Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 Ρ

19 Ρ

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

AM-0 TOKYO KEISO CO., LTD. TG-F-

AM-0 TOKYO KEISO CO., LTD. TG-F- AM-0 TG-F-0 TG-F- AUG. 000K APR. 0K AM-0 TOKYO KEISO CO., LTD. TG-F- AM-0 TG-F- TOKYO KEISO CO., LTD. AM-0 TOKYO KEISO CO., LTD. TG-F- AM-0 TG-F- TOKYO KEISO CO., LTD. AM-0 TOKYO KEISO CO., LTD. TG-F-

More information

一般演題 ポスター

一般演題 ポスター φ! " !!!!!!!!! ! !!!μ!! " α" !!!!!!!!!! "!!!!!!!!!!!!!!!!!!!!! " " " "!! " "! "!! "! "!! "!! "! "! " " "! "! " "!!!!!!!!!!!!!!!! " " " " " " " " " " " !! "!!!!!!! "! " " " "!!!!! χ " !!!!!! " " " " !!!!

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

サイバネットニュース No.121

サイバネットニュース No.121 2007 Spring No.121 01 02 03 04 05 06 07 08 09 10 12 13 14 18 01 02 03 04 05 06 07 L R L R L R I x C G C G C G x 08 09 σ () t σ () t = Sx() t Q σ=0 P y O S x= y y & T S= 1 1 x& () t = Ax() t + Bu() t +

More information

. ------------------------------------. ----------------------------------------------- ------------------------------------- -------------------. ---

. ------------------------------------. ----------------------------------------------- ------------------------------------- -------------------. --- . ------------------------------------. ----------------------------------------------- ------------------------------------- -------------------. -----------------------------------------------. -----------------------------------------------

More information

1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP 4095 3004 1091 GNP A Q 1995 7 A 2 2

1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP 4095 3004 1091 GNP A Q 1995 7 A 2 2 /, 2001 1 GDP................................... 2 2.......................... 2 3.................................... 4 4........................................ 5 5.....................................

More information

ATTENTION TO GOLF CLUB LAUNCHER DST DRIVER 04 05 LAUNCHER DST TOUR DRIVER LAUNCHER DST DRIVER LAUNCHER DST TOUR DRIVER LAUNCHER DST DRIVER LAUNCHER DST TOUR DRIVER 06 07 LAUNCHER DST FAIRWAY WOOD LAUNCHER

More information

ρ 二 二 中 J1Vしにλ~, 一 主 i

ρ 二 二 中 J1Vしにλ~, 一 主 i 引き戸金物 ~OOR A C C E S S O R I E S ハイ首仁川 1 46 イ ハ2 JC11 1 4 6 147 鴇 出 荷 1 147 14 6 ノ需品ヰ 1 面付けレール ハイスペックレール 148 川 1 48 ハイ仙一編 1 1 4 7 レール1101 3 即ラ半 日 149 川市号 1 1 4 9 ストツバ荊鴬 ' 1 4 9 刈 LY S R 1 5 4 L Y s R T

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 [email protected] http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

シート名 :SU00S080( 即時通知 ) ページ :7 D11KY003 資料 2_XML 構造設計書 ( 受付 IF).xls 項番 11 即時通知情報 の項目 最大 を以下のとおり修正 修正前 最大 :5 修正後 最大 : 資料 2_XML 構造設計書 ( 受付 IF).xls 資料 2_X

シート名 :SU00S080( 即時通知 ) ページ :7 D11KY003 資料 2_XML 構造設計書 ( 受付 IF).xls 項番 11 即時通知情報 の項目 最大 を以下のとおり修正 修正前 最大 :5 修正後 最大 : 資料 2_XML 構造設計書 ( 受付 IF).xls 資料 2_X 表紙 ( データ形式 ) データ形式等仕様書 日付を 平成 23 年 2 月 から 平成 23 年 11 月 へ修正 ( ヘ ) 第三者作成の証明書等添付書類 の 表 1-4 証明書等添付書類対象帳票 について 様式 ID TEG102 TEG401 を追加 シート名 :SU00S050( 即時通知 ( 電子証明 )) ページ :5 D11KY003 資料 2_XML 構造設計書 ( 受付 IF).xls

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

( ) 窅 摳眾 洎 戢 擊 罄 闈 眾 纘 訕 2e Last printed 5/2/2004 1:27 AM makio harada 2/63

( ) 窅 摳眾 洎 戢 擊 罄 闈 眾 纘 訕 2e Last printed 5/2/2004 1:27 AM makio harada 2/63 De Semedo http://www.aozora.gr.jp/ 1938 43 2 13 Estrangelo Havret 1-2-22 2e Last printed 5/2/2004 1:27 AM makio harada 1/63 http://chingchueh.homedns.org/classic/t54/2144_001.htm ( ) 窅 摳眾 洎 戢 擊 罄 闈 眾 纘

More information

Untitled

Untitled 23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

有機性産業廃棄物の連続炭化装置の開発

有機性産業廃棄物の連続炭化装置の開発 ( ) Development of the apparatus conveyer type which carbonizes continuously organic industrial waste (About the form of blade in conveyer) 1055047 1 1-1 1 1-2 1-3 2 2 2-1 2-2 2-3 2-4 7 3 3-1 20 3-2 3-3

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

1. 2. 3. 4. 3.2 1. 2. 3. 4 4.1 1. σ f n λ f λ f = 1 nσ f. (4.1) 2. E n, m 1 generation,t g v t g = λ f v = 1 (4.2) vnσ f E = 1 2 mv2 2E v = m t g = 1

1. 2. 3. 4. 3.2 1. 2. 3. 4 4.1 1. σ f n λ f λ f = 1 nσ f. (4.1) 2. E n, m 1 generation,t g v t g = λ f v = 1 (4.2) vnσ f E = 1 2 mv2 2E v = m t g = 1 2003.3.14 1 nuclear weapon 2 1942 1942 1943 1945.7.15 8. 6 8. 9 2 3 3.1 239, 1 1. 2. 3. 4. 3.2 1. 2. 3. 4 4.1 1. σ f n λ f λ f = 1 nσ f. (4.1) 2. E n, m 1 generation,t g v t g = λ f v = 1 (4.2) vnσ f E

More information

木オートマトン•トランスデューサによる 自然言語処理

木オートマトン•トランスデューサによる   自然言語処理 木オートマトン トランスデューサによる 自然言語処理 林 克彦 NTTコミュニケーション科学基礎研究所 [email protected] n I T 1 T 2 I T 1 Pro j(i T 1 T 2 ) (Σ,rk) Σ rk : Σ N {0} nσ (n) rk(σ) = n σ Σ n Σ (n) Σ (n)(σ,rk)σ Σ T Σ (A) A

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: [email protected] 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

ボールねじ

ボールねじ A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49

More information

2 / 38 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 3 / 38 Auction: Theory and Practice 4 / 38 2

2 / 38 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 3 / 38 Auction: Theory and Practice 4 / 38 2 [email protected] June 19, 29 2............................................................................ 3.................................................................. 4 5......................................................................

More information

基礎地学I.ppt

基礎地学I.ppt I [email protected] http://geotec.sci.hokudai.ac.jp/geotec/ I 800 2940 7/26 8/9 2/3 9 15 10% 6/1 20% 70% 15% 30% 40% 15% R=6400 km θ (S) θ/360 o =S/2πR (1) GPS (Global Positioning System)

More information

5989_4840JAJP.qxd

5989_4840JAJP.qxd Agilent Application Note 1287-11 2 3 4 5 Zc Z T 1+ G 1 e - γ 1+ G 2 G i G 1 G 2 0 0 G2 G 1 G T 1+ G 2 e - γ 1+ G 1 a b [ T XI ] [ T L ] [ T XO ] [ G L ] Zc Zr ZT Zr Γ1 = Γ2 = Γ1ΓT = (1.1) Zc+ Zr ZT + Zr

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Microsoft Word - BMDS_guidance pdf_final

Microsoft Word - BMDS_guidance pdf_final BMDS を用いたベンチマークドース法適用ガイダンス (BMDS は 米国 EPA のホームページ (http://www.epa.gov/ncea/bmds/) より無償でダウンロードで きる ) 最初に データ入力フォームにデータを入力する 病理所見の発現頻度等の非連続データの場合は モデルタイプとしてDichotomousを選択し 体重 血液 / 血液生化学検査値や器官重量等の連続データの場合は

More information

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0 7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

Microsoft Word _abstract_kasai_ikeya2_tk.docx

Microsoft Word _abstract_kasai_ikeya2_tk.docx 科学研究費補助金新学術領域研究 スパースモデリングの深化と高次元データ駆動科学の創成 最終成果報告会 (207/2/8-20) NMR (NMR) NMR! SpM NMR NMR NMR (MaxEnt) (CS) NMR (SpM) NMR NMR ( ) 2 NMR NMR 2 NMR NMR NMR n n- 2 NMR E-mail: [email protected] 2 (non-uniform

More information

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 200520866 ( ) 19 1 ,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 1 1 1.1..................................... 1 1.2...................................

More information

2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S

2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S 2010 M0107189 2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1............................ 5 2.2.............................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information