(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9"

Transcription

1 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n m n m n 0 2 = π =

2 (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9) 0 = 0, (10) ( ) ( b) = b b + x = b x b b x = b x P (x) x α α P (x) = n ( + b) n = n + n n 1 b + 2 n(n 1) n 2 b 2 n! k!(n k)! k b n k + + b n 1-9. A A x x A minimum A 2

3 A x x A mximum A c A upper bound A x x c A A A A A sup A 2-1. f y = f(x) x y y = f(x) c, A x c f(x) A f(x) A x c lim f(x) = A x c A x c f(x) limit x c+ x c c x c x c c lim x c+ f(x), lim x c f(x) x = c f(x) x = c lim f(x) = f(c) x c f(x) x = c lim f(x) = f(c) x c+ f(x) x = c lim x c f(x) = f(c) f(x) [, b] < c < b c x = x = b 3

4 [, b] f(x) f() f(b) M f(c) = M c [, b] 2-5. x x x x y = x+y ( x ) y = xy 2-6. x x > 1 0 < < > 1 0 < < 1 x = y (, ) (0, ) x y = x y 1 y log x x log x + log y = log xy, log x y = y log x 2-8. y = log x (0, ) (, ) log x > 1 0 < < (1 + 1 n )n n e = lim n (1 + 1 n )n e x 1 lim = 1 x 0 x 4

5 x e xi x = i e 0i = 1 x > i x e xi x < i x e xi x e xi e xi e yi = e (x+y)i, e xi 1 lim x 0 x = i sin x cos x e xi e xi = cos x + i sin x 3-1. y = f(x) f (x) y dy dx (f(x)) 3-2. y = f(x) f (x) x = f () f () = lim x f(x) f() x f () = lim h 0 f( + h) f() h f(x) f () f(x) x = f () f(x) x = f(x) x = x = f(x) 5

6 f (x) f (x) f(x) 3-3. (x ) = x 1 2 (cf(x) + dg(x)) = cf (x) + dg (x), (f(x)g(x)) = f (x)g(x) + f(x)g (x), ( g(x) f(x) ) = f(x)g (x) f (x)g(x) f(x) 2 (f(x) 0 x 3-4. y = f(t) t = g(x) y = f(g(x)) y = f(t) t = g(x) (f(g(x)) = f (g(x))g (x), dy dx = dy dt dt dx 3-5. (e x ) = e x, (log x) = 1 x, (sin x) = cos x, (cos x) = sin x e x 1 lim = 1 x 0 x e ix 1 lim = i x 0 x (e xi ) = ie xi 3-6. f(x) x = f () x = x = +h f( + h) f() x f(x) ( + h) 6

7 h 0 f(x) x = f () > 0 x = f () < 0 x = 3-7. y x x = f(y) x x = f(y) y 1 x = f(y) 1 y y = g(x) x y y = g(x) x = f(y) x = g(y) g (y) > y = f(x) y = f(x) y = 1 g (f(x)), dy dx = 1 dx dy 3-8. x = sin y [ π 2, π ] [ 1, 1] 2 dx dy = cos y > 0 ( π 2 < y < π 2 ) y = sin 1 x x = cos y [0, π] [ 1, 1] dx dy = sin y < 0 (0 < y < π) y = cos 1 x x = tn y = sin x cos x ( π 2, π 2 ) (, ) dx dy = 1 cos 2 y > 0 y = tn 1 x (sin 1 x) = 1, 1 x 2 (cos 1 x) = 1, 1 x 2 (tn 1 x) = x 2 7

8 3-9. y = f(x) f (x), (f(x)), y dy, dx f (x), (f(x)), y d 2 y, dx 2 f () > 0 y = f(x) x = f () < 0 y = f(x) x = n y = f(x) n f (n) (x), y (n) d n y, dx n 4-1. [, b] f(x) (, b) lim f(x) = x + f() x = lim f(x) = f(b) x b f(b) f() x = b = f (ξ) b b ξ x = f(b) f() x = b f (ξ) x = ξ b ξ b 4-2. (, b) f(x) f (x) > 0 ( < x < b) f (x) < 0 ( < x < b) f(x) f (x) C 1 C 1 f(x), x f(x) = f() + f (ξ)(x ) ξ x f(x) x = C 1 f(x) = f() + f ()(x ) + o( x ) o( x ) R(x) lim x x = 0 1 f(x) f() + f ()(x ) y = f() + f ()(x ) y = f(x) 8

9 (, f()) 4-3. f(x) f (x) C 2 C 2 f(x), x f(x) = f() + f ()(x ) f (ξ)(x ) 2 ξ x f(x) x = C 2 f(x) = f() + f ()(x ) + f () (x ) 2 + o((x ) 2 ) 2 o( x 2 ) f(x) x = f(x) f() + f ()(x ) + f () (x ) f(x) n f (n) (x) C n C n f(x), x f(x) = f() + 1 1! f ()(x ) + 1 2! f ()(x ) ! f (3) ()(x ) (n 1)! f (n 1) ()(x ) n n! f (n) (ξ)(x ) n ξ x 4-5. f(x) g(x) f() = g() = 0 x = f(x), g(x) f (x) lim x g (x) = A lim f(x) x g(x) = A lim x f(x) =, lim g(x) = x f (x) f(x), g(x) lim x g (x) = A f(x) lim x g(x) = A 9

10 5-1. F (x) = f(x) F (x) f(x) f(x) 1 F (x) f(x) { F (x)+c c } f(x) f(x)dx f(x) 5-2. f(x) f (x) f (x)dx = f(x) + c x dx = x+1 ( 1 ) 1 dx = log x, e x dx = e x x cos xdx = sin x, sin xdx = cos x, (cf(x) + dg(x))dx = c f(x)dx + d g(x)dx, f (x)g(x)dx = f(x)g(x) f(x)g (x)dx, f(x)dx = f(g(t))g (t)dt x = g(t) 1 dx = tn x, cos 2 x y x 5-6. y = f( y x ) u = y x 10

11 5-7. y + P (x)y = Q(x) 1 1 y = e P (x)dx ( e P (x)dx Q(x)dx + c) 6-1. b f(x)dx f(x) x = x = b F (x) f(x) b b f(x)dx, f(x)dx = F (b) F () [, b] C 1 f(x), g(x) b f (x)g(x)dx = [ f(x)g(x) ] b b f(x)g (x)dx C 1 x = g(t) g(α) =, g(β) = b b f(x)dx = β α f(g(t))g (t)dt 6-2. [, b] f(x) [, b] n : = x 0 < x 1 < x 2 < < x n 1 < x n = b i [x i 1, x i ] f(x) m i M i x i x i 1 m i n i s( ) x i x i 1 M i n i S( ) s( ) s S( ) S s S s = S f(x) [, b] [, b] f(x) f(x) [, b] b f(x)dx [, b] 6-3. [, b] f(x) G(t) = 11 t f(x)dx G (t) =

12 f(t) G(x) f(x) b f(x)dx = G(b) f(x) 6-4. [α, β] x = f(t), y = g(t) (x, y) (f(t), g(t)) t β f (t) 2 + g (t) 2 dt α 7-1. (x, y) z = f(x, y) 2 z = f(x, y) y x 1 z z x x x y 1 z y z y z x, z y f x(x, y), f y (x, y) z = f(x, y) f x (x, y) f y (x, y) (x, y) = (.b) f( + h, b) f(, b) f(, b + k) f(, b) f x (, b) = lim, f y (, b) = lim h 0 h k 0 k f x (, b) f y (, b) z = f(x, y) (x, y) = (, b) f x (, b) f y (, b) (x, y) = (, b) x y f x (, b) (, b) x f y (, b) (, b) y 7-2. z = f(x, y) x = h(t), y = k(t) z = f(h(t), k(t)) z = f(x, y) x = h(t) y = k(t) z = f(h(t), k(t)) 12

13 ϵ(x, y) ϵ(x, y) (x ) 2 + (y b) 2 0 (x )2 + (y b) 2 0 (x ) 2 + (y b) 2 ϵ(x, y) = o( (x ) 2 + (y b) 2 ) 2 f(x, y) f(x, y) = f(, b) + A(x ) + B(y b) + o( (x ) 2 + (y b) 2 ) A B (, b) f(x, y) (, b) (, b) f(x, y) = f(, b) + f x (, b)(x ) + f y (, b)(y b) + o( (x ) 2 + (y b) 2 ) z = f(x, y) z x, z y C 1 f(x, y) (, b) C 1 (, b) z = f(x, y) C 1 x = g(t), y = h(t) z = f(g(t), h(t)) dz dt = z dx x dt + z dy dy dt z = f(x, y) C 1 x = g(u, v), y = h(u, v) z = f(g(u, v), h(u, v)) z u = z x x u + z y y u, z v = z x x v + z y y v 7-3. z = f(x, y) x z x f x(x, y) x 2 z x 2 f xx(x, y) y 2 z y x f xy(x, y) z = f(x, y) y z y f y(x, y) x 2 z x y f yx (x, y) y 2 z y f yy(x, y) 2 13

14 2 z x, 2 z 2 y x, 2 z x y, 2 z y 2 f xx(x, y), f xy (x, y), f yx (x, y), f yy (x, y) z = f(x, y) z = f(x, y) C 2 z = f(x, y) (, b) C 2 f yx (, b) = f xy (, b) 7-4. (, b) C 2 f(x, y) f(x, y) f(, b) + f x (, b)(x ) + f y (, b)(y b) f xx(, b)(x ) 2 + f xy (, b)(x )(y b) f yy(, b)(y b) C 2 f(x, y) (x, y) = (, b) f x (, b) = f y (, b) = 0 f xx (, b)f yy (, b) f xy (, b) 2 > 0 f xx (, b) > 0 f(x, y) (, b) f xx (, b)f yy (, b) f xy (, b) 2 > 0 f xx (, b) < 0 f(x, y) (, b) 7-6. (, b) C 1 F (x, y) F (, b) = 0 F y (, b) 0 x = y = f(x) f() = b F (x, f(x)) = 0 C 1 F (x, y), G(x, y) F (x, y) Λ = { (x, y) G(x, y) = 0 } (, b) G x (, b) 2 + G y (, b) 2 0 H(x, y, λ) = F (x, y) λg(x, y) H x (, b, λ) = H y (, b, λ) = 0 λ G(x, y) = 0 F (x, y) H(x, y, λ) 8-1. [, b] g(x), h(x) h(x) g(x) ( x b) D = { (x, y) h(x) y g(x), x b } f(x, y) f(x, y) dxdy f(x, y) D D 14

15 2 D f(x, y) dxdy = b { g(x) h(x) f(x, y) dy}dx f(x, y) 0 z = f(x, y) (x, y) D [, b] [c, d] = { (x, y) x b, c y d } 2 f(x, y) [, b] = x 0 < x 1 < x 2 < < x n = b [c, d] c = y 0 < y 1 < y 2 < < y m = d [, b] [c, d] : = x 0 < x 1 < x 2 < < x n = b, c = y 0 < y 1 < y 2 < < y m = d (i, j) [x i 1, x i ] [y j 1, y j ] = { (x, y) x i 1 x x i, y j 1 y y j } f(x, y) M ij m i,j (x i x i 1 )(y j y j 1 ) M ij S( ) m ij s( ) S( ) S s( ) s s S s = S f(x.y) [, b] [c, d] f(x.y) [, b] [c, d] f(x, y) dxdy [,b] [c,d] D D 1 D 0 1 D (x, y) D [, b] g(x), h(x) D f(x, y) f(x, y)1 D (x, y) f(x, y)1 D (x, y)dxdy f(x, y) dxdy [,b] [c,d] D C 1 u = g(x, y), v = h(x, y) (x, y) D (u, v) E 1 1 E f(u, v) f(g(x, y), h(x, y)) E f(u, v) dudv = D (u, v) f(g(x, y), h(x, y)) (x, y) dxdy 2 15

16 (u, v) (x, y) = (x, y) u v (x, y) x u v (x, y) x (x, y) x (x, y) y = u v x y u v y x u = g(x, y), v = h(x, y) 8-4. (u, v) D = { (u, v) u b, c y d } x = f(u, v), y = g(u, v), z = h(u, v) C 1 S : x = f(u, v), y = g(u, v), z = h(u, v) ((u, v) D) (y, z) (z, x) (x, y) ( (u, v) )2 + ( (u, v) )2 + ( (u, v) )2 dudv D 8-5. n f(x 1, x 2,, x n ) n D f(x 1, x 2,, x n )dx 1 dx 2 dx n n n n n 9-2. lim x f(x) = A ϵ-δ ϵ > 0 0 < x < δ x f(x) A < ϵ δ > lim f(x) = A lim g(x) = B (1) lim(f(x)+g(x)) = x x x A + B (2) lim cf(x) = ca (c ) (3) lim f(x)g(x) = AB (4) A 0 x x g(x) lim x f(x) = B A 9-5. lim n n = ϵ-n ϵ > 0 n N n < ϵ N 16

17 9-6. lim n n = lim n b n = b (1) lim n ( n + b n ) = + b (2) lim c n n = c (3) lim n b n n = b (4) 0 lim b n n n = b lim n n = lim = n n n ϵ N ϵ-δ 9-7. lim f(x) = A lim n =, n (n = x n 1, 2, 3, ) n lim f( n ) = A n (x, y) (, b) (x ) 2 + (y b) 2 0 ( n, b n ), n = 1, 2, 3, ( 0, b 0 ) lim (n 0 ) 2 + (b n b 0 ) 2 = 0 n lim f(x, y) = A ϵ δ ϵ > 0 0 < (x,y) (,b) (x )2 + (y b) 2 < δ (x, y) f(x, y) A < ϵ δ , 2,, n, ϵ n, m N n m < ϵ N 17

18 10-4. [, b] x x δ(x) U δ(x) (x) = (x δ(x), x+δ(x)) [, b] U δ(x1 )(x 1 ), U δ(x2 )(x 2 ),, U δ(xk )(x k ) (1),(2),(3),(4) R R + (1) R R (2) R + R + (3) R R + (R R + = ) (4) R R + (R R + = R) R, R + R R [, b] f(x) (1) (2)[, b] (3)f() < M < f(b) f() > M > f(b) f(c) = M c ( c b) (4) ϵ x x < δ, x, x b f(x) f(x ) < ϵ ϵ δ ( D D D D (x, y) (x, y) δ(x, y) U δ(x,y) (x, y) U δ(x1,y 1 )(x 1, y 1 ), U δ(x2,y 2 )(x 2, y 2 ),, U δ(xk,y k )(x k, y k ) D D f(x, y) (1) (2) D (3) ϵ (x x ) 2 + (y y ) 2 < δ, (x, y) D, (x, y ) D f(x, y) f(x, y ) < ϵ ϵ δ 18

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 7 8 3 elemet, set A, A A, A A, A A, b, c, {, b, c, }, x P x, P x x {x P x}, A x, P x {x A P x} 3 { {,,

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

ィェィ ィョ02ィヲィー ィェ ィャ0200ィ ィェ 08ィ ィィ ィョ07ィー D ィョ0007 T, ィヲィ 06ィョ0002: D 6メ6 (x; y) 6モ1 f (x; y

ィェィ ィョ02ィヲィー ィェ ィャ0200ィ ィェ 08ィ ィィ ィョ07ィー D ィョ0007 T, ィヲィ 06ィョ0002: D 6メ6 (x; y) 6モ1 f (x; y 130005ィィ04ィャィ 14 0709010905080507030707 040309090201 00030809000905080201 14.1 03ィヲィョィ 00ィエ00ィヲィコ06ィー 06ィェィェ07ィヲ02ィー 070007 ィャ05ィィ04ィャィ ィ 0100ィケ ィィィ 0008ィェ02ィヲ ィャィヲィ 0002ィェ08ィコ0201ィョ04 0004ィー 070104 00ィェィエィョ0007ィー

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

1. 2. ( ) 3. ( ) 2

1. 2. ( ) 3. ( ) 2 IV 3 : 1 2013 10 14 1 1. 2. ( ) 3. ( ) 2 1. 3 (procurement auctions) etc. ( ) : : 4 5 : (sealed-bid auctions) : (1st-price auctions) (2nd-price auctions) 6 : ( ) (open auctions) (English auctions) (Dutch

More information

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp 8 5 6 i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp ii I +α 3.....................................................

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P . ϵριµϵτρoζ perimetros 76 Jones, Euler. =.,.,,,, C, C n+ P, P,, P n P, P n P n, P P P P n P n n P n,, C P, P j P j j =,,, n P n P., C.,, C. f [a, b], f. C = f a b, C l l = b a + f d P j P j a b j j j j

More information

6 1

6 1 (c) Masaya Kasuga Shaltics 2001 6 1 1 1 2 1 1.1 USO 2 3 4 EPR 5 6 27 2 (Unfinded Superconducting Object) 3 - - - 342K (Physica C 351 (2001) pp.78-81) 4 40K 5 Einstein-Podolsky-Rosen s paradox 1/2 ( 0)

More information

untitled

untitled 3,,, 2 3.1 3.1.1,, A4 1mm 10 1, 21.06cm, 21.06cm?, 10 1,,,, i),, ),, ),, x best ± δx 1) ii), x best ), δx, e,, e =1.602176462 ± 0.000000063) 10 19 [C] 2) i) ii), 1) x best δx

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology) 3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S

More information

取扱説明書 [F-12C]

取扱説明書 [F-12C] F-12C 11.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 a bc b c d d a 15 a b cd e a b c d e 16 17 18 de a b 19 c d 20 a b a b c a d e k l m e b c d f g h i j p q r c d e f g h i j n o s 21 k l m n o p q r s a X

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

semi4.dvi

semi4.dvi 1 2 1.1................................................. 2 1.2................................................ 3 1.3...................................................... 3 1.3.1.............................................

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

05-5.dvi

05-5.dvi 131 71 71 71 71 71 71 71 7 1 71 71 71 71 71 7 1 71 71 71 71 71 71 7 1 71 71 71 71 71 71 71 71 7 1 1 71 71 71 71 71 71 71 71 71 7 1 75(468) 1 71 71 7 517.95 1 7.1 7. 1 71 71 71 71 71 71 71 7, 1 7.1 7. 1

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

6. [1] (cal) (J) (kwh) ( 1 1 100 1 ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s 1947 2

6. [1] (cal) (J) (kwh) ( 1 1 100 1 ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s 1947 2 filename=decay-text141118.tex made by R.Okamoto, Emeritus Prof., Kyushu Inst.Tech. * 1, 320 265 radioactive ray ( parent nucleus) ( daughter nucleus) disintegration, decay 2 1. 2. 4 ( 4 He) 3. 4. X 5.,

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

2010 4 3 0 5 0.1......................................... 5 0.2...................................... 6 1 9 2 15 3 23 4 29 4.1............................................. 29 4.2..............................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

取扱説明書 [F-02F]

取扱説明書 [F-02F] F-02F 4. 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 a b c d a b c d a b cd 9 e a b c d e 20 2 22 ab a b 23 a b 24 c d e 25 26 o a b c p q r s t u v w d h i j k l e f g d m n a b c d e f g h i j k l m n x 27 o

More information

17 18 2

17 18 2 17 18 2 18 2 8 17 4 1 8 1 2 16 16 4 1 17 3 31 16 2 1 2 3 17 6 16 18 1 11 4 1 5 21 26 2 6 37 43 11 58 69 5 252 28 3 1 1 3 1 3 2 3 3 4 4 4 5 5 6 5 2 6 1 6 2 16 28 3 29 3 30 30 1 30 2 32 3 36 4 38 5 43 6

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

13ィェィ 0002ィェィ 00ィヲ0602ィョ ィーィ ィイ07 ツィ 06ィヲ02, ISSN チ

13ィェィ 0002ィェィ 00ィヲ0602ィョ ィーィ ィイ07 ツィ 06ィヲ02, ISSN チ 13 13ィェィ 0002ィェィ 00ィヲ0602ィョ050702 0709ィーィ ィイ07 ツィ 06ィヲ02, ISSN 1992-6138 08030607030207070307090303 07030209020703 チ 03000009070807 010908030109080707030709030503 030006090303 チ09020705 0107090708020709

More information

John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Pre

John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Pre 214 1 24 1 John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Press, 198. (fourier22, integrl27) (hilbert212)

More information

calibT1.dvi

calibT1.dvi 1 2 flux( ) flux 2.1 flux Flux( flux ) Flux [erg/sec/cm 2 ] erg/sec/cm 2 /Å erg/sec/cm 2 /Hz 1 Flux -2.5 Vega Vega ( Vega +0.03 ) AB cgs F ν [erg/cm 2 /s/hz] m(ab) = 2.5 logf ν 48.6 V-band 2.2 Flux Suprime-Cam

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information