index calculus

Size: px
Start display at page:

Download "index calculus"

Transcription

1 index calculus

2 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2

3 Index calculus Plain version Double-large-prime version Relation collection Gaudry Nagao 3

4 E(F p n) index calculus Index calculus(1991:adleman-demarrais-huang, 1997:Gaudry) Weil descent(1998:frey) E(F p n) F p index calculus Generalized Weil descent(2004:gaudry, 2007:Nagao) E(F p n) index calculus 4

5 Generalized Weil descent Step1 : Relation collection part Relation Gröbner Step2 : Linear algebra part relation 5

6 Relation collection part B 0 := {P i = (x i, y i ) E(F p 3) x i F p }, #B 0 = O(p) For Q E(F p 3) Relation : Q + P 1 + P 2 + P 3 = 0, P i B 0 Step1 : Step2 : Gröbner Gröbner 6

7 Relation collection Gaudry Semaev summation polynomials Gröbner Nagao Gaudry Gröbner 7

8 Gaudry 1 Semaev summation polynomials For P i = (x i, y i ) E(F p 3) f m (x 1, x 2, x 3,..., x m ) = 0, x 1, x 2, x 3,..., x m F p 3 P 1 + P 2 + P P m = 0 E(F p 3) 8

9 For Q = (x, y) E(F p 3) Gaudry 2 Relation : Q + P 1 + P 2 + P 3 = 0, P i B 0 Relation 1 6 For P i = (X i, Y i ) E(F p 3), : X i, Y i Step1 : f 3 (X 1, X 2, X), f 3 (X 3, x, X) Step2 : f 4 (X 1, X 2, X 3, x) =Resultant(f 3, f 3, X) Step3 : X 1, X 2, X 3 9

10 Gaudry 3 For Q E(F p 3), P 1, P 2, P 3 E(F p 3), f(x) = X 3 + AX + B Step1: Summation polynomial f 3 (X 1, X 2, X) = (X 1 X 2 ) 2 X 2 2((X 1 + X 2 )(X 1 X 2 + A) + 2B) +((X 1 X 2 A) 2 4B(X 1 + X 2 )) f 3 (X 3, x, X) = (X 3 x) 2 X 2 2((X 3 + x)(x 3 x + A) + 2B) +((X 3 x A) 2 4B(X 3 + x)) 10

11 Gaudry 4 Step2: f 4 (X 1, X 2, X 3, x) = Resultant(f 3, f 3, X) Step3: F p 3/F p 1, t, t 2 f 4 = ϕ 0 (X 1, X 2, X 3 ) + ϕ 1 (X 1, X 2, X 3 )t + ϕ 2 (X 1, X 2, X 3 )t 2 where ϕ i (X 1, X 2, X 3 ) F p [X 1, X 2, X 3 ] f 4 (X 1, X 2, X 3, x) = 0 Q + P 1 + P 2 + P 3 = 0 ϕ 0 = 0, ϕ 1 = 0, ϕ 2 = 0 ϕ 0 = 0, ϕ 1 = 0, ϕ 2 = 0 X 1, X 2, X 3 11

12 Gaudry Relation Step1 : ϕ 0 = 0, ϕ 1 = 0, ϕ 2 = 0 Step2 : Gröbner Step3 : X 1, X 2, X 3 F p P i = (X i, Y i ) B 0 12

13 Gaudry :, :, Step1 : ϕ 0 = 0, ϕ 1 = 0, ϕ 2 = 0 T 1 = X 1 + X 2 + X 3 T 2 = X 1 X 2 + X 2 X 3 + X 1 X 3 T 3 = X 1 X 2 X 3 Step2 : ϕ 0 (T 1, T 2, T 3 ) = 0, ϕ 1 (T 1, T 2, T 3 ) = 0, ϕ 2 (T 1, T 2, T 3 ) = 0 Gröbner Step3 : X 3 + T 1 X 2 + T 2 X + T 3, : X X 1, X 2, X 3 13

14 Nagao 1 For Q = (x, y) E(F p 3) Relation : Q + P 1 + P 2 + P 3 = 0, P i B 0 Q, P 1, P 2, P 3 E h(x, Y ) = 0 h(x, Y ) = (X x)(x + u) + (Y y)v, : u, v 14

15 Nagao 2 h(x, Y ) = 0 Y 2 = f(x) Y S(X) := v 2 f(x) + ((X x)(u + X) yv) 2 = X 4 + ( v 2 + 2u 2x)X 3 +( 2yv + u 2 4xu + x 2 )X 2 +( Av 2 2yuv + 2xyv 2xu 2 + 2x 2 u)x Bv 2 + y 2 v 2 + 2xyuv + x 2 u 2 = 0 15

16 (X x) S(X) g(x) := S(X) X x Nagao 3 g(x) := X 3 + C 2 X 2 + C 1 X + C 0 = 0, where C i F p 3[u, v] g(x) = 0 P 1, P 2, P 3 X F p 3/F p 1, t, t 2 u = u 0 + u 1 t + u 2 t 2 v = v 0 + v 1 t + v 2 t 2 : u i, v i 16

17 Nagao 4 g(x) := X 3 + C 2 X 2 + C 1 X + C 0 C i,j F p [u 0,..., v 2 ], i.e. C 0 = C 0,0 + C 0,1 t + C 0,2 t 2 C 1 = C 1,0 + C 1,1 t + C 1,2 t 2 C 2 = C 2,0 + C 2,1 t + C 2,2 t 2 P 1, P 2, P 3 B 0 g(x) F p [X] g(x) = X 3 + C 2,0 X 2 + C 1,0 X + C 0,0 C 0,1 = 0,..., C 2,2 = 0 17

18 Nagao Relation Step1 : C 0,1 = 0, C 0,2 = 0, C 1,1 = 0, C 1,2 = 0, C 2,1 = 0, C 2,2 = 0 Step2 : Gröbner u 0,..., v 2 F p C 0,0, C 1,0, C 2,0 F p Step3 : g(x) = X 3 + C 2,0 X 2 + C 1,0 X + C 0,0 g(x) = (X x 1 )(X x 2 )(X x 3 ) = 0 s.t. x i F p P i = (x i, y i ) B 0 18

19 Gaudry Gaudry Nagao ,124,124 35,33,33 21,21,15,15,5,5 Gröbner 19

20 Relation collection Relation collection OS:Linux version CPU:AMD Athlon 64 X2, 2.4GHz 4GB MAGMA V

21 Gaudry, Nagao p bit relation 1000

22 Relation 1 Gaudry log p 3 Gröbner 64 (bit) (sec) (sec) (sec) 96 (bit) (sec) (sec) (sec) 128 (bit) (sec) (sec) (sec) 160 (bit) (sec) (sec) (sec) Nagao log p 3 Gröbner 64 (bit) (sec) (sec) (sec) 96 (bit) (sec) (sec) (sec) 128 (bit) (sec) (sec) (sec) 160 (bit) (sec) (sec) (sec) 21

23 Index calculus(plain version) Relation collection part : p relation Gaudry, Nagao relation p Gaudry p bit relation 100 relation p 22

24 Relation collection Gaudry s algorithm Gaudry s algorithm (with symmetry) Nagao s algorithm Time(sec) log 2 p 3 (bit) 23

25 Index calculus Gaudry (Gaudry) : Plain version O(p 2 ) Plain version Gaudry-Harley (Gaudry-Harley) O(p 3 2) Single-large-prime version (Thériault) Double-large-prime version (Nagao,Gaudry-Thomé-Thériault-Diem) O(p 4 3) < Rho O(p 3 2) 24

26 Index calculus (plain version) B 0 s.t. #B 0 p Relation collection part O(p) Linear algebra part O(p 2 ) O(p 2 ) : Rho 25

27 Index calculus (plain version) Index calculus p bit (Relation collection by Nagao ) 53bit 26

28 Index calculus (plain version) Relation collection part Linear algebra part Rho method Time(sec) log 2 p 3 (bit) 27

29 Index calculus (double-large-prime version) : B B 0 s.t. #B p 2 3 Relation collection part O(p 4 3) Linear algebra part O(p 4 3) O(p 4 3) < Rho O(p 3 2) 28

30 Double-large-prime version Double-large-prime version p bit (Relation collection by Nagao ) double-large-prime version 29

31 Double-large-prime-version Relation collection part Linear algebra part Rho method Time(sec) log 2 p 3 (bit) 30

32 4 Relation collection Relation 1 64(bit) : (sec) 96(bit) : (sec) Time(sec) ext.deg = 4 ext.deg = 3 Rho method log 2 #E(F p n) (bit) p 3 : p 4 3, p 4 : p 3 2 relation 31

33 Relation collection Gaudry Nagao Index calculus Plain version Double-large-prime version Generalized Weil descent 3 32

:00-16:10

:00-16:10 3 3 2007 8 10 13:00-16:10 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x

More information

2 2 ( M2) ( )

2 2 ( M2) ( ) 2 2 ( M2) ( ) 2007 3 3 1 2 P. Gaudry and R. Harley, 2000 Schoof 63bit 2 8 P. Gaudry and É. Schost, 2004 80bit 1 / 2 16 2 10 2 p: F p 2 C : Y 2 =F (X), F F p [X] : monic, deg F = 5, J C (F p ) F F p p Frobenius

More information

Skew-Frobenius IISEC, JANT18 1

Skew-Frobenius IISEC, JANT18 1 Skew-Frobenius IISEC, 2008 7 5 JANT18 1 Frobenius C/F p Jacobian J C (F p n) Frobenius ϕ p ϕ p Z[ϕ p ] End(J C ) ϕ p J C (F p ) J C (F p n) (J C (F p n)/j C (F p )) p g(n 1) g 2, p n J C (F p ) JANT18

More information

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

情報理論 第5回 情報量とエントロピー

情報理論  第5回 情報量とエントロピー 5 () ( ) ( ) ( ) p(a) a I(a) p(a) p(a) I(a) p(a) I(a) (2) (self information) p(a) = I(a) = 0 I(a) = 0 I(a) a I(a) = log 2 p(a) = log 2 p(a) bit 2 (log 2 ) (3) I(a) 7 6 5 4 3 2 0 0.5 p(a) p(a) = /2 I(a)

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

x ( ) x dx = ax

x ( ) x dx = ax x ( ) x dx = ax 1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b ) h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h,

More information

106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2

106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2 105 4 0 1? 1 LP 0 1 4.1 4.1.1 (intger programming problem) 1 0.5 x 1 = 447.7 448 / / 2 1.1.2 1. 2. 1000 3. 40 4. 20 106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp + P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy

More information

90 0 4

90 0 4 90 0 4 6 4 GR 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 0 0 4 5 6 7 0 4 6 4 5 7 5 6 7 4 5 6 4 5 6 7 4 5 7 4 5 6 7 8 9 0 4 5 6 7 5 4 4

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

lecture

lecture 5 3 3. 9. 4. x, x. 4, f(x, ) :=x x + =4,x,.. 4 (, 3) (, 5) (3, 5), (4, 9) 95 9 (g) 4 6 8 (cm).9 3.8 6. 8. 9.9 Phsics 85 8 75 7 65 7 75 8 85 9 95 Mathematics = ax + b 6 3 (, 3) 3 ( a + b). f(a, b) ={3 (a

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

四変数基本対称式の解放

四変数基本対称式の解放 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

P072-076.indd

P072-076.indd 3 STEP0 STEP1 STEP2 STEP3 STEP4 072 3STEP4 STEP3 STEP2 STEP1 STEP0 073 3 STEP0 STEP1 STEP2 STEP3 STEP4 074 3STEP4 STEP3 STEP2 STEP1 STEP0 075 3 STEP0 STEP1 STEP2 STEP3 STEP4 076 3STEP4 STEP3 STEP2 STEP1

More information

STEP1 STEP3 STEP2 STEP4 STEP6 STEP5 STEP7 10,000,000 2,060 38 0 0 0 1978 4 1 2015 9 30 15,000,000 2,060 38 0 0 0 197941 2016930 10,000,000 2,060 38 0 0 0 197941 2016930 3 000 000 0 0 0 600 15

More information

1

1 1 2 3 4 5 6 7 8 9 0 1 2 6 3 1 2 3 4 5 6 7 8 9 0 5 4 STEP 02 STEP 01 STEP 03 STEP 04 1F 1F 2F 2F 2F 1F 1 2 3 4 5 http://smarthouse-center.org/sdk/ http://smarthouse-center.org/inquiries/ http://sh-center.org/

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

001 No.3/12 1 1 2 3 4 5 6 4 8 13 27 33 39 001 No.3/12 4 001 No.3/12 5 001 No.3/12 6 001 No.3/12 7 001 8 No.3/12 001 No.3/12 9 001 10 No.3/12 001 No.3/12 11 Index 1 2 3 14 18 21 001 No.3/12 14 001 No.3/12

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Version C 1 2 3 4 5 1 2 3 4 5 6 7 8 9 0 A 1 2 1 3 4 5 1 1 2 1 1 1 2 4 5 6 7 8 3 1 2 C a b c d e f g A A B C B a b c d e f g 3 4 4 5 6 7 8 1 2 a b 1 2 a b 1 2 1 2 5 4 1 23 5 6 6 a b 1 2 e c d 3

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

di-problem.dvi

di-problem.dvi 005/05/05 by. I : : : : : : : : : : : : : : : : : : : : : : : : :. II : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. III : : : : : : : : : : : : : : : : : : : : : : : : 4 4. : : : : : : : : : :

More information

証券協会_p56

証券協会_p56 INDEX P.02-19 P.20-31 P.32-34 1 STEP1 STEP2 STEP3 STEP4 P.03-06 P.07-10 P.11-12 P.11-14 P.15-16 P.15-18 P.19 202 STEP 1 3 4 5 10 25 200 30 1,000 2,500 20 30 40 50 60 5 1 80.4 356.7 66.3 461.7 452.7 802.7

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

CompuSec SW Ver.5.2 アプリケーションガイド(一部抜粋)

CompuSec SW Ver.5.2 アプリケーションガイド(一部抜粋) 64 PART 9 65 66 PART10 67 1 2 3 68 PART 10 4 5 69 1 2 3 4 5 70 PART 10 6 7 8 6 9 71 PART11 72 PART 11 1 2 3 73 4 5 6 74 PART 11 7 8 9 75 PART12 76 PART 12 1 2 3 4 1 2 3 4 77 1 2 3 4 5 6 7 8 78 PART13 79

More information

65歳雇用時代の賃金制度のつくり方

65歳雇用時代の賃金制度のつくり方 1 65 2005 2 65 18 65 2 PART 165 6 7 8 11 14 16 60 17 25 PART 2 28 35 () 10 35 () 35 () 36 () 39 () 39 () 41 () 42 () 42 () 44 (10) 44 (11) 47 1 15 2007 2 35 3 10 10 2.5 2.5 1.5 0.5 2.5 2.5 1.5 0.5 10

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information