [Y B] (2.4.15) X Y X Y E[XY ] = E[X] E[Y ], Var[X + Y ] = Var[X] + Var[Y ] (2.4.16) n n N n N n 5 (1, 3, 2, 1, 1) 1, 2, 3 N 5 = 3

13 ( )/2 hara/lectures/lectures-j.html M N M X, Y f(x, y) P [a < X b c < Y d] = b a dx d c dy f(x, y) f X, Y Y X X P [a < X b] = P [a < X b < Y ] = X f 1 (x) = dy f(x, y) b a [ ] dx dy f(x, y) X, Y,..., Z P [X = x i, Y = y j,..., Z = z k ] = P [X = X i ] P [Y = y j ]... P [Z = z k ] (2.4.17) n X 1 + X X n = X 1 + X 2 + X n (2.4.18) X j X 1, X 2,... X 1 + X X n = n X 1 (2.4.19) n n n Cov Cov Var[X 1 + X X n ] = Var[X 1 ] + Var[X 2 ] + + Var[X n ] (2.4.20) n Var[X 1 + X X n ] = nvar[x 1 ] (2.4.21) Var[X1 + X X n ] = n Var[X 1 ] (2.4.22) n n n n n

14 ( )/2 hara/lectures/lectures-j.html (S, P ) X A R P [a X b] = I[a X b] (2.5.1) I[ ] ( ) X a P [X a] X a (2.5.2) ( ) X µ Var[X] a P [ X µ a] Var[X] a 2 (2.5.3) a (2.5.1) X X I[X a] a I[X a] = a I[X a] = a P [X a]. (2.5.4) Var[X] = X µ 2 X µ 2, I[X a] a 2 I[X a] = a 2 I[X a] = a 2 P [X a]. (2.5.5) a, b > 0 P [ X µ a] X µ n a n (a > 0, n ) (2.5.6) e b X µ P [ X µ a] e ab. (2.5.7) X e bx P [X a] e ab (2.5.8) µ σ P [a X b] = b a 1 [ exp 1 (x µ ) ] 2 dx (2.6.1) 2π σ 2 σ

15 ( )/2 hara/lectures/lectures-j.html 15 N(µ, σ 2 ) X µ σ 2 σ µ = 0, σ = 1 1 Φ(x) = x Φ(x) := x e y2 /2 2π dy e y2 /2 2π dy (2.6.2) x Φ(x) X N(µ, σ 2 ) Z := X µ σ (2.6.3) Z X Z [ a µ P [a X b] = P σ Z b µ ] σ (2.6.4)

16 ( )/2 hara/lectures/lectures-j.html A B p 3.C A n X 1, X 2, X 3,... S n := X i X i i X i = 1 X i = 0 S n n X 1, X 2,... X 1, X 2,... X 1 X 2 X 3 X x i p i Y y j q j i = 1, 2,..., n j = 1, 2,..., m X, Y P [ X = x i Y = y j ] = P [X = x i ] P [Y = y j ] X 1, X 2,... X i i i X i a

17 ( )/2 hara/lectures/lectures-j.html 17 Theorem ( ) X 1, X 2,... S n := µ X i Var[X 1 ] Var[X 1 ] < n X i X i [ lim P Sn ] n n µ = 0 (3.1.1) ϵ > 0 [ S ] n P n µ > ϵ Var[X 1] n ϵ 2 (3.1.2) S n /n n µ S n n S n n X 1, X 2,... S n (S, P ) X, Y a > 0 X, Y E[X + Y ] = E[X] + E[Y ], E[aX] = ae[x] (3.1.3) Var[aX] = a 2 Var[X] (3.1.4) Var[X + Y ] = Var[X] + Var[Y ]. (3.1.5) n E[S n ] = E[X i ] = nµ, Var[S n ] = n Var[X i ] = nvar[x 1 ], [ S ] n P n µ > ϵ Var [ Sn E [ Sn ] = µ (3.1.6) n ] = 1 n n 2 Var[S n] = 1 n Var[X 1] (3.1.7) 1 [ ϵ 2 VarVar Sn ] = Var[X 1] n n ϵ 2 (3.1.8) S n n S n /n 1/n n S n /n X x i i = 1, 2,..., N Y y j j = 1, 2,..., M P [X = x i Y = y j ] = p ij E[X + Y ] = ij p ij (x i + y j ) = ij p ij x i + ij p ij y j (3.1.9)

18 ( )/2 hara/lectures/lectures-j.html 18 M p ij = P [X = x i Y ] = P [X = x i ] N ( M ) N p ij x i = x i p ij = x i P [X = x i ] = E[X] (3.1.10) ij p ij y j = E[Y ] (3.1.11) ij E[X + Y ] = E[X] + E[Y ] E[aX] N N E[aX] = P [X = x i ](ax i ) = a P [X = x i ] x i = a E[X]. (3.1.12) Var[aX] E[(aX) 2 ] = E[a 2 X 2 ] = a 2 E[X 2 ] Var[aX] = E[(aX) 2 ] ( E[aX] ) 2 = a 2 E[X 2 ] ( ae[x] ) 2 = a 2 E[X 2 ] a 2 ( E[X] ) 2 = a 2 Var[X]. (3.1.13) (3.1.5) E[X i ] = 1 2, Var[X i] = 1 4 [ S n P n 1 ] > ϵ 2 1 4n ϵ 2 (3.1.14) i X i X i n S n := X i S n n n S n n X X N S N S N N i X i S N = X i n S n n

19 ( )/2 hara/lectures/lectures-j.html X 1, X 2,... X i µ N [ 1 ] S N := X i lim P N N S N µ = 0 S N N X i i = 1, 2,... S N := N a < b µ := E[X i ], σ := Var[X i ] (3.2.1) X i, Z N := 1 σ N N ( Xi µ ) = S N S N σ N (3.2.2) [ ] b lim P e x2 /2 a Z N b = dx (3.2.3) N a 2π S N S N Nµ N N S N Nµ N N S N Nµ N Z N N Z N N p i 1 0 X i S N = 1 N N X i N N m P [ S N = m ] = ( ) N p m (1 p) N m, m ( ) N N! := N C m := m m! (N m)! p (3.2.4) q := 1 p X 1 = 1 p + 0 (1 p) = p, VarX 1 = (1 p) 2 p + (0 p) 2 (1 p) = p(1 p) = pq (3.2.5) b

20 ( )/2 hara/lectures/lectures-j.html 20 Z N Z N := S N Np pqn (3.2.6) N Z N N N 49% 51% N = 100, 1000, % 51% N 49% 51% 0.95 N X i X i = 1 6 ( ) = 7 2, (Xi ) 2 = 1 6 ( ) = 91 6, (3.2.7) X i Sn n Var[X i ] = 91 ( 7 ) = 2 12, σ = 12 = X 1 = 7 [ 2, Var Sn ] n = 1 n Var[X 1] = 1 35 n 12 (3.2.8) (3.2.9) Sn n 7 2 [ S n P n 7 ] > ϵ ϵ 2 n (3.2.10) i i = 0, 1, 2, 3 ( ) 3 (1 i ( 3 ) 3 i P [X = i] = (3.2.11) i 4) 4 X = 3 4, Var[X] = 9 16, σ = 3 4 (3.2.12) X S N = N X = 3 4 N, Var[S N ] = N Var[X] = 9 N. (3.2.13) Z N i X i = 1 X i = 0 S N = N X i X i = 1 2, VarX i = 1 4, σ = 1 2 (3.2.14)

21 ( )/2 hara/lectures/lectures-j.html 21 Z N Z N = S N N 2 2S N N = (3.2.15) 1 4 N N 49% 51% 0.49 S N N 0.51 S N N Z N N 50 (3.2.16) [ P 0.49 S ] [ N N 0.51 = P Z N N ] N N 50 e z2 /2 dz (3.2.17) 2π N 50 N 1/5 N = 100 e z2 /2 dz , 1/5 2π (3.2.18) 10/5 N = 1000 e z2 /2 dz , 2π (3.2.19) N = /5 2 2 e z2 /2 dz , (3.2.20) 2π N 50 N 50 e z2 /2 dz 0.95 (3.2.21) 2π N Φ Φ(x) = x e z2 /2 (3.2.21) Φ b e z2 /2 a dz = 2π b e z2 /2 a < 0 ae z2 /2 dz = 2π N 50 N 50 e z2 /2 (3.2.21) ( N 2Φ 50 dz ( N = Φ 2π 50 dz 2π e z2 /2 a dz (3.2.22) 2π a e z2 /2 dz = Φ(b) Φ(a) (3.2.23) 2π dz = 1 Φ( a) (3.2.24) 2π ) N {1 Φ( )} = 2Φ( 50 ) Φ ( N ) = N ) 1 (3.2.25) 50 (3.2.26) N = N ( )2 = 9604 (3.2.27) N 9600

22 ( )/2 hara/lectures/lectures-j.html p p p p ( 1 ) (4.2.1) a b. 10 a

23 ( )/2 hara/lectures/lectures-j.html 23 a b α % 1% ( ) 10 (1 6 ( 1 ) = (4.2.2) 6 2)

24 ( )/2 hara/lectures/lectures-j.html fair 10 fair N N N 5% 1% n n 5% 1% N N 2 N 0.05 N 5 5% N 7 1% 4.4 X P [X = 0] = P [X = 10] = , P [X = 1] = P [X = 9] =, P [X = 2] = P [X = 8] = , (4.2.3) P [X = 3] = P [X = 7] = , P [X = 4] = P [X = 6] =, P [X = 5] = (4.2.4)

25 ( )/2 hara/lectures/lectures-j.html n = 9 9 1% n = 9 n = 10 P [X 9] = (4.2.5) % n = 0, 10 5% n = 0, 1, 9, 10 n = 2, % n n 5% 1% n n = 5000 n < 5000 P [X n] < 0.01 (4.2.6) n σ = 1/2 Z N = 2 ( n N ) = n 5000 N 2 50 (4.2.7) Z N N = P [X n] = (n 5000)/50 e z2 /2 e z2 /2 (5000 n)/50 dz 2π dz = 1 Φ ( 5000 n). (4.2.8) 2π 50

26 ( )/2 hara/lectures/lectures-j.html 26 1 Φ(x) 1% 5000 n = n 4880 (4.2.9) n = 5000 n % 5000 n 50 n = n 4920 (4.2.10) p = 1 2 p 10 p p 10 p p 10 p = 1 10 p = 1 2 p 10 p p p p 1% p % p p 10

27 ( )/2 hara/lectures/lectures-j.html p p X 1, X 2, X 3,... X j j N X 1, X 2,..., X N µ = E[X 1 ] σ = Var[X 1 ] N 2 X N = 1 N N X j (4.4.1) N V N = 1 N 1 N ( Xj X ) 2 N (4.4.2) XN = X1 = µ, VN = Var[X1 ] = σ 2 (4.4.3) X N V N N µ σ 2 N µ X N µ N X 1, X 2,..., X N Z N = 1 σ N N Z N N ( Xj µ ) (4.4.4) b lim P [ a < Z e z2 /2 N < b ] = dz (4.4.5) N a 2π µ σ P [ a < Z N < b ] b a e z2 /2 2π dz (4.4.6) Z N N X 1, X 2,..., X N Z N σ NZ N = N ( Xj µ ) = N X N ( N Nµ = Z N = XN µ ) (4.4.7) σ

28 ( )/2 hara/lectures/lectures-j.html 28 Z N P [ a < Z N < b ] 1 α a, b 1 α = b a e z2 /2 2π dz (4.4.8) a, b a, b a = b 1 α = b b e z2 /2 2π dz (4.4.9) b Z N < b X N µ N σ XN µ < b X N µ < b σ N (4.4.10) σ µ σ t- N V N N σ 2 σ VN µ X N µ < b VN N (4.4.11) cm t- X i X i µ σ 2 Z N := 1 σ N N (X i µ) (4.5.1) N Z N 1 N N Y N := (X i µ) = ( N VN V X N N µ), XN := X i, VN := 1 N ( Xi N N 1 X ) 2 N (4.5.2) X i Y N (N 1) t- t- t- (4.5.1) µ σ µ σ (4.5.2) Y N µ σ V N X N 100 t- σ X i N Y N t-

29 ( )/2 hara/lectures/lectures-j.html ) 20 n 20 n n n 20 n n n n 6/30 n n 1 1 n n 1 n N n n n n x j j = 1, 2,..., n µ = := 1 n n x j, V = := 1 n n (x j µ) 2, σ = := V (5.1.1) X S µ µ σ 2 /n n n n X j nσ 2 n µ nσ 2 /n 2

30 ( )/2 hara/lectures/lectures-j.html 30 σ n σ σ Z := µ µ σ/ n = n µ µ σ Z 0.95 (5.1.2) Z < 1.96 (5.1.3) Z < 1.96 = n µ µ < 1.96 = µ µ < σ 1.96 σ n (5.1.4) 0.95 µ µ, σ µ 95% n 0.95 µ % ) n µ 175cm 175cm µ 0 H 0 : µ = µ 0 (5.1.5) 5% Z := µ µ 0 σ/ n = n µ µ 0 σ (5.1.6) (a) H 1 : µ µ 0 Z H 0 Z > 1.96 µ 0 µ > 1.96 σ n (5.1.7) H 0 µ µ 0 µ = µ 0 H 0 5% (b) H 1 : µ > µ 0 Z 0.05 H 0 H 0 µ > µ 0 (c) H 1 : µ < µ 0 Z > 1.65 µ µ 0 > 1.65 σ n (5.1.8) Z 1.65 σ < 1.65 µ µ 0 < (5.1.9) n H 0 µ < µ 0

31 ( )/2 hara/lectures/lectures-j.html p n m p n m p n m p p := m n (5.1.10) p p n X ( ) n P [X = m] = p m (1 p) n m (5.1.11) m j 1, 0 X j X = n X j X j n Z = X pn np(1 p) (5.1.12) p p 95% Z < 1.96 m pn np(1 p) < 1.96 (5.1.13) p m n p p p p < 1.96 (5.1.14) p(1 p) n n p p n p p < 1.96 n p(1 p) (5.1.15) p(1 p) 1/2 1/ n p p n p p < 1.96 p(1 p) n (5.1.16) p = 0.5 H 0 : p = p 0 p 0

32 ( )/2 hara/lectures/lectures-j.html 32 H 0 Z = n (a) H 1 : p p 0 Z > 1.96 X np 0 np0 (1 p 0 ) = p p 0 p0 (1 p 0 ) n (5.1.17) H 0 p p 0 (b) H 1 : p > p 0 p p 0 p0 (1 p 0 ) n > 1.96 (5.1.18) Z > 1.65 p p 0 p0 (1 p 0 ) n > 1.65 (5.1.19) H 0 p > p 0 (c) H 1 : p < p 0 Z < 1.65 p p 0 p0 (1 p 0 ) n < 1.65 (5.1.20) H 0 p < p n j n j j = 1, 2,..., 6 j p j p 0 j 2 3 H 0 : j p j p 0 j j = 1, 2,..., 6 j X j X j np j n j np j n j p j H 0 6 X 2 (n j np 0 j := )2 (5.1.21) (6 1) = 5 χ 2-2.4b n j X 2 n j np 0 j X 2 > χ 2 6 1(0.05) (5.1.22) 5% H 0 χ 2 - np 0 j

33 ( )/2 hara/lectures/lectures-j.html b n 1 n 1g n 2 n 2g Π 1, Π 2 2 j = 1, 2 Π j n j n jg p j 19 2 n 1 n m 1 2 m 2 0 p 1 p 2 95% 100% n 1g n 1b n 1 = n 1g + n 1b 2 n 2g n 2b n 2 = n 2g + n 2b m g = n 1g + n 2g m b = n 1b + n 2b n = n 1 + n 2 p j p j := n jg n j (j = 1, 2) (5.2.1) j = 1, 2 ( N p j, p j(1 p j ) ) n j p 1 p 2 ( N p 1 p 2, p 1 (1 p 1 ) + p 2(1 p 2 ) ) n 1 n 2 (5.2.2) (5.2.3) Z = ( p 1 p 2 ) (p 1 p 2 ) p1 (1 p 1 ) n 1 + p 2(1 p 2 ) n 2 (5.2.4) p 1 p 2 95% Z Z = z < 1.96 ( p 1 p 2 ) (p 1 p 2 ) p1 (1 p 1 ) n 1 + p 2(1 p 2 ) n 2 < 1.96 (5.2.5) 19

34 ( )/2 hara/lectures/lectures-j.html 34 1 p 1 p 2 p j p j ( p 1 p 2 ) (p 1 p 2 ) p1 (1 p 1 ) n 1 + p 2(1 p 2 ) n 2 (p 1 p 2 ) = ( p 1 p 2 ) ± 1.96 < 1.96 (5.2.6) p 1 (1 p 1 ) n 1 + p 2(1 p 2 ) n 2 (5.2.7) p 1 p 2 95% b H 0 : p 1 = p 2 H 0 H 0 p j p ( p 1 p 2 ) Z = ( 1 p(1 p) + 1 ) (5.2.8) n 1 n 2 p p 2 p = n 1g + n 2g n 1 + n 2 = m g n (5.2.9) Z ( p 1 p 2 ) = ( 1 p(1 p) + 1 ) (5.2.10) n 1 n 2 H 1 : p 1 p 2 Z > 1.96 H 0 p 1 p 2 ( 1 p(1 p) + 1 ) > 1.96 ( p 1 p 2 ) 2 ( 1 p(1 p) + 1 ) > (1.96) (5.2.11) n 1 n 2 n 1 n 2 H 0 n j, n jg (3.23) H 1 : p 1 > p 2 p 1 p 2 ( 1 p(1 p) + 1 ) > 1.65 (5.2.12) n 1 n 2 H 0 H 1 : p 1 < p 2 p 1 p 2 ( 1 p(1 p) + 1 ) < 1.65 (5.2.13) n 1 n 2 H 0 20 X = a ± b a b X a + b

35 ( )/2 hara/lectures/lectures-j.html a X j j = 1, 2,..., n N(µ j, σj 2) Y = X 1 + X X n N(µ, σ 2 ) µ = µ 1 + µ µ n σ 2 = σ1 2 + σ σn 2 X j j = 1, 2,..., n Y = X1 2 + X Xn 2 n χ 2 - Y f(y) = 1 ( y ) n/2 1 e y/2 2Γ(n/2) 2 (5.3.1) y 0 Y n χ 2 P [Y > C] = α C χ 2 n 1(α) 100α% p.49 X Y k χ 2 - X, Y T := X Y/k (5.3.2) k t- ( k + 1 ) Γ f(x) = 2 ( k ) πk Γ 2 ) (1 + x2 (k+1)/2 (5.3.3) k P [ T > C] = α C t k (α)

36 ( )/2 hara/lectures/lectures-j.html : χ 2 n(α) n α X 1, X 2,..., X n N(µ, σ 2 ) µ n σ T := n 1 ( µ µ) σ (5.3.4) (n 1) t- X 1, X 2,..., X n N(µ, σ 2 ) µ n V σ χ 2 := σ2 σ 2 = V V V = σ 2 (5.3.5) (n 1) χ 2 - V := 1 n 1 n (x j µ) 2 (5.3.6) (n 1) T T := ( µ µ) n n 1 = ( µ µ) (5.3.7) σ V χ 2 χ 2 := σ2 σ 2 = V V = (n 1)V V (5.3.8) χ 2 n 1(0.05) χ 2 n 1(0.01)

37 ( )/2 hara/lectures/lectures-j.html 37 1 µ σ n µ σ T T := n 1 ( µ µ) σ = µ µ σ/ n 1 (5.3.9) n 1 t- T < t n 1 (0.05) T µ 95% µ µ < t n 1 (0.05) σ n 1 (5.3.10) µ 95% t n 1 (0.05) 2 1 µ = µ 0 µ 0 H 0 : µ = µ 0 T = µ µ 0 σ/ n 1 (5.3.11) H 0 µ µ 0 T H 0 (n 1) t- H 1 : µ µ 0 T > t n 1 (0.05), µ µ 0 σ/ n 1 > t n 1(0.05) H 0 (5.3.12) H 1 : µ > µ 0 5% 10% T > t n 1 (0.10), µ µ 0 σ/ n 1 > t n 1(0.10) H 0 (5.3.13) H 1 : µ < µ 0 T < t n 1 (0.10), µ µ 0 σ/ n 1 < t n 1(0.10) H 0 (5.3.14) t µ σ n µ σ χ χ 2 := σ2 σ 2 = V V (5.3.15)

38 ( )/2 hara/lectures/lectures-j.html 38 (n 1) χ 2 - χ 2 V σ (n 1) χ V = σ 2 V 95% χ 2 n 1(0.975) < V V < χ2 n 1(0.025) (5.3.16) V 95% χ χ N(µ 1, σ 2 ) N(µ 2, σ 2 ) µ 1, µ 2, σ 2 1 n 1 µ 1 σ 1 2 n 2 µ 2 σ 2 µ 1 µ 2 t- µ 1 N(µ 1, σ 2 /n 1 ) µ 2 N(µ 2, σ 2 /n 2 ) µ 1 mu 2 N(µ 1 µ 2, σ 2 /n 1 + σ 2 /n 2 ) Z = ( µ 1 µ 2 ) (µ 1 µ 2 ) 1 n n 2 σ (5.3.17) µ 1 µ 2 σ σ 2 V = n 1 σ n 2 σ 2 2 n 1 + n 2 2 T = ( µ 1 µ 2 ) (µ 1 µ 2 ) 1 n n 2 V (5.3.18) (5.3.19) T µ 1 µ 2 T T (n 1 + n 2 2) t- p.88 t- µ 1 = µ 2 t-

39 ( )/2 hara/lectures/lectures-j.html V = IR n (V 1, I 1 ), (V 2, I 2 ),..., (V n, I n ) R 1 (x, y) y = ax + b a, b n (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) a, b 1 b = 0 n n x 1, x 2,..., x n n N(0, σx) 2 n y 1, y 2,..., y n n N(0, σy) 2 σ x, σ y a, b n y j = ax j + b j y j (ax j + b) = 0 (j = 1, 2,..., n) (6.1.1) ϵ j ϵ j = y j (ax j + b) (6.1.2) y j, x j y j (ax j + b) ϵ j N(0, σ 2 ) a, b a, b y = ax + b y = a x + b ϵ j := y j (a x j + b ) (6.1.3) a, b ϵ j = y j (a x j + b ) = y j (ax j + b) (a a)x j (b b) = ϵ j (a a)x j (b b) (6.1.4)

40 ( )/2 hara/lectures/lectures-j.html 40 ϵ j ϵ j (a a)x j (b b) ϵ j N(0, σ 2 ) n ( ) 2 n (ϵj ) 2 ϵj = = nσ 2 (6.1.5) ϵ j n ( ) ϵ 2 j = n (ϵ ) 2 = j n {ϵj (a a)x j (b b) } 2 (6.1.6) x j x 0 j = n (ϵj ) 2 + n {(a a)x j + (b b) } 2 = nσ 2 + n { (a a)x j + (b b) } 2 (6.1.7) nσ a = a, b = b 0 n ( ) ϵ 2 j a, b a, b f(a, b) := n { yj (ax j + b) } 2 (6.1.8) a, b a, b 2 σ 2 x := 1 n a = σ xy σ x 2, b = ȳ a x (6.1.9) n (x j x) 2, σ xy := 1 n x j x, y n (x j x)(y j ȳ), (6.1.10)

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

分散分析・2次元正規分布

分散分析・2次元正規分布 2 II L10(2016-06-30 Thu) : Time-stamp: 2016-06-30 Thu 13:55 JST hig F 2.. http://hig3.net ( ) L10 2 II(2016) 1 / 24 F 2 F L09-Q1 Quiz :F 1 α = 0.05, 2 F 3 H 0, : σ 2 1 /σ2 2 = 1., H 1, σ 2 1 /σ2 2 1. 4

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). :   obata/,.,. ( ) 2011 () () (),,.,,.,,. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.,.. (. ), 1. ( ). ()(). : www.math.is.tohoku.ac.jp/ obata/,.,. () obata@math.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/ amf/, (! 22 10.6; 23 10.20;

More information

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ t 2 Armitage t t t χ 2 F χ 2 F 2 µ, N(µ, ) f(x µ, ) = ( ) exp (x µ)2 2πσ 2 2 0, N(0, ) (00 α) z(α) t * 2. t (i)x N(µ, ) x µ σ N(0, ) 2 (ii)x,, x N(µ, ) x = x + +x ( N µ, σ2 ) (iii) (i),(ii) x,, x N(µ,

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2 1 1 Lambert Adolphe Jacques Quetelet (1796 1874) 1.1 1 1 (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) 155 160 160 165 165 170 170 175 175 180 180 185 x 157.5 162.5 167.5 172.5 177.5

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: toyoizumi@waseda.jp 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P 005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

calibT1.dvi

calibT1.dvi 1 2 flux( ) flux 2.1 flux Flux( flux ) Flux [erg/sec/cm 2 ] erg/sec/cm 2 /Å erg/sec/cm 2 /Hz 1 Flux -2.5 Vega Vega ( Vega +0.03 ) AB cgs F ν [erg/cm 2 /s/hz] m(ab) = 2.5 logf ν 48.6 V-band 2.2 Flux Suprime-Cam

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information