(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

Size: px
Start display at page:

Download "(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like"

Transcription

1 () Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ) g ( ) = (M, g, ) ([4]) (M, g, ) M X, Y, Z, W (.) g((x, Y )Z, W ) = g(z, (X, Y )W ) (X, Y )Z = [ X, Y ]Z [X,Y ] Z (.3) (X, Y )Z = k{ g(y, Z)X g(x, Z)Y } (M, g, ) k 1

2 iemann (M, g) p(x; ξ) n M = { p(x; ξ) ξ = (ξ 1,..., ξ n ) Ξ n } (ξ 1,..., ξ n ) n iemann l = l(x; ξ) = log p(x; ξ) i = / ξ i p(x; ξ) E M g (.4) g ij = E[ i l j l ] (ξ 1,..., ξ n ) g Fisher E[ i l ] = 0 Fisher (.5) g ij = E[ i j l ] α [ ( Γ (α) ij,k = E i j l + 1 α ) ] (.6) i l j l k l α (α) (.7) g( (α) i j, k ) = Γ (α) ij,k α Fisher ( α) (α) (M, g, (α) ) (0) Fisher Levi Civita α (M, g, (α) ) α χ C F 1,..., F n n Θ φ [ ] (.8) p(x; θ) = exp C(x) + θ s F s (x) φ(θ) n θ = (θ 1,..., θ n ) Dirichlet Cauchy Weibull (.8) χ p(x; θ) dx = 1 [ ] (.9) exp φ(θ) = exp C(x) + θ s F s (x) dx. χ θ i i φ exp φ = exp φ E[ F i ] (.10) E[ F i ] = i φ i = / θ i j ( i φ exp φ) = exp φ E[ F i F j ] k {( i j φ + i φ j φ) exp φ} = exp φ E[ F i F j F k ] (.11) (.1) E[ F i F j ] = i j φ + i φ j φ, E[ F i F j F k ] = i j k φ + i j φ k φ + j k φ i φ + k i φ j φ + i φ j φ k φ

3 (.8) l(x; θ) = C(x) + θ s F s (x) φ(θ) (.5) i j l = i j φ Fisher g (.13) g ij = i j φ. g g 1 = (g ij ) (.6), (.10) (.13) (.14) Γ (α) ij,k = 1 (1 α) ig jk = 1 (1 α) i j k φ (.7) α (.15) (α) i j = 1 (1 α) sg ij g st t α (α) (.16) (α) ( i, j ) k = c(α) 4 ( j g ks i g st i g ks j g st ) t. c(α) = (1 α)(1 + α) ([1]) A (.16) ±1 3 1 (3.1) p(x; µ, σ) = ] 1 (x µ) exp [ π σ σ < x < µ σ Fisher (3.) M 1 = { (µ, σ) < µ <, σ > 0 } = + ds 1 = dµ + dσ σ µ = / µ, σ = / σ α (α) (3.3) (α) µ µ = 1 α σ σ, (α) µ σ = (α) σ µ = 1 + α σ (α) σ σ = 1 + α σ. σ 3 µ,

4 α (3.4) (α) ( µ, σ ) µ = c(α) σ σ, (α) ( µ, σ ) σ = c(α) σ µ (M 1, ds 1, (α) ) α c(α) ±1 Fisher (3.) Poincaré M = { (x, y) y > 0 } = + (3.5) ds = dx + dy y Poincaré (M, ds ) (Levi Civita ) 1 (Levi Civita ) x y y > 0 M 1 α α d µ (1 + α) dµ dσ dt σ dt dt = 0, (3.6) d σ dt + 1 α ( ) dµ 1 + α σ dt σ (1) σ σ > 0 ( ) dσ = 0 dt () α < 1 µ σ > 0 ( α = 1 µ σ > 0 ) (3) α = 1 µ σ > 0 µ (4) α > 1 µ σ > 0 Poincaré Poincaré M n+1 = { (x 1,..., x n, x n+1 ) x n+1 > 0 } = n + (3.7) ds = 1 (x n+1 ) { (dx 1 ) + + (dx n ) + (dx n+1 ) } Poincaré 1 n [ 1 (3.8) p(x; ξ) = ( π) n det Σ exp 1 4 ] t (x µ)σ 1 (x µ)

5 x = t (x 1,..., x n ) n, µ = t (µ 1,..., µ n ) n Σ = (σ ij ) ξ = (µ 1,..., µ n, σ 11, σ 1,..., σ 1n, σ,..., σ n,..., σ nn ) M = { ξ n+ 1 n(n+1) < µ i < (i = 1,..., n), (σ ij ) } Σ = diag (σ,..., σ ) (3.9) p(x; ξ) = 1 ( π σ) n n i=1 [ exp (x i µ i ) σ ξ = (µ 1,..., µ n, σ) M n+1 1 = { (µ 1,..., µ n, σ) < µ i < (i = 1,..., n), σ > 0 } = n + Fisher ] (3.10) ds 1 = 1 σ ( dµ dµ n + n dσ ) n = 1 1 Fisher n dµ dµ n n f(µ 1,..., µ n ) = n + dσ σ + g(σ) = 1 σ (M1 n+1, ds 1 ) doubly warped product Poincaré (Mi n+1, ds i ) (i = 1, ) ω (3.11) ds = 1 σ ( dµ dµ n + ω dσ ) M n+1 = { (µ 1,..., µ n, σ) < µ i < (i = 1,..., n), σ > 0 } = n + ω = 1 Poincaré (M n+1, ds ) ω = n (M1 n+1, ds n+1 1 ) M 1 α α (M n+1, ds ) (α) (3.1) (α) i j = 1 α ω σ ij σ, (α) i σ = (α) σ i = 1 + α σ (α) σ σ = 1 + α σ. σ i = / µ i, σ = / σ (M n+1, ds, (α) ) α c(α) ω ±1 (M n+1, ds, (α) ) α d µ i (1 + α) dµ i dσ dt σ dt dt = 0 (3.13) d σ dt + 1 α ( ) dµs ω 1 + α σ dt σ i, (i = 1,..., n), ( ) dσ = 0 dt 1 5

6 4 M J = I (1,1) J I M iemann (M, J) M X, Y g(jx, JY ) = g(x, Y ) (M, g, J) Hermite (4.1) g(jx, Y ) + g(x, J Y ) = 0 (1,1) J iemann (M, g) (M, g, J) Hermite-like (J ) = J (J ) = I (4.) g(jx, J Y ) = g(x, Y ) Hermite-like J (M, g,, J) Kähler-like (4.1) X, Y, Z (4.3) g(( Z J)X, Y ) + g(x, ( ZJ )Y ) = 0 ([6]) B (1) (M, g, J) Hermite-like (M, g, J ) Hermite-like () (M, g,, J) Kähler-like (M, g,, J ) Kähler-like Kähler M n M n > 1 M Kähler-like (X, Y )JZ = J(X, Y )Z (.3) Kähler ([11]) C Kähler-like (M n, g,, J) M (n > 1) M (M, g, (α) ) α J (α) J (α) M (4.1) (4.4) (J (α) ) = g 1 J (α) g α J (α) ( (α) i J (α)) { j = i J (α) t j + 1 ( ) } (1 α) J (α) r j i g rs g st i g js g sr J r (α) t t, (α) J (α) = 0 i J (α) k j + 1 ( (4.5) (1 α) j J (α) r ) i g rs g sk i g js g sr J r (α) k = 0. 6

7 α = 1 (4.6) P k j (4.7) J (1) k j = P k j Pj rp r i = j i J ( 1) k j ([11]) D = P s r g sj g rk (1) (M, g, J (±1) ) Hermite-like () (M, g, (±1), J (±1) ) Kähler-like (M, g, (α) ) α (.15) A (α) l ijk = c(α)a(g jk l i g ik l j ) A C ([11]) E (M n, g, (α) ) (n > 1) A 0 M (J (α) ) = I (4.5) α = ±1 5 1 ( 1) 3 Poincaré (M, ds, (α) ) (α) c(α) ω dim M = n (> ) E α = ±1 (±1) J (±1) ( j µ i + P i 1 j 4µ i s µ s J (1) σ = j σ s µ s + S J ( 1) = i µ j P j i ( 1 ω σ 4µ j s µ s + Λ = P j i p j sµ s Sµ j Q j ) P i j, Qi, j, S Λ = I j Q i S P i sµ s + Sµ i + Q i ) ω i σ, s µ s S 7

8 (1) (M, ds, J (±1) ) Hermite-like () (M, ds, (±1), J (±1) ) Kähler-like ω = 1 M Poincaré Poincaré Kähler Poincaré e m 4 (5.1) p(x; ξ) = Γ(m + x x n ) Γ(m) x 1!x! x n! p m 0 p x 1 1 pxn n ξ = (p 1,..., p n ) Γ(x) m k = 1,..., n x k {0, 1,,... } p k (> 0) p 0 + p p n = 1 { p(x; ξ) = exp log Γ(m + x x n ) log Γ(m) log x s! + } x s log p s + m log(1 p 1 p n ) C(x) = log Γ(m + x x n ) log Γ(m) log x s!, F i (x) = x i, θ i = log p i (i = 1,,..., n), φ(θ) = m log(1 p 1 p n ) M n = { (θ 1,..., θ n ) 0 < θ i < (i = 1,..., n) } = ( + ) n p i = e θi (i = 1,,..., n) (5.) τ(θ) = 1 e θs φ(θ) = m log τ(θ). (5.3) (5.4) (5.5) i φ = m e θi τ(θ), i j φ = m { i j k φ = m e θi e θj τ(θ) ij + e θi τ(θ) { e θi } τ(θ) ij ik + e θi τ(θ) } + e θi e θj e θk τ(θ) 3, e θk ij + e θj e θk τ(θ) ik + e θi e θj τ(θ) jk 8

9 i = / θ i (.13) (5.4) Fisher (5.6) g ij = m Fisher g (5.7) { g ij = e θi e θj τ(θ) ij + e θi τ(θ) τ(θ) m e θi ( ij e θi ) (.14), (5.5), (5.7) : { (5.8) Γ (α) k ij = Γ (α) ij,s gsk = 1 (1 α) α α (α) { (5.9) (α) i j = 1 (1 α) } ij ik + e θj τ(θ) ik + e θi τ(θ) jk ij i + e θj τ(θ) i + e θi τ(θ) j. } }. α [{ } { (α) ( i, j ) k = c(α) e θj 4 τ(θ) jk + e θj e θk e θi τ(θ) i τ(θ) ik + e θi τ(θ) e θk } j ] ([10]) F c(α) 4m (4.6), (4.7), (5.6), (5.7) 1 ( 1) J (1) J ( 1) J (1) k j = Pj k { ( ) } e θs J ( 1) k j = e θj e θk P j k e θk r=1 ([10]) P j r + 1 τ(θ) P s k e θk G dim M ( 4) (1) (M, g, J (±1) ) Hermite-like () (M, g, (±1), J (±1) ) Kähler-like r=1 P s r n = J (0) 1 1 = J (0) = ± J (0) 1 = 1 e θ e θ J (0) 1 = ± 1 e θ1 e θ1 ( ( ( e θ1 θ 1 e θ1 e θ e θ1 θ 1 e θ1 e θ e θ1 θ 1 e θ1 e θ ) 1 ) 1 ) 1,, (M, g, (0), J (0) ) Kähler 9

10 6 (M n, g) p M J p : T p M T p M ( ) ( ) ( ) ( ) J p x α = p y α, J p p y α = p x α (α = 1,..., n) p u, v T p M J p (u + 1 v) = J p u + 1 J p v J p : T C p M T C p M Z α = Zᾱ = z α = 1 ( x α 1 z α = z α = 1 ) y α, ( x α + 1 ) y α JZ α = 1 Z α, JZᾱ = 1 Zᾱ (α = 1,..., n) J = I M g p M g T p M u + 1 v, u + 1 v T C p M g(u + 1 v, u + 1 v ) = {g(u, u ) g(v, v )} + 1{g(u, v ) + g(v, u )} g T C p M (z 1,..., z n ) α, β = 1,,..., n g (z 1,..., z n ) g αβ, g α β, gᾱβ, gᾱ β g αβ = g(z α, Z β ), gᾱβ = g(zᾱ, Z β ), g α β = g(z α, Z β), gᾱ β = g(zᾱ, Z β) g αβ = g βα, gᾱ β = g βᾱ, g α β = g βα, ḡ αβ = gᾱ β, ḡ α β = gᾱβ M g u, v T p M g(ju, Jv) = g(u, v) g M Hermite g Hermite g g αβ = 0 (gᾱ β = 0) (α, β = 1,..., n) J M g u, v T p M (6.1) g(ju, J v) = g(u, v) 10

11 J J (M, g, J) Hermite-like (6.) (6.3) J Zβ = 1 ( g βσ g σω g β σ g σω) Z ω 1 ( g βσ g σ ω g β σ g σ ω) Z ω, J Z β = 1 ( g βσ g σω g β σ g σω) Z ω 1 ( g βσ g σ ω g β σ g σ ω) Z ω (J ) = I J Z β = JZ β ( 1 g βσ g σω Z ω + g σ ω ) (6.4) Z ω (6.5) = JZ β + ( 1 g g σω β σ Z ω + g σ ω ) Z ω, J Z β = JZ β ( 1 g βσ g σω Z ω + g σ ω ) Z ω = JZ β + 1 g β σ ( g σω Z ω + g σ ω Z ω ) 6.1 J = J g αβ = 0 (gᾱ β = 0) JJ Z α = ( g ασ g σω g α σ g σω) Z ω ( g ασ g σ ω g α σ g σ ω) Z ω, JJ Zᾱ = ( gᾱσ g σω gᾱ σ g σω) Z ω ( gᾱσ g σ ω gᾱ σ g σ ω) Z ω, J JZ α = ( g ασ g σω g α σ g σω) Z ω + ( g ασ g σ ω g α σ g σ ω) Z ω, J JZᾱ = ( gᾱσ g σω gᾱ σ g σω) Z ω ( gᾱσ g σ ω gᾱ σ g σ ω) Z ω JJ J J 6. [J, J ] = 0 ( ) g ασ g σ β = 0, g g σ β α σ = 0. gᾱσ g σβ = 0, gᾱ σ g σβ = JJ + J J = I g ασ g σβ = 0, g α σ g σβ = β α. ( gᾱσ g σ β = β ) ᾱ, gᾱ σ g σ β = 0. α (6.6) J (α) = 1 + α J + 1 α J 6.4 g ασ g σβ = 0, g g σβ α σ = α β α J (α) 7 A, B, C, = 1,..., n, 1,..., n ZA Z B = Γ E AB Z E, Z A Z B = Γ E AB Z E Z A = / z A Z A g(z B, Z C ) = g( ZA Z B, Z C ) + g(z B, Z A Z C ) Z A g BC = Γ E AB g EC + Γ E AC g BE 11

12 (7.1) (7.) (7.3) (7.4) (7.5) (7.6) Z α g βγ = Γ ε αβ g εγ + Γ ε αβ g εγ + Γ ε αγ g βε + Γ ε αγ g β ε, Z α g β γ = Γ ε αβ g ε γ + Γ ε αβ g ε γ + Γ ε α γ g βε + Γ ε α γ g β ε, Z α g βγ = Γ ε α β g εγ + Γ ε α β g εγ + Γ ε αγ g βε + Γ ε αγ g β ε, Z α g β γ = Γ ε α β g ε γ + Γ ε α β g ε γ + Γ ε α γ g βε + Γ ε α γ g β ε, Zᾱg βγ = Γ ε ᾱβ g εγ + Γ ε ᾱβ g εγ + Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε, Zᾱg β γ = Γ ε ᾱβ g ε γ + Γ ε ᾱβ g ε γ + Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε, (7.7) (7.8) Zᾱg βγ = Γ ε ᾱ β g εγ + Γ ε ᾱ β g εγ + Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε, Zᾱg β γ = Γ ε ᾱ β g ε γ + Γ ε ᾱ β g ε γ + Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε ( X J)Y = X (JY ) J X Y ( Zα J)Z β = 1 Γ ε αβ Z ε, ( Zα J)Z β = 1 Γ ε α β Z ε, ( ZᾱJ)Z β = 1 Γ ε ᾱβ Z ε, ( ZᾱJ)Z β = 1 Γ ε ᾱ β Z ε. 7.1 J Γ ε αβ = 0, ΓAβ ε = 0, Γ ε = 0 β A Γ ε α β = 0, Γ ε ᾱβ = 0, Γ ε ᾱ β = 0. J = 0 (7.1) (7.8) : (7.9) (7.10) (7.11) (7.1) (7.13) (7.14) (7.15) (7.16) (7.9) (7.11) (7.17) (7.18) Z α g βγ = Γ ε αβ g εγ + Γ ε αγ g βε + Γ ε αγ g β ε, Z α g β γ = Γ ε αβ g ε γ + Γ ε α γ g βε + Γ ε α γ g β ε, Z α g βγ = Γ ε αγ g βε + Γ ε αγ g β ε, Z α g β γ = Γ ε α γ g βε + Γ ε α γ g β ε, Zᾱg βγ = Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε, Zᾱg β γ = Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε, Zᾱg βγ = Γ ε ᾱ β g εγ + Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε, Zᾱg β γ = Γ ε ᾱ β g ε γ + Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε. Γ γ αβ + Γ ε αωg εβ g ωγ = g γω Z α g ωβ + g γ ω Z α g ωβ, Γ γ αβ + Γ ε αωg εβ g ω γ = g γω Z α g ωβ + g γ ω Z α g ωβ 1

13 (7.1) (7.13) (7.19) (7.0) Γ γ α β = gγ ω Z α g ω β + g γω Z βg ωα, Γ γ α β = g γ ω Z α g ω β + g γω Z βg ωα (7.14) (7.16) (7.1) (7.) Γ γ ε + Γ ᾱ β ᾱ ωg ε βg ωγ = g γω Zᾱg ω β + g γ ω Zᾱg ω β, Γ γ ε + Γ ᾱ β ᾱ ωg ε βg ω γ = g γω Zᾱg ω β + g γ ω Zᾱg ω β, Kähler-like J = J 6.1 J = J g αβ = 0 ( gᾱ β = 0 ) (7.9) (7.16) (7.3) (7.4) (7.5) (7.6) (7.7) (7.8) (7.9) (7.30) Γ ε αγ g β ε = 0, Z α g β γ = Γ ε αβ g ε γ + Γ ε α γ g β ε, Z α g βγ = Γ ε αγ g βε, Γ ε α γ g βε = 0, Γ ε ᾱγ g β ε = 0, Zᾱg β γ = Γ ε ᾱ γ g β ε, Zᾱg βγ = Γ ε ᾱ β g εγ + Γ ε ᾱγ g βε, Γ ε ᾱ γ g βε = 0 (7.3) 0 = Γαγ ε g β ε g β ω = Γ αγ ε ( ε ω g β ε g β ω ) = Γαγ ω Γ ω αγ = 0 = 0, Γ ᾱγ ω = 0 (7.5) Z αg βγ g βω = Γ ε (7.6), (7.7), (7.30) Γ ω α γ Γ ω Aγ Γ αγ ε (ε ω g βε g βω ) = Γ ω αγ = 0, Γ ω A γ Γ ω αγ (7.8) Γ ω ᾱ γ Γ ω ᾱγ = Γ ω γᾱ = 0, Γ ω α γ Γαβ εg ε γg γω = Γαβ ε( ε ω = Γ ω γα = Z α g εγ g εω = 0, Γ ᾱ γ ω = 0 αγ g βε g βω = = Zᾱg ε γ g ε ω = 0 (7.4) Z α g β γ = Γαβ εg ε γ Z α g β γ g γω = g εγ g γω ) = Γ ω αβ Γ ω αβ = Z αg β ε g εω (7.9) Γ ω ᾱ β = Z ᾱg βε g ε ω ΓAB C = Γ AB C 7.1 Kähler-like (M n, g,, J) J = J = 13

14 (7.31) (7.3) (7.33) (7.34) (7.35) (7.36) (7.37) (7.38) (7.39) (7.40) Z α g βγ Z β g αγ = Γ ε αγ g βε + Γ ε αγ g β ε Γ ε βγ g αε Γ ε βγ g α ε, Z α g βγ Z γ g βα = Γ ε αβ g εγ Γ ε γβ g εα, Z α g β γ Z β g α γ = Γ ε α γ g βε + Γ ε α γ g β ε Γ ε β γ g αε Γ ε β γ g α ε, Z α g β γ Z γ g βα = Γ ε αβ g ε γ, Z α g βγ Z γ g βα = 0, Z γ g βα Z α g β γ = Γ ε γ β g εα, Zᾱg β γ Z γ g βᾱ = 0, Zᾱg βγ Z βgᾱγ = Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε Γ ε βγ g ᾱε Γ ε βγ g ᾱ ε, Zᾱg β γ Z βgᾱ γ = Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε Γ ε β γ g ᾱε Γ ε β γ g ᾱ ε, Zᾱg β γ Z γ g βᾱ = Γ ε ᾱ β g ε γ Γ ε γ β g εᾱ 7. J (7.41) (7.4) (7.43) (7.44) Z α g σω + g σε Γ ω αε Z α g σ ω + g σε Γ ω αε Zᾱg σω + g σε Γ ω ᾱε Zᾱg σ ω + g σε Γ ω ᾱε + g σ ε Γ ω α ε = 0, + g σ ε Γ ω α ε = 0, + g σ ε Γ ω ᾱ ε = 0, + g σ ε Γ ω ᾱ ε = 0. Nijenhuis N(X, Y ) = [JX, JY ] J[X, JY ] J[JX, Y ] [X, Y ], N (X, Y ) = [J X, J Y ] J [X, J Y ] J [J X, Y ] [X, Y ] Kähler-like N(X, Y ) = 0, N (X, Y ) = 0 8 ABC D = Z A ΓBC D Z B ΓAC D + ΓBC E ΓAE D ΓAC E ΓBE D ABγ = Z A Γ Bγ Z B Γ Aγ + Γ E Bγ Γ AE Γ E Aγ Γ BE = Γ ε BγΓ Aε + Γ ε BγΓ A ε Γ ε AγΓ Bε Γ ε AγΓ B ε = 0, AB γ = Z A ΓB γ Z B ΓA γ + Γ E B γ ΓAE ΓA γ E ΓBE = Γ ε B γγ Aε + Γ ε B γγ A ε Γ ε A γγ Bε Γ ε A γγ B ε = 0. 14

15 ABγ = Z A ΓBγ Z B ΓAγ + Γ E Bγ ΓAE ΓAγ E ΓBE = Z A ΓBγ Z B ΓAγ + ΓBγΓ ε Aε + ΓBγΓ ε A ε ΓAγΓ ε Bε ΓAγΓ ε B ε = Z A ΓBγ Z B ΓAγ + ΓBγΓ ε Aε ΓAγΓ ε Bε, AB γ = Z A Γ B γ Z B Γ A γ + Γ E B γ Γ AE Γ E A γ Γ BE = Z A Γ B γ Z B Γ A γ + ΓB γγ ε Aε + ΓB γγ ε A ε ΓA γγ ε Bε ΓA γγ ε B ε = Z A Γ B γ Z B Γ A γ + ΓB γγ ε A ε ΓA γγ ε B ε 8.1 (8.1) (8.) (8.3) (8.4) (8.5) (8.6) (8.7) (8.8) ABγ = 0, AB γ = 0, αβγ ᾱβγ ᾱ = Z αγ βγ Z βγ αγ + Γ ε βγ Γ αε Γ ε αγ Γ βε, = Z ᾱγ βγ, βγ = 0, αβ γ = 0, α β γ ᾱ β γ = Z αγ β γ, = Z ᾱγ β γ Z β Γ ᾱ γ + Γ ε β γ Γ ᾱ ε Γ ε ᾱ γ Γ β ε. 8. ic ic αβ = εαβ ε, ic α β = ε εα β = Z αγ ε ε β, icᾱβ = εᾱβ ε = Z ᾱγ ε icᾱ β = ε εᾱ β. εβ, ABCD = g((z A, Z B )Z C, Z D ), ABCD = g( (Z A, Z B )Z C, Z D ) (.) ABCD = ABDC (8.9) ABC D F = ABE g F C g ED 8.3 αβc D = ω D α βc = Z β Γ ω αε αβε g ωcg εd, D ω ᾱ βc = ᾱ β ε g ωcg εd. g ωc g εd Z α Γ ω β ε g ωcg εd, 15

16 ic ic AB = DAB D = DABE ged ic AB = DABEg DE = (ABDE + BDAE)g DE = ABED g ED + DBAEg DE = ( BEAD + EABD )g ED + ic BA = ic BA ic AB + ic BA ic AB ic BA = ic AB + ic BA 8.4 ic ic 8.5 ic ic αβ = εασ ω g ωβ g σε Z ε Γασ ω g ωβ g σ ε + Z α Γ ε σ ω g ωβ g σ ε, ic α β = εασ ω g ω βg σε Z ε Γασ ω g ω βg σ ε + Z α Γ ε σ ω g ω βg σ ε, ic ᾱβ = Z ᾱγ ω εσ ic ᾱ β = Z ᾱγ ω εσ g ωβ g σε Z ε Γᾱ σ ω g ωβ g σε g ω βg σε Z ε Γᾱ σ ω g ω βg σε εᾱ σ ω g ωβ g σ ε, εᾱ σ ω g ω βg σ ε. r = ic AB g AB, r = ic AB gab r = ic AB g AB = DABE g DE g AB = ADEB gab g DE = ic DE gde = r 8.6 r = r 9 Kähler-like Kähler-like (M, g,, J) (9.1) ( A, B ) C = c 4 [ g( B, C ) A g( A, C ) B g( B, J C )J A + g( A, J C )J B +{g( A, J B ) g(j A, B )}J C ].. (9.1) J J (9.1) Kähler-like (M, g,, J) J = J (M, g,, J) c (9.1) 0 (9.) (9.3) αβγ α βγ = c (g βγ α g αγ β ), = c (g βγ α + g α β γ ), 16

17 (9.4) (9.5) α β γ ᾱ β γ = c (g α γ β = c + g α β γ ), (g β γ ᾱ gᾱ γ β ) (8.4) (8.7) (9.6) (9.7) Z βγ αγ = c (g βγ α + g βα γ ), Z α Γ β γ = c (g α γ β + g α β γ ) 8. (9.8) (9.9) (9.10) (9.11) ic βγ = c (n 1)g βγ, ic α β = c (n + 1)g α β, icᾱβ = c (n + 1)g ᾱβ, ic β γ = c (n 1)g β γ 9. (9.1) Kähler-like r (9.1) r = c{n(n + 1) g εω g εω }. 8.5 (9.), (9.5) (9.7) ic (9.13) (9.14) (9.15) (9.16) ic αβ = c {(n 1)g αβ 4g α ε g g ε ω β ω }, ic α β = c {(n + 1)g α β 4g αεg βω g εω }, ic ᾱβ = c {(n + 1)g ᾱβ 4gᾱε g βω g εω }, ic ᾱ β = c {(n 1)g ᾱ β 4g ᾱεg βω g εω } r (9.17) r = c{n(n + 1) 6g εω g εω + 4g αε g βω g αβ g εω } (9.18) r r = 4c(g εω g εω g αε g βω g αβ g εω ) (9.1) Kähler-like c = 0 g εω g εω g αε g βω g αβ g εω = 0 (g ε ω g ε ω gᾱ ε g β ω gᾱ βg ε ω = 0) 17

18 A = (g αβ ), B = (g αβ ) g εω g εω g αε g βω g αβ g εω = 0 tr (AB) tr (AB) = 0 tr (E AB) = tr (E AB) E [1] S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, 8 Springer-Verlag, [] S. Amari and H. Nagaoka, Methods of Information Geometry, AMS & Oxford University Press, 000. [3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley & Sons, [4] M. Noguchi, Geometry of statistical manifolds, Differential Geom. Appl., (199), 197. [5] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, Cambridge, [6] K. Takano, Statistical manifolds with almost complex structures and its statistical submersions, Tensor N. S., 65 (004), [7], Examples of the statistical submersion on the statistical model, Tensor N. S., 65 (004), [8], Statistical manifolds with almost contact structures and its statistical submersions, J. Geom., 85 (006), [9], Geodesics on statistical models of the multivariate normal distribution, Tensor N. S., 67 (006), [10], Examples of statistical manifolds with almost complex structures, Tensor N. S., 69 (008), [11], Exponential families admitting almost complex structures, SUT J. Math., 46 (010), 1 1. [1] K. Yano and M. Kon, Structures on Manifolds, World Scientific, [13] [14]

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B 2000 8 3.4 p q θ = 80 B E a H F b θ/2 O θ/2 D A B E BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF :

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

* 09 α-24 0 ἅ ὅς 17 β-52 0 ἄβατον ἄβατος 17 β-52 0 ἄβατος(,-η),-ον, 17 β-55 0 ἀβάτῳ ἄβατος 30 δ ἄγ ἄγω 2 ἄγε 30 γ ἀγαγεῖν ἄγω 2 13 α-02 0

* 09 α-24 0 ἅ ὅς 17 β-52 0 ἄβατον ἄβατος 17 β-52 0 ἄβατος(,-η),-ον, 17 β-55 0 ἀβάτῳ ἄβατος 30 δ ἄγ ἄγω 2 ἄγε 30 γ ἀγαγεῖν ἄγω 2 13 α-02 0 Athenaze 2nd version 2013 10 15 * 09 α-24 0 ἅ ὅς 17 β-52 0 ἄβατον ἄβατος 17 β-52 0 ἄβατος(,-η),-ον, 17 β-55 0 ἀβάτῳ ἄβατος 30 δ-142 1 ἄγ ἄγω 2 ἄγε 30 γ-139 2 ἀγαγεῖν ἄγω 2 13 α-02 0 ἀγαγὼν ἄγω 2 ἄγαγών

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P 4) 07.3.7 ) Poincaré) Poincaré disk) hyperboloid) [] [, 3, 4] [] y 0 L hyperboloid) K Klein disk) J hemisphere) I Poincaré disk) : hyperboloid) L Klein disk) K hemisphere) J Poincaré) I y 0 x + y z 0 z

More information