ver Web

Size: px
Start display at page:

Download "ver Web"

Transcription

1 ver Web

2 n (1) (2) (3) 61 2

3 Schmidt 67

4 1 11 X Y X Y X Y f f; X Y 111 X = Y = R X x Y x 2 f : R R (x x 2 ) x x X Y X x Y e x f : X Y (x e x ) 113 f : X Y 1) x, x X x x f(x) f(x ) f 2) y Y f(x) = y x X f 3) f f 4

5 G (x, y) x y G (x, y) x y 1) x, y, z G (x y) z = x (y z) 2) x G x e = e x = x e G 3) x G x y = y x = e y G 2) e G e e 2) e = e e = e 2) e G G 1 G 1 3) y G x G y y 3) y = y 1 G = y (x y) = (y x) y = 1 G y = y 3) y G x G x G ; 1) g G (g 1 ) 1 = g, 2) g, h G (g h) 1 = h 1 g R 1 x R x x Z = {0, ±1, ±2, ±3, } 0 x Z x Z 125 X X X S(X) S(X) σ, τ σ τ X X S(X) X 1 X S(X) σ S(X) σ 1 S(X)

6 6 1 1) S(X) σ, τ, ρ (σ τ) ρ = σ (τ ρ) 2) S(X) σ σ 1 X = 1 X σ = σ 3) S(X) σ σ σ 1 = σ 1 σ = 1 X S(X) 1 X σ S(X) σ 125 X n S(X) n 3 n G 1) x G x x 1 G G 2) g G G G x x g x g x [ ] 1) (x 1 ) 1 = x 122 2) x, x G x g = x g g 1 x = x x x g y G x = x g 1 G x g = y x x g x x g x g x 127 G, H x, y G f(x y) = f(x) f(y) f : G H G H 128 f : G H 1) f(1 G ) = 1 H 2) x G f(x 1 ) = f(x) 1

7 13 7 [ ] 1) 1 G 1 G = 1 G f f(1 G ) f(1 G ) = f(1 G ) f(1 G ) 1 f(1 G ) = f(1 G ) 1 f(1 G ) = 1 H 2) x x 1 = 1 G f 1) f(x) f(x 1 ) = f(1 G ) = 1 H f(x) 1 f(x 1 ) = f(x) A a, b A a + b A ab A A 1) A (a, b) a + b 0 2) a, b, c A a(bc) = (ab)c 3) 1 A a A 1a = a1 = a 4) a, b A ab = ba 5) a, b, c A a(b+c) = ab+ac 3) 1 A 0a = (0 + 0)a = 0a + 0a a A 0a = 0 1 = 0 A = {0} Z = {0, ±1, ±2, ±3, } Q R C 133 A X a 0 + a 1 X + a 2 X a n X n (a i A, n = 0, 1, 2, 3, )

8 8 1 A[X] f(x) = i 0 a ix i, g(x) = i 0 b ix i A[X] f(x) + g(x) A[X] f(x)g(x) A[X] f(x) + g(x) = (a i + b i )X i, f(x)g(x) = a i b j X k i 0 k 0 i+j=k A[X] A[X] A- 134 ı Z[ı] = {a + bı a, b Z} Z[ı] 135 A a A ab = 1 b A a A A A A A A Z Z[ı] Z = {±1}, Z[ı] = {±1, ±ı} A A[X] A[X] = A 137 A A = {0 a A} A 0 A 138 Q R C ı Q(ı) = {a + bı a, b Q} Z

9 2 K K Q R C 21 K a ij (1 = 1, 2,, m, j = 1, 2,, n) m n a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn K (m, n)- a ij A (i, j)- i a i1, a i2,, a in A i j a 1j, a 2j,, a mj A j A (i, j)- A ij K (m, n)- M m,n (K) 0 (m, n)- O m,n (n, n)- n n n n A A 11, A 22,, A nn A 1 0 n n I n I n = K n M n (K) 9

10 (n, m)- A, B M m,n (K) A + B M m,n (K) (A + B) ij = A ij + B ij (i = 1, 2, m, j = 1, 2,, n) A + B (i, j)- A (i, j)- B (i, j)- 1) A, B, C M m,n (K) (A + B) + C = A + (B + C), 2) A, B M m,n (K) A + B = B + A, 3) A M m,n (K) A + 0 mn = A λ K A M m,n (K) A λ λ A M m,n (K) (λ A) ij = λ A ij (i = 1, 2, m, j = 1, 2,, n) λ A A λ 1) λ K A, B M m,n (K) λ (A+B) = λ A+λ B, 2) λ, µ K A M m,n (K) (λ + µ) A = λ A + µ A, 3) A M mn (K) 0 A = 0 mn 23 A M lm (K) B M mn (K) AB M ln (K) m (AB) ij = A ik B kj (i = 1, 2, l, j = 1, 2,, n) k=1 A (l, m)- B (m, n)- AB AB (l, n) ) A, B, C AB BC (AB)C = A(BC), 2) A M m,n (K) I m A = AI n = A, 3) A M lm (K) B, C M mn (K) A(B + C) = AB + AC,

11 24 11 n M n (K) A, B M n (K) A+B M n (K) AB M n (k) [ ] [ ] A =, B = M 2 (R) [ ] [ ] AB =, BA = AB BA 232 (m, n)- A A t A t A (n, m)- t A (i, j)- A (j, i)- (l, m)- A (m, n)- B t (AB) = t B t A 233 n 0 n 0 a 11 a 12 a 13 a 1n 0 a 22 a 23 a 2n 0 0 a 33 a 3n : a nn n n n A M n (K) AB = BA = I n n B M n (K) A n A M n (K) n AB = BA = I n (21) n B M n (K) A n B M n (K) AB = B = I n B = B I n = B (AB) = (B A)B = I n B = B B A A 1

12 ) I n M n (K) I 1 n = I n 2) A M n (K) A 1 M n (K) (A 1 ) 1 = A 3) A, B M n (K) AB M n (K) (AB) 1 = B 1 A 1 K [ ] 2 0 A = 0 1 [ ] M 2 (Q) A = M 2 (Z) 0 1 [ ] A = M 2 (Z) n A M n (K) AX = Y A = I n n X, Y M n (K) A X = Y = A n X A = I n X m X m = 0 A A 1 = I n + X + X X m 1

13 3 K K Q R C 31 n 311 1) τ S(X) σ σ τ σ τ σ S(X) S(X) 2) σ σ 1 S(X) S(X) [ ] 1) σ, σ S(X) σ τ = σ τ τ 1 (σ τ) τ 1 = (σ τ) τ 1 (σ τ) τ 1 = σ (τ τ 1 ) = σ 1 X = σ (σ τ) τ 1 = σ σ = σ σ σ τ ρ S(X) α = ρ τ 1 S(X) σ τ = (ρ τ 1 ) τ = ρ (τ τ 1 ) = ρ 1 X = ρ σ σ τ σ τ σ 2) σ S(X) (σ 1 ) 1 = σ σ, σ S(X) σ 1 = σ 1 σ = σ ρ S(X) σ = ρ 1 S(X) σ 1 = ρ σ σ 1 n X = {1, 2, 3,, n} S(X) S n n n S n σ 1, 2, 3,, n σ(1) = i 1, σ(2) = i 2, σ(3) = i 3,, σ(n) = i n ( ) n σ = (31) i 1 i 2 i 3 i n 13

14 14 3 σ X = {1, 2, 3,, n} X (i 1, i 2, i 3,, i n ) (1, 2, 3,, n) (1, 2, 3,, n) (i 1, i 2, i 3,, i n ) (31) S n σ S n n! (31) (i 1, i 2, i 3,, i n ) (1, 2, 3,, n) ( ) j 1 j 2 j 3 j n σ = n σ ( ) σ n = j 1 j 2 j 3 j n 1 X 1 n ( ) n 1 n = n (31) ( ) ( ) σ =, τ = S ( ) ( ) σ τ =, τ σ = n S n σ τ τ σ S n n X 1, X 2,, X n P (X 1, X 2,, X n ) P (X 1, X 2,, X n ) = (X i X j ) P (X 1, X 2,, X n ) 1 i<j n = (X 1 X 2 )(X 1 X 3 )(X 1 X 4 ) (X 1 X n ) (X 2 X 3 )(X 2 X 4 ) (X 2 X n ) (X 3 X 4 ) (X 3 X n ) (X n 1 X n ) P (X 1, X 2,, X n ) 1 σ S n P (X σ(1), X σ(2),, X σ(n) ) = sign(σ) P (X 1, X 2,, X n ) sign(σ) = ±1 σ

15 ) σ, τ S n sign(σ τ) = sign(σ)sign(τ) 2) sign(1 n ) = 1 3) σ S n sign(σ 1 ) = sign(σ) [ ] 1) P (X σ τ(1),, X σ τ(n) ) = sign(σ τ)p (X 1,, X n ) P (X σ τ(1),, X σ τ(n) ) = P (X σ(τ(1)),, X σ(τ(n)) ) = sign(σ)p (X τ(1),, X τ(n) ) = sign(σ)sign(τ)p (X 1,, X n ) sign(σ τ) = sign(σ)sign(τ) 2) 3) σ σ 1 = 1 n 2) sign(σ σ 1 ) = sign(1 n ) = 1 1) sign(σ σ 1 ) = sign(σ)sign(σ 1 ) sign(σ 1 ) = sign(σ) 1 = sign(σ) 313 n n n = 2 ( ) ( ) σ sign(σ) 1 1 n = 3 σ ( ) ( ) ( ) sign(σ) σ ( ) ( ) ( ) sign(σ) n A M n (K) det A = σ S n sign(σ)a 1,σ(1) A 2,σ(2) A n,σ(n)

16 16 3 A [ ] a b det = ad bc, (32) c d a b c det d e f = ael bdl ceg afh + bfg + cdh (33) g h l 2 3 a b c d e f g h l a b c d e f g h l n 322 n A t A A det( t A) = det A det A = σ S n sign(σ)a σ(1),1 A σ(2),2 A σ(n),n [ ] σ S n ( ) ( ) 1 2 n j 1 j 2 j n σ = = i 1 i 2 i n 1 2 n ( ) σ n = j 1 j 2 j n A 1,σ(1) A 2,σ(2) A n,σ(n) = A 1,i1 A 2,i2 A n,in = A j1,1a j2,2 A jn,n = A σ 1 (1),1A σ 1 (2),2 A σ 1 (n),n

17 σ σ 1 S n S n σ S n τ = σ 1 S n 312 sign(σ) = sign(σ 1 ) det A = σ S n sign(σ)a 1,σ(1) A 2,σ(2) A n,σ(n) = τ S n sign(τ)a τ(1),1 A τ(2),2 A τ(n),n n a 11 a 12 a 1n a 21 a 22 a 2n A = n a n1 a n2 a nn a i = [a i1, a i2,, a in ] (i = 1, 2,, n) (34) a 1 a 2 A = A n a j = a 1j a 2j a nj a n (j = 1, 2,, n) A = [a 1, a 2,, a n ] 323 1) λ K a 1 a r 1 det λa r = λ det a r+1 a n a 1 a r 1 a r a r+1 a n

18 18 3 n λ λ 2) a 1 a r 1 det a r + a r = det a r+1 a n a 1 a r 1 a r a r+1 a n + det a 1 a r 1 a r a r+1 a n n [ ] 1) n (34) r λa rj = σ S n sign(σ)a 1,σ(1) λa r,σ(r) a n,σ(n) = λ = σ S n sign(σ)a 1,σ(1) a r,σ(r) a n,σ(n) 2) n (34) r a rj = a rj + a rj = σ S n sign(σ)a 1,σ(1) a r,σ(r) a n,σ(n) = sign(σ)a 1,σ(1) a r,σ(r) a n,σ(n) σ S n + sign(σ)a 1,σ(1) a r,σ(r) a n,σ(n) σ S n = 324 τ S n det[a τ(1), a τ(2),, a τ(n) ] = sign(τ) det[a 1, a 2,, a n ] τ τ

19 32 19 [ ] [a τ(1), a τ(2),, a τ(n) ] (i, j)- a i,τ(j) = σ S n sign(σ)a 1,τ σ(1) a 2,τ σ(2) a n,τ σ(n) (35) 311 σ τ σ S n S n σ S n ρ = τ σ S n σ = τ 1 ρ (35) ρ S n sign(τ 1 ρ)a 1,ρ(1) a 2,ρ(2) a n,ρ(n) (36) 312 sign(τ 1 σ) = sign(τ)sign(σ) (36) sign(τ) ρ S n a 1,ρ(1) a 2,ρ(2) a n,ρ(n) ) λ K det[a 1,, a r 1, λa r, a r+1,, a n ] =λ det[a 1,, a r 1, a r, a r+1,, a n ] n λ λ 2) det[a 1,, a r 1, a r + a r, a r+1,, a n ] = det[a 1,, a r 1, a r, a r+1,, a n ] + det[a 1,, a r 1, a r, a r+1,, a n ] n 326 τ S n det a τ(1) a τ(2) a 1 a 2 = sign(τ) det a τ(n) a n τ τ

20 n A 2 2 det A = 0 [ ] A i j i < j τ S n k k i, j τ(k) = j k = i i k = j τ i j sign(τ) = 1 sign(σ) = 1 σ S n A n σ(ρ) = 1 ρ S n {σ τ σ A n } A n τ 311 σ σ τ A n A n τ S n A n A n τ A n A n τ = det A = σ A n a 1,σ(1) a 2,σ(2) a n,σ(n) + σ A n sign(σ τ)a 1,σ τ(1) a 2,σ τ(2) a n,σ τ(n) a 1,σ τ(1) a 2,σ τ(2) a n,σ τ(n) = a τ 1 (1),σ(1)a τ 1 (2),σ(2) a τ 1 (n),σ(n) A i j τ a 1,σ(1) a 2,σ(2) a n,σ(n) det A = σ A n a 1,σ(1) a 2,σ(2) a n,σ(n) = 0 σ A n a 1,σ(1) a 2,σ(2) a n,σ(n) n A, B det(ab) = (det A)(det B) [ ] n A, B a 11 a 12 a 1n b 1 a 21 a 22 a 2n A =, B = b 2 a n1 a n2 a nn b n

21 33 21 b i B i AB n k a 1=1 1,k 1 b k1 n k AB = 2 =1 a 2,k 2 b k2 n k a n=1 n,k n b kn 323 n n n det(ab) = a 1,k1 a 2,k2 a n,kn det k 1 =1 k 2 =1 k n =1 b k1 b k2 (37) b n,kn k 1, k 2,, k n 327 det b k1 b k2 b kn = 0 (37) a 1,σ(1) a 2,σ(2) a n,σ(n) det σ S n 326 b σ(1) b σ(2) b σ(n) σ S n sign(σ)a 1,σ(1) a 2,σ(2) a n,σ(n) det B = det A det B 33 3 (33) a, b, c a b c [ e det d e f = a det h g h l ] [ f d b det l g ] [ f d + c det l g ] e h

22 22 3 b, e, h a b c [ d det d e f = b det g g h l ] [ f a + e det l g ] [ c a h det l d ] c f (i, j)- det (i j (2, 2)- ) n 331 a 11 a 1,n 1 a 1n det a 11 a 1,n 1 a n 1,1 a n 1,n 1 a n 1,n = det a nn a n 1,1 a n 1,n a nn a 11 a 1,n 1 0 det a 11 a 1,n 1 a n 1,1 a n 1,n 1 0 = det a nn a n 1,1 a n 1,n 1 a n1 a n,n 1 a nn [ ] 322 n A det A = σ S n sign(σ)a 1,σ(1) A n 1,σ(n 1) A n,σ(n) A n,σ(n) 0 σ(n) = n det A = σ sign(σ)a1,σ(1) A n 1,σ(n 1) a nn

23 33 23 σ σ(n) = n σ Sn σ ( ) 1 2 n 1 n σ = S n i 1 i 2 i n 1 n (i 1, i 2,, i n 1 ) (1, 2,, n 1) ( ) σ 1 2 n 1 = S n 1 i 1 i 2 i n 1 n 1 P (x 1, x 2,, x n 1, x n ) = P (x 1, x 2,, x n 1 ) (x i x n ) sign(σ) = sign(σ ) (i 1, i 2,, i n 1 ) (1, 2,, n 1) det A = i=1 τ S n 1 sign(τ)a 1,τ(1) A n 1,τ(n 1) a nn 332 a 11 a 12 a 1n 0 a 22 a 2n det = a 11a 22 a nn, 0 0 a nn a a 12 a 22 0 det = a 11a 22 a nn n a n1 a n2 a nn a 11 a 12 a 1n a 21 a 22 a 2n A = a n1 a n2 a nn

24 24 3 n a 1n a 2n a nn = a 1n a 2n a nn 325 det A = n i=1 det a 11 a 1,n 1 0 a i 1,1 a i 1,n 1 0 a i1 a i,n 1 a i,n a i+1,1 a i+1,n 1 0 a n1 a n,n 1 0 i i + 1 i + 1 i det a 11 a 1,n 1 0 a i 1,1 a i 1,n 1 0 a i1 a i,n 1 a i,n a i+1,1 a i+1,n 1 0 a n1 a n,n 1 0 = ( 1) n i det a 11 a 1,n 1 0 a i 1,1 a i 1,n 1 0 a i+1,1 a i+1,n 1 0 a n1 a n,n 1 0 a i1 a i,n 1 a i,n 331 det A = n i=1 ( 1) i+n a in det ( A i n ) (38)

25 34 25 n A n k k k + 1 k + 1 k + 2 k n ( 1) n k (38) ( ) n det A = ( 1) n k ( 1) i+n A i k a ik det i=1 333 n A 1 k n ( ) n det A = ( 1) i+k A i k A ik det i=1 334 n A 1 k n ( ) n det A = ( 1) k+j A k j A kj det j= k k n n 1 34 n A M n (K) AB = BA = I n n B M n (K) AB = I n 328 det A, det B K, det A det B = 1 det A K

26 n A M n (K) n à M n(k) ( ) (Ã) ij = ( 1) i+j A j i det (i, j = 1, 2,, n) à A A A A 342 n A M n (K) à M n(k) Aà = ÃA = (det A)I n [ ] Aà (i, j)- (AÃ) ij = = n A ik (Ã) kj k=1 ( n ( 1) j+k A j k A ik det k=1 ) j A A j i i j 0 i = j A (AÃ) det A i = j ij = 0 i j Aà = (det A)I n (ÃA) ij = = n k=1 k=1 (Ã) ika kj ( n ( 1) k+i A k i A kj det = det(a i j ) det A i = j = 0 i j )

27 35 (1) 27 ÃA = (det A)I n 343 n A M n (K) det A K A A 1 = (det A) 1 Ã [ ] A det A K det A K B = (det A) 1 Ã B K n 342 AB = BA = I n A M n (K) B = (det A) 1 Ã A 35 (1) x 1, x 2,, x n n a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a n1 x 1 + a n2 x a nn x n = b n (39) a ij b j K n a 11 a 12 a 1n a 21 a 22 a 2n A = M n(k) a n1 a n2 a nn n A = [a 1, a 2,, a n ], a j = a 1j a 2j a nj

28 28 3 b 1, b 2,, b n n b 1 b 2 b = (39) Cramer 351 det A K (39) x r = (det A) 1 det[a 1,, a r 1, b, a r+1,, a n ] (r = 1, 2,, n) [ ] (39) x 1 a 1 + x 2 a x n a n = b det[a 1,, a r 1, b, a r+1,, a n ] [ ] n = det a 1,, a r 1, x k a k, a r+1,, a n = k=1 b n n x k det[a 1,, a r 1, a k, a r+1,, a n ] k=1 k r det[a 1,, a r 1, a k, a r+1,, a n ] = 0 det[a 1,, a r 1, b, a r+1,, a n ] = x r det A det A K (det A) 1 Cramer (39) x 1, x 2,, x n n x = x 1 x 2 x n

29 35 (1) 29 n n (39) Ax = b (310) A 343 det A K A A 1 M n (K) (310) A 1 Ax = I n x = x x = A 1 b 343 x 1 x 2 b 1 = (det b 2 A) 1 Ã (311) x n b n (39) (311) Cramer Cramer det[a 1,, a r 1, b, a r+1,, a n ] 333 r ( n ( 1) i+r A i r b r det i=1 ) n r b 1 b 2 Ã b n

30 4 K K Q R C 41 (m, n)- A M m,n (K) I) A 0 II) A I) A 0 II) A A A A A A = (a 1, a 2,, a n ) 1 2 (a 1, a 2, a 3,, a n ) 2 1 (a 1 + a 2, a 2, a 3,, a n ) 2 1 (a 1 + a 2, a 1, a 3,, a n ) 2 1 (a 2, a 1, a 3,, a n ) 2 1 (a 2, a 1, a 3,, a n ) 30

31 (m, n)- A M m,n (K) [ ] I r (41) 1 r 0 r = 0 [ ] A 0- r = 0 A 0- A 0 (1, 1)- 1 (1, 1) A 1 b 12 b 1n b 21 b 22 b 2n b m1 b m2 b mn (42) 1 b 12 b 13 b 1n 2 3 n 1 b 21 b 31 b m1 2 3 m (42) C 0 (43) C (m 1, n 1)- C [ ] (41) I r 1 0 (43) 0 0 [ ] I r (41) 1 r A A (m, n)- A M m,n (K) A l l l A l A l 412 (m, n)- A M m,n (K) (41) A r A r 0

32 32 4 [ ] (m, n)- r r 0 (P r ) A i 0 λ B l C C B i det C A l C B i det C A l λ A i λ j i j B B l C C B j i j det C A l C B j i det C A l A l λ A l 0 A B l 0 B A A B A l 0 B l 0 A B (P r ) A (P r ) (41) r (41) (P r ) A (P r ) 413 (m, n)- A M m,n (K) (41) 1 r A rank(a) 42 (i, j)- 1 0 n E (n) ij M n (K) 0 λ K

33 i n E (n) i (λ) = I n + (1 λ)e (n) ii = λ (i (i, i)- λ 1 n λ K 1 i, j n (i j) E (n) ij (λ) = I n + λe ij 1 = 1 λ 1 1 (i (j 1 (i, j)- λ 0 E (n) i (λ) E (n) ij (λ) n det E (n) i (λ) = λ, det E (n) ij (λ) = 1 E (n) i E (n) i (λ)e (n) i (µ) = E (n) i (λµ), E (n) (λ)e(n) (µ) = E(n) (λµ) (1) = E (n) (0) = I n ij E (n) i (λ) 1 = E (n) ij i (λ 1 ), E (n) ij ij ij (λ) 1 = E (n) ij ( λ) 421 (m, n)- A M m,n (K)

34 34 4 1) 0 λ K 2) λ K E (m) i (λ)a = A i λ, AE (n) i (λ) = A i λ E (m) ij (λ)a = A i j λ, AE (n) ij (λ) = A j i λ A A [ ] 422 n A M n (K) 1) A 2) det A 0 3) rank(a) = n 4) A [ ] 1) 2) K K A det A 0 4) 1) 1) 3) A K 343 det A rank(a) = n 3) 4) rank(a) = n A I n 421 P 1,, P r, Q 1,, Q s P 1 P r AQ 1 Q s = I n P 1,, P r Q s,, Q 1 A = Pr 1 P 1 1 Q 1 s Q 1 1

35 42 35 A (m, n) A, B M m,n (K) 1) rank(a) = rank(b), 2) A B, 3) P AQ = B m P n Q 424 (m, n)- A M m,n (K) rank(a) = r [ ] I r 0 P AQ = 0 0 m P n Q 423 (m, n) A, B M mn (K) rank(a) = rank(b) B = P AQ P, Q P, Q m + n [ ] [ ] [ ] [ ] [ ] P 0 A 1 m Q 0 P AQ P B P = = 0 I n I n 0 0 I m Q 0 Q 0 [ ] [ ] P 0 Q 0 m + n 0 I n 0 I m m + n [ ] A I m (44) I n 0 m n 425 (m, n) A, B M m,n (K) A B A m + n (44) m n [ ] B P Q 0

36 36 4 P, Q m n B = P AQ A M n (K) n 422 A P i A = P 1 P 2 P r A 1 = Pr 1 P2 1 P1 1 A I n (n, 2n)- (A, I n ) Pr 1 P2 1 P1 1 (A, I n ) = (I n, A 1 ) (45) P 1 i (45) (A, I n ) (I n, A 1 ) A A =

37 43 37 (A, I 3 ) = / /2 1/2 1/ /2 1/2 1/ / /2 1/2 1/ /2 1/2 1/ /2 1/2 1/2 A A 1 =

38 (2) x 1, x 2,, x n K m a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m (46) a ij, b i K 1) (46) 2) (46) a 11 a 12 a 1n a 21 a 22 a 2n A =, x = x 1 x 2 b 1, b = b 2 a m1 a m2 a mn (46) x n b m Ax = b (47) 441 (46) rank(a, b) = rank(a) a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 (A, b) = a m1 a m2 a mn b m (m, n)- A m b (m, n + 1)-

39 44 (2) 39 [ ] (46) x 1 = λ 1, x 2 = λ 2,, x n = λ n A A = (a 1, a 2,, a n ) λ 1 a 1 + λ 2 a λ n a = b (A, b) 1 n λ 1 λ n n + 1 n (A, b) (A, 0) rank(a) = r A [ ] I r 0 (m, n)- 0 0 (A, 0) A (A, 0) [ ] I r 0 (m, n + 1)- 0 0 rank(ab) = r = rank(a) rank(a, b) = rank(a) = r 424 [ ] E r 0 P AQ = 0 0 m P n Q [ ] Q 0 = 0 1 Q n + 1 [ ] [ Q 0 P (A, b) = [P AQ, P b] = 0 1 E r P b ] (48) c 1 c 2 P b = i > r c i = 0 c i 0 r < i m (48) i c i j i j c m

40 40 4 i c j i r + 1 r + 1 n + 1 (A, b) [ ] E r rank(a, b) = r + 1 rank(a, b) = rank(a) c = 1 c c r x = x 1 x 2 [ ] = Q c 0 x n [ ] [ ] [ ] P Ax = P AQQ 1 E r 0 c c x = = = P b P 1 Ax = b (46) (46) Av = 0 n v Ker(A) (m, n)- A Ker(A) = x = v = x 1 x 2 x n v 1 v n Av = 0 (49) x 1, x x 2 = x n (46) A(x x) = Ax Ax = b b = 0 x x = v Ker(A) x = x + v (v Ker(A))

41 44 (2) 41 x = x 1 x 2 (46) v Ker(A) x n x = x + v = x 1 x 2 x n Ax = A(x + v) = Ax + Av = b x (46) 442 x = x 1 x 2 (46) (46) {x + v v Ker(A)} (m, n)- A M m,n (K) Ker(A) 1) Ker(A) 0 2) v Ker(A) λ K λv Ker(A) 3) u, v Ker(A) u + v Ker(A) Ker(A) 443 rank(a) = r n Q = (q 1, q 2,, q n ) GL n (K) (q k K n ) x n Ker(A) = { n r } λ k q r+k λ k K k=1

42 42 4 Ker(A) λ 1 q r λ n r q n (λ i K) r = n Ker(A) = {0} [ ] rank(a) = r 424 [ ] I r 0 P AQ = 0 0 m P n Q Q 1 [ ] I r 0 P A = Q 1 (410) 0 0 P n v Av = 0 P Av = 0 (410) y = Q 1 v [ ] I r 0 y = y 1 y n y 2 y = y 1 [ ] I r 0 y = y r n v Av = 0 0 v = Qy, y = 0 λ 1 λ n r r λ 1,, λ n r K Q = (q 1, q 2,, q n ) v = Qy = λ 1 q r+1 + λ 2 q r λ n r q n n i=1 λ i q i = i=1 µ i q i (λ i, µ i K) (411)

43 44 (2) 43 λ 1 = µ 1, λ 2 = µ 2,, λ n = µ n n u, v u = λ 1, v = µ 1 λ n µ n (411) Qu = Qv Q Q 1 u = v Q = (q 1, q 2,, q n ) 425 [ ] I r 0 P AQ = (r = rank(a)) 0 0 P GL m (K), Q GL n (K) [ ] [ ] I r 0 P 0 A Q = I n I n Q (m, n) A M m,n (K) n I n (m + n, n) [ ] A m I n I r Q Q n 443 n 443 (m, n) A M m,n (K) Ker(A) 57

44 44 4 n x 1, x 2,, x n a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0 a m1 x 1 + a m2 x a mn x n = 0 (412) x 1 = x 2 = = x n = 0 (412) (412) 444 (412) x 1 = x 2 = = x n = 0 a 11 a 12 a 1n a 21 a 22 a 2n rank < n a m1 a m2 a mn [ ] a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn 412 x = Ker(A) 412 Ker(A) rank(a) < n x 1 x n

45 n a 11 a 12 a 1n a 21 a 22 a 2n A = M n(k) 451 λ K a n1 a n2 a nn Av = λv, v 0 n v λ A n v λ A 452 t t n ti n A M n (K[t]) A χ A (t) = det(ti n A) 453 λ K A λ A [ ] λ x 1, x 2,, x n (A λi n )x = 0, x = 444 rank(a λi n ) < n A λi n n 422 det(a λi n ) = 0 det(a λi n ) = ( 1) n χ A (λ) χ A (λ) = 0 x 1 x 2 x n 46

46 5 K K Q R C V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v) + w = u + (v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv) (b) u V 1u = u (c) α, β K u V (α + β)u = αu + βu (d) α K U, v V α(u + v) = αu + αv V K-V 1) (c) o V o V 1) (c) o = o + o = o + o = o 46

47 ) (c) o V K- V 1) (d) u V u V u V 1) (d) u = u + o = u + (u + u ) = (u + u) + u = (u + u ) + u = o + u = u u V u V u u = ( 1)u 512 x = x 1 x 2 x n, y = u + ( 1)u = (1 + ( 1))u = 0 u = o y 1 y 2 y n K n = x 1 x 2 x n x + y x α αx x i K Kn α K x, y αx 1 x 1 + y 1 x + y = x 2 + y 2, αx = αx 2 x n + y n αx n K- 513 K (m, n) M m,n (K) K- K n = M n,1 (K) [a, b] (a < b) C([a, b]) φ, ψ C([a, b]) φ + ψ C([a, b]) φ C([a, b]) λ R λφ C([a, b]) (φ + ψ)(t) = φ(t) + ψ(t), (λφ)(t) = λ φ(t) (aleqt b) C([a, b]) R-

48 K- V W V W V K- 1) W 2) w, w W w + w W 3) α K w W αw W 522 K- V 1) V {o} V K- 2) W V K-V W [ ] 1) 2) W w W 0 K o = 0 w W W K- V K-V W W K ) W V w W u = ( 1)u V w 523 K- V {v 1, v 2,, v r } { r } v 1, v 2,, v r K = α i v i α i K V K- [ ] W = v 1,, v r K V v, w v 1,, v r K r r v = α i v i, w = β i v i (α i, β i K) i=1 i=1 i=1

49 53 49 r v + w = (α i + β i )v i W i=1 α K αv = r (αα i )v i W i= K- V K- W f : V W f V W K- 1) v, v V f(v + v = f(v) + f(v ) 2) α K v V 1) f(o) = ok- f V W 2) v V f( v) = f(v)k v V 0 v = o f(o) = f(0 v) = 0 f(v) = o v = ( 1)v f( v) = f(( 1)v) = ( 1)f(v) = f(v) 532 (m, n) A M m,n (K) f A : K n K m f A (x) = Ax f A K- K n K- K m K-f A A K-

50 n m {v 1, v 2,, v n } K m K- f : K n x 1 x 2 x n n x j v j K m 535 K- V K- W K- f : V W j=1 Im(f) = {f(v) W v V }, Ker(f) = {v V f(v) = o} Im(f) W K-Ker(f) V K- Im(f), Ker(f) K- f [ ] Im(f) W w, w Im(f) w = f(v), w = f(v ) v, v V f(v + v ) == w + w w + w Im(f) α K f(αv) = αw αw Im(f) Im(f) W K- f(o) = o V Ker(f) Ker(f) V v, v Ker(f) f(v) = f(v ) = o f(v + v ) = o v + v Ker(f) α K f(αv) = αf(v) = o αv Ker(f) Ker(f) V K- 536 K- V K- W K- f : V W 1) f Im(f) = W 2) f Ker(f) = {o} [ ] 1) 2) f v Ker(f) f(v) = o f(o) = o

51 54 51 f(v) = f(o) f v = o Ker(f) Ker(f) = {o} v, v V f(v) = f(v ) f(v v) = f(v ) f(v) = o v v Ker(f) Ker(f) v v = o v = v f 537 K- V K- W K- f : V W f V W K- f : V W K- V, W K K- f : V W f f 1 : W V f 1 K- V, W K K- f : V W, g : W V f g = id W, g f = id V K- V {v 1, v 2, v r } λ 1 v 1 + λ 2 v λ r v r = o λ i K λ 1 = λ 2 = = λ r = 0 {v 1, v 2,, v r } K {v 1, v 2,, v r } K {v 1, v 2,, v r } K K- V {v 1, v 2,, v r } x 1 x 2 x = Kr f(x) = x r r x i v i V (51) K- f : K r V x 1 x r i=1 x 2 Ker(f) = Kr x 1v 1 + x 2 v x r v r = o

52 ) {v 1, v 2,, v r } K (51) K- f 542 K- V 1) {v 1, v 2,, v r } V K v i o (i = 1, 2,, r) 2) v 1 V {v 1 } K v 1 o [ ] 1) v 1 = o λ 1 = 1 λ 2 = = λ r = 0 λ 1 v 1 + λ 2 v λ r v r = o {v 1, v 2,, v r } K 2) {v 1 } K v 1 o v 1 o 0 λ 1 K λ 1 v 1 = o λ 1 K v 1 = o {v 1 } K R R- R 3 1) {v 1, v 2 } R 3 R {v 1, v 2 } 2) {v 1, v 2, v 3 } R 3 R {v 1, v 2, v 3 } K K n r v 1, v 2,, v r v j K n v j = a 1j a 2j a nj (a ij K) K λ 1, λ 2,, λ r λ 1 v 1 + λ 2 v λ r v r = o

53 54 53 λ j a 11 λ 1 + a 12 λ a 1r λ r = 0 a 21 λ 1 + a 22 λ a 2r λ r = 0 a n1 λ 1 + a n2 λ a nr λ r = 0 {v 1, v 2,, v r } K λ 1 = λ 2 = = λ r = rank(v 1, v 2,, v r ) = r 544 {v 1, v 2,, v r } K n K rank(v 1, v 2,, v r ) = r (v 1, v 2,, v r ) v 1, v 2,, v r (n, r) 545 K- V r K r V K dim K V r dim K V = dim K V < K- V K- K- V dim K V = ) K- V dim K V K- K n K n dim K K n = n [ ] K n n e 1 = 0, e 2 = 0,, e n = (e 1, e 2,, e n ) = I n rank(e 1, e 2 m, e n ) = n 544 {e 1 e 2 e n } K

54 54 5 dim K K n n r > n K n r v 1, v 2,, v r rank(v 1, v 2,, v r ) n < r 544 {v 1, v 2,, v r } K dim K K n = n 547 K- V, W K- f : V W 1) f dim K V dim K W 2) f dim K V dim K W f K- dim K V = dim K W [ ] 1) {w 1, w 2,, w r } W K f f(v i ) = w i v i V {v 1, v 2,, v r } V K α 1 v 1 + α 2 v α r v r = o (α i K) K- f f(o) = o α 1 w 1 +α 2 w 2 + +α r w r = o α 1 = α 2 = cdots = α r = 0 dim K V dim K W 2) {v 1, v 2,, v r } V K w i = f(v i ) {w 1, w 2,, w r } W K α 1 w 1 + α 2 w α r w r = o (α i K) f K- f(α 1 v 1 + α 2 v α r v r ) = o = f(o) f α 1 v 1 + α 2 v α r v r = o α 1 = α 2 = cdots = α r = 0 dim K V dim K W K- V {v 1, v 2,, v n } {v 1, v 2,, v n } V K 1) {v 1, v 2,, v n } K

55 ) V = v 1, v 2,, v n K 552 K- V o V K [ ] dim K V = n n 1 K {v 1, v 2,, v n } V v V {v 1, v 2,, v n, v} K α 1 v 1 + α 2 v α n v n + α n+1 v = o α i K i α i 0 α n+1 = 0 {v 1, v 2,, v n } K α n+1 0 v = ( α 1 /α n+1 )v ( α n /α n+1 )v n v v 1, v 2,, v n K V = v 1, v 2,, v n K {v 1, v 2,, v n } V K K- V {v 1, v 2,, v n } f : K n x 1 x 2 x n n x i v i V f K- K n V K- Im(f) = v 1, v 2,, v n K, Ker(f) = x 1 x 2 x n 536 i=1 x 1v 1 + x 2 v x n v n = o 1) f V = v 1, v 2,, v n K 2) f {v 1, v 2,, v n } K

56 56 5 3) f {v 1, v 2,, v n } V K {v 1, v 2,, v n } V K K= K n K- V K dim K V = n 553 K- V V K 554 K- V {v 1, v 2,, v n, v n+1 } (n 1) 1) v 1, v 2,, v n, v n+1 K = v 1, v 2,, v n K, 2) v n+1 = α 1 v 1 + α 2 v α n v n α i K [ ] 1) 2) v n+1 v 1, v 2,, v n+1 K = v 1, v 2,, v n K 2) 1) v 1, v 2,, v n K v 1, v 2,, v n, v n+1 K v v 1,, v n, v n+1 K n+1 v = λ i v i (λ i K) = i=1 n (λ ; + λ n+1 α i )v i i=1 v v 1,, v n K 555 K- V {v 1, v 2,, v n } 1) V K {v 1, v 2,, v r } V K V K {v 1,, v r, v r+1,, v n } 2) V = v 1, v 2,, v m K (v i V ) V K {v 1, v 2,, v m } V K [ ] 1) {v 1, v 2,, v r } V K {v 1,, v r,, v n } V

57 55 57 K {v 1,, v r,, v n } V K V = v 1,, v r,, v n K v V {v 1,, v r,, v n, v} K α 1 v α r v r + + α n v n + α n+1 v = o α i K i α i 0 α n+1 = 0 {v 1,, v r,, v n } K α n+1 0 v = ( α 1 /α n+1 )v ( α r /α n+1 )v r + + ( α n /α n+1 )v n v v 1,, v r,, v n K 2) {v 1, v 2,, v m } K V S V K S = {v 1, v 2,, v n } (n m) K K α 1 v 1 + α 2 v α n v = o α i K i α i 0 α n 0 v n = ( α 1 /α n )v 1 + ( α 2 /α n )v n + + ( α n 1 /α n )v n V = v 1, v 2,, v n 1 K S 556 n K- V n {v 1, v 2,, v n } 1) {v 1, v 2,, v n } V K 2) {v 1, v 2,, v n } K 3) V = v 1, v 2,, v n K [ ] 1) 2), 3) 2) 1) {v 1, v 2,, v n } K 555 1) {v 1, v 2,, v n } V V K n = dim K V 553

58 58 5 {v 1, v 2,, v n } V K 3) 1) 555 2) {v 1, v 2,, v n } V K n = dim K V 553 {v 1, v 2,, v n } V K 557 K- K- V, W W V dim K V = dim K W < V = W [ ] dim K W = dim K V = n {w 1, w 2,, w n } W K 556 {w 1, w 2,, w n } V K V = w 1, w 2,, w n K = V K- K n 558 K- K n n {v 1, v 2,, v n } K n K n (v 1, v 2,, v n ) det(v 1, v 2,, v n ) 0 [ ] 556 {v 1, v 2,, v n } K- K n K {v 1, v 2,, v n } K 544 {v 1, v 2,, v n } K rank(v 1, v 2,, v n ) = n (v 1, v 2,, v n ) n rank(v 1, v 2,, v n ) = n (v 1, v 2,, v n ) K- V K- W K- f : V W V K Im(f) K dim K Im(f) = dim K V dim K Ker(f)

59 56 59 [ ] Im(f) = {o} dim K Im(f) = 0 Ker(f) = V Ker(f) = {o} 536 f V Im(f) K- 547 dim K Im(f) = dim K V Im(f) {o} Ker(f) {o} V K {v 1, v 2,, v n } V = v 1, v 2,, v n K Im(f) = f(v 1 ), f(v 2 ),, f(v n ) K 555 2) Im(f) K Im(f) K {w 1,, w r } r = dim K Im(f) w i Im(f) w i = f(v i ) v i V Ker(f) K {u 1,, u s } s = dim K Ker(f) {v 1,, v r, u 1, cdots, u s } V K α i, β j K α 1 v α r v r + β 1 u β s u s = o (52) f s j=1 β ju j Ker(f) f(v i ) = w i r i=1 α iw i = o {w 1,, w r } α 1 = = α r = 0 (52) s j=1 β ju j = o {u 1,, u s } β 1 = = β s = 0 {v 1,, v r, u 1,, u s } K v V f(v) Im(f) f(v) = r i=1 α iw i α i K u = v r i=1 α iv i V u Ker(f) u = s j=1 β ju j β j K v = r α i v i + i=1 s β j u j v 1,, v r, u 1,, u s K j=1 {v 1,, v r, u 1,, u s } V K dim K V = r + s = dim K Im(f) + Ker(f) (m, n) A M m,n (K) K- f A : K n K m f A (x) = Ax 534 Ker(f A ) = Ker(A) (m, n) A M m,n (K) K- f A dim K Ker(f A ) = n rank(a), dim K Im(f A ) = rank(a)

60 60 5 [ ] rank(a) = r dim K Ker(f A ) = n r K- f A : K n K m dim K Im(f A ) = r 443 Ker(f A ) = Ker(A) = q r+1, q r+2,, q n K Q = (q 1, q,, q n ) n 558 {q 1, q 2,, q n } K n K {q r+1, q r+2,, q n } K {q r+1, q r+2,, q n } Ker(f A ) K dim K Ker(f A ) = n r (m, n)- A M m,n (K) Ker(F A ) Im(f A ) K rank(a) = r [ ] I r 0 P AQ = 0 0 m P n Q 562 Q = (q 1, q 2,, q n ), (q i K n ) {q r+1,, q n } Ker(f A ) K Im(f A ) [ ] f A (x) = Ax = P 1 I r 0 Q 1 x (x K n ) 0 0 y = Q 1 x Q 1 x K n y K n P 1 = (v 1, v 2,, v m ) (v j K m ) y y 1,, y n [ ] f A (x) = P 1 I r 0 y = y 1 v y r vr 0 0 Im(f A ) = v 1,, v r K P 1 {v 1,, v r } K 558{v 1,, v r } Im(f A ) K 563 (m, n)- A M m,n (K) [ ] I r 0 P AQ = (r = rank(a)) 0 0

61 57 (3) 61 P, Q P 1 = (v 1,, v m ), Q = (q 1,, q n ) (v j K m, q i K n ) {v 1,, v r } Im(f A ) K {q r+1,, q n } Ker(f A ) K P, Q K- K n {v 1, v 2,, v m } dim K v 1, v 2,, v m K = rank(v 1, v 2,, v m ) (v 1, v 2,, v m ) {v 1, v 2,, v n } (n, m) [ ] A = (v 1, v 2,, v n ) M n,m (K) Im(f A ) = v 1, v 2,, v m K (3) a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 (53) a m1 x 1 + a m2 x a mn x n = b m (a ij K, b i K, x j K) a 11 a 12 a 1n a 21 a 22 a 2n A = M m,n(k), x = x 1 x 2 b 1 b 2 Kn, b = Km a m1 a m2 a mn x n b m (53) Ax = b A M m,n (K) K- f A : K n x Ax K m (54)

62 62 5 (53) f A (x) = b A = (a 1, a 2,, a n ), a j = a 1j a 2j a mj Km f A : K n x 1 x 2 n x j a j K m j=1 Im(f A ) = a 1, a 2,, a n K (53) f A (x) = b x K n b Im(f A ) b a 1, a 2,, a n K b a 1, a 2,, a n, b K x n a 1, a 2,, a n K a 1, a 2,, a n, b K ) b a 1, a 2,, a n K, 2) a 1, a 2,, a n K = a 1, a 2,, a n, b K, 3) dim K a 1, a 2,, a n K = dim K a 1, a 2,, a n, b K, 4) rank(a 1, a 2,, a n ) = rank(a 1, a 2,, a n, b) 571 (53) rank(a, b) = rank(a) 441 (53) (53) x 1 = u 1, x 2 = u 2,, x n = u n

63 58 63 u = u 1 u 2 Kn u n x K n (53) f A (x) = b f A (x u) = f A (x) f A (u) = f A (x) b = 0 x u = v Ker(f A ) rank(a) = r dim K Ker(f A ) = n r Ker(f A ) K {v 1, v 2,, v n r } (53) x 1 x 2 = u 1 u 2 + λ 1v 1 + λ 2 v λ n r v n r (λ i K) x n u n n r K- V, W K- f : V W V K [v 1, v 2,, v n } K- φ : K n V ( x 1 x 2 x n n x j v j ) W K {w 1, w 2,, w m } K- ψ : K m W ( y 1 y 2 y m j=1 m y i w i ) K- f : V W K- V, W K n, K m i=1

64 64 5 j = 1,, n f(v j ) W {w 1,, w m } K f(v j ) = m a ij w j (a ij K) i=1 v = n j=1 x jv j V f(v) = n x j f(v j ) = j=1 i=1 n m x j j=1 i=1 a ij w i (55) m n = a ij x j w i (56) j=1 a 11 a 12 a 1n a 21 a 22 a 2n A = M mn(k) (57) a m1 a m2 a mn K- f A (x) = Ax (x K n ) f φ(x) = ψ f A (x) (x K n ) K n φ V f A K m ψ f W K- f : V W f A : K n K m (57) {v 1,, v n }, {w 1,, w m } f f V, W K- f : V W K- U K- g : U V f g U W K- U K- {u 1,, u l } f, g f g k = 1,, l n m g(u k ) = b jk v j (f g)(u k ) = c ik w i (b jk, c ik K) (58) j=1 i=1

65 58 65 g, f g B = (b jk ) j,k M nl (K), C = (c ik ) i,k M ml (K) (f g)(u k ) = f(g(u k )) = = n m b jk j=1 i=1 n b jk f(v j ) j=1 m n a ij w i = a ij b jk w i (58) c ik = n j=1 a ijb jk 581 K- g : U V, f : V W A, B f g : U W AB i=1 j=1

66 6 K = R C R C K- V, : V V K, V 1) u, v, v V λ K u, v + v = u, v + u, v, u, λv = λ u, v, 2) u, v V u, v = v, u, 3) v V v, v 0 v, v = 0 v = o K- V, 1), 2) u, u, v V λ K u + u, v = u, v + u, v, λu, v = λ u, v 3) v = v, v v V 1) u V V K v u, v K- 612 x = x 1 x 2, y = y 1 y 2 Kn x n y n n x, y = x i y i i=1, K- K n 66

67 62 Schmidt [0, 1] φ, ψ φ, ψ = 1 0 φ(t)ψ(t)dt, R- C([0, 1]) Schmidt K- V, 621 V {v 1, v 2,, v n } 1 i = j v i, v j = 0 i j {v 1, v 2,, v n } 622 {v 1, v 2,, v n } V {v 1, v 2,, v n } K [ ] λ i K n i=1 λ iv i = o 1 j n v j n n 0 = v j, λ i v i = λ i v j, v i = λ j i=1 i=1 λ 1 = λ 2 = = λ n = {v 1, v 2,, v n } V K V {u 1, u 2,, u n } 1 k n v 1, v 2,, v k K = u 1, u 2,, u k K [ ] n n = 1 u 1 = v 1 1 v 1 n > 1 {u 1, u 2,, u n 1 } 1 k n 1 v 1, v 2,, v k K = u 1, u 2,, u k K (61)

68 68 6 n 1 v n = v n u j, v n u j j=1 v n o v n = o n 1 v n = u j, v n u j u 1, u 2,, u n 1 K = v 1, v 2,, v n 1 K i=j {v 1, v 2,, v n 1, v n } K u n = v n 1 v n v 1,, v n 1, v n K = u 1,, u n 1, v n K = u 1,, u n 1, v n K = u 1,, u n 1, u n K 1 i < n n 1 u i, v n = u j, v n u i, u j = 0 u i, u n = 0 j=1 K {v 1, v 2,, v n } u 1 = v 1 1 v 1 v 2 = v 2 v 2, u 1 u 1 u 2 = v 2 1 v 2 v 3 = v 3 u 1, v 3 u 1 u 2, v 3 u 2 u 3 = v 3 1 v 3 {u 1, u 2,, u n } 623 Schmidt 624 V, K V {u 1, u 2,, u n } {u 1, u 2,, u n } V K 625 K

69 62 Schmidt 69 [ ] V, K 552 V K {v 1, v 2,, v n } {v 1, v 2,, v n } K 623 {u 1, u 2,, u n } v 1, v 2,, v n K = u 1, u 2,, u n K n = dim K V 556 {u 1, u 2,, u n } V K {u 1, u 2,, u n } V K- V, V {u 1, u 2,, u n } V K {u 1, u 2,, u n } K- φ : K n x 1 x 2 x n n i=1 x i u i V V, K n K n x = x 1 x 2, y = y 1 y 2 Kn x n y n u = φ(x), v = φ(y) V n n u, v = x i u i, y j u j i=1 j=1 = x i y j u i, u j = 1 i,j n i=1 n x i y i φ V, K n 612 K n

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1 5 K K Q R C 5.1 5.1.1 V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v)+w = u +(v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv)

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

6 19,,,

6 19,,, 6 19,,, 15 6 19 4-2 à A si A s n + a n s n 1 + + a 2 s + a 1 à 0 1 0 0 1 0 0 0 1 a 1 a 2 a n 1 a n à ( 1, λ i, λ i 2,, λ i n 1 ) T ( λ i, λ 2 i,, λ n 1 i, a 1 a 2 λ i a n λ ) n 1 T i ( ) λ i 1, λ i,, λ

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

2001 年度 『数学基礎 IV』 講義録

2001 年度 『数学基礎 IV』 講義録 4 A 95 96 4 1 n {1, 2,,n} n n σ ( ) 1 2 n σ(1) σ(2) σ(n) σ σ 2 1 n 1 2 {1, 2,,n} n n! n S n σ, τ S n {1, 2,,n} τ σ {1, 2,,n} n τ σ σ, τ τσ σ n σ 1 n σ 1 ( σ σ ) 1 σ = σσ 1 = ι 1 2 n ι 1 2 n 4.1. 4 σ =

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

6 ( ) 1 / 53

6 ( ) 1 / 53 6 / 6 (2014 11 05 ) / 53 6 (2014 11 05 ) 1 / 53 nodeedge 2 u v u v (u, v) 6 (2014 11 05 ) 2 / 53 Twitter 6 (2014 11 05 ) 3 / 53 Facebook 6 (2014 11 05 ) 4 / 53 N N N 1,2,..., N (i, j )i j 10 i j 2(i, j

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information