Self-Organizing Map:SOM SOM..

Size: px
Start display at page:

Download "1 3 1.1............................... 3 1.2.............................. 4 1.3.............................. 6 2 Self-Organizing Map:SOM 7 2.1 SOM.."

Transcription

1 2016 3

2 Self-Organizing Map:SOM SOM SOM SOM SOM (S-SOM) S-SOM S-SOM S-SOM U-matrix (HMM) HMM Forward algorithm Backward algorithm Viterbi algorithm Baum-Welch algorithm HMM (HMM-S-SOM) 51 1

3 4.1 HMM-S-SOM HMM-S-SOM (F-HMM-S-SOM) F-HMM-S-SOM F-HMM-S-SOM F-HMM-S-SOM DNA

4 1 1.1,,,,,,,,,,,,,k-means,,,, 3

5 1.2,,,,,,,,,,,, Siri,,,,,,, [1][2],,, [3],,,,,,,,,,, 4

6 ,,,,,,, [4], [5], 5

7 1.3,,,,,, [6][7],,,,,,,, 3,, 3 6

8 2 Self-Organizing Map:SOM 2.1 SOM, (TKohonen) SOM,,,, 1, data 2, data3, (data1, data2),,,, 1: SOM 7

9 2.2 SOM, ( 2) SOM,,,data2 data3,data2,data3,data1 2 2: SOM SOM,data1, 2,SOM data1data3, ,, SOM,,1 1,,,, ( 3), 8

10 ,, 3: SOM,data1,data1 3, (winner node) data1, 4,,,, data1 data1 data1,data2, 9

11 4: data1 data2, data1 5, data2 data2, data2 data3 data2 6,,,data3 data2,data2 data1,,,,,, 10

12 5: data2 6: data3 11

13 , SOM,,, SOM SOM STEP 1: ()v j SOM STEP 2: v j w N j k N j k N j k = min f j (k) (1) k f j (k) = n (a jt w kt ) 2 (2) STEP 3: N j k w k v j t=1 h(p jx, P jx ) = exp( P jx P jx 2 σ 2 ) (3) w k = β h(p jx, P jx )f j (k) (4) w new k = w k + w k (5) 12

14 P jx N j k P jx P jx P jx σ β 7 7: 24 w 2.3 SOM Data1Data R,G,B SOM Data2 Data5,, 13

15 , SOM SOMPlane-SOM,,,, SOM ( 9:), SOM,, SOM ( 9:), 14

16 8: SOM 2.4 (S-SOM) SOM SOM [8][9][10][11] [9] OpenGL Windows Windows API DirectX [12][13] 15

17 9: SOM S-SOM DirectX D 10, 16

18 10: 11 11: S-SOM SOM 17

19 SOM SOM S-SOM SOM SOM 12 12: S-SOM S-SOM n m v j = {a j1, a j2, a j3,..., a jn }(j = 1, 2, 3,..., m) S- SOM l N k (k = 1, 2, 3,..., l) w k = {w k1, w k2, w k3,..., w kn } 18

20 S-SOM STEP 1: w w STEP 2: v v j SOM STEP 3: v j w N j k N j k N j k = min k f j (k) (6) f j (k) = n (a jt w kt ) 2 (7) t=1 STEP 4: N j k w k v j h(p jx, P jx ) = exp( P jx P jx θ 2 ) (8) w k = β h(p jx, P jx )f j (k) (9) w new k = w k + w k (10) P jx N j k P jx P jx P jx θ β 19

21 θ 13β 13: S-SOM 20

22 2.4.3 S-SOM U-matrix SOM S-SOM : S-SOM U-matrix 21

23 S-SOM U-matrix S-SOM n n-1 S-SOM n U-matrix T g U g ab U g ab N a N b U g ab = U g ba U g ab, U g ba U g N k (k = 1, 2, 3,..., l) w k = {w k1, w k2, w k3,..., w kn } SOM U g ab n U g ab = (w aj w bj ) 2 (11) j=1 T g N a V a, V g L V g = L (αu g + max h(u h ) M min h (U h ) ) (12) max h (U h ) min h (U h ) V a = L 1 6 j (αu g aj + max h(u h ) M min h (U h ) max h (U h ) min h (U h ) ) (13) α = M 1 max h (U h ) min h (U h ) (14) V g min(u h ) 0, max (U h ) M U g L h h 22

24 M L V a N a 6 U a L 15: S-SOM U-matrix 16: S-SOM U-matrix 23

25 3 3.1 (HMM) Baum-Welch algorithm Viterbi algorithm 3.2 HMM HMM Q = {q 1, q 2, q 3,..., q k } : q a i,j : q i q j j a i,j = 1 s i (x) : i x x s i (x) = 1 w[t] : t 24

26 Θ : HMM Forward algorithm Forward algorithm HMM w w N R N R R M R R m (W ) = {r m [0], r m [1], r m [2],..., r m [N]} (m = 1, 2, 3,..., M) (15) r m [t] R m (W ) t S L w M N L w = s g(m,t 1) (w[t]) a g(m,t 1),j g(m, t) = r m [t] (16) m=1 t=1 17 A, B, C HMM w AABC w 1 25

27 17: 26

28 1: w R 1 R 3 w R 1 : a 0,0 s 0 (w[1]) a 0,1 s 0 (w[2]) a 1,2 s 1 (w[3]) a 2,3 s 2 (w[4]) = a 0,0 s 0 (A) a 0,1 s 0 (A) a 1,2 s 1 (B) a 2,3 s 2 (C) = = (17) R 2 : a 0,1 s 0 (w[1]) a 1,1 s 1 (w[2]) a 1,2 s 1 (w[3]) a 2,3 s 2 (w[4]) = a 0,1 s 0 (A) a 1,1 s 1 (A) a 1,2 s 1 (B) a 2,3 s 2 (C) = = (18) R 3 : 27

29 a 0,1 s 0 (w[1]) a 1,2 s 1 (w[2]) a 2,2 s 2 (w[3]) a 2,3 s 2 (w[4]) = a 0,1 s 0 (A) a 1,2 s 1 (A) a 2,2 s 2 (B) a 2,3 s 2 (C) = = (19) w L w L w = = (20) Forward algorithm f j (t) = s i (w[t]) q i Q f i (t 1)a i,j t 1 (21) f 0 (0) = 1 f j (t) t q j w = {w[1], w[2],..., w[t]} 28

30 Forward algorithm, L w f 0 (0) = 1.0 f 0 (1) = f 0 (0) a 0,0 s 0 (w[1]) = f 0 (0) a 0,0 s 0 (A) = = 0.06 f 1 (1) = f 0 (0) a 0,1 s 0 (w[1]) = f 0 (0) a 0,1 s 0 (A) = = 0.24 f 1 (2) = f 0 (1) a 0,1 s 0 (w[2]) + f 1 (1) a 1,1 s 1 (w[2]) = f 0 (1) a 0,1 s 0 (A) + f 1 (1) a 1,1 s 1 (A) = = f 2 (2) = f 1 (1) a 1,2 s 1 (w[2]) = f 1 (1) a 1,2 s 1 (A) = = f 2 (3) = f 1 (2) a 1,2 s 1 (w[3]) + f 2 (2) a 2,2 s 2 (w[3]) = f 1 (2) a 1,2 s 1 (B) + f 2 (2) a 2,2 s 2 (B) = = f 3 (4) = f 2 (3) a 2,3 s 2 (w[4]) = f 2 (3) a 2,3 s 2 (C) = = L w = f 3 (4) =

31 3.2.2 Backward algorithm Forward algorithm w q j Backward algorithm q j w = {w[n], w[n 1],..., w[t + 1]} b j (t) b i (t) = q j Q b j (t + 1)a i,j s i (w[t + 1]) (22) 17 AABC L w Backward algorithm 30

32 b 3 (4) = 1.0 b 2 (3) = b 3 (4) a 2,3 s 2 (w[4]) = b 3 (4) a 2,3 s 2 (C) = = 0.06 b 2 (2) = b 2 (3) a 2,2 s 2 (w[3]) = b 2 (3) a 2,2 s 2 (B) = = b 1 (2) = b 2 (3) a 1,2 s 1 (w[3]) = b 2 (3) a 1,2 s 1 (B) = = b 1 (1) = b 2 (2) a 1,2 s 1 (w[2]) + b 1 (2) a 1,1 s 1 (w[2]) = b 2 (2) a 1,2 s 1 (A) + b 1 (2) a 1,1 s 1 (A) = = b 0 (1) = b 1 (2) a 0,1 s 0 (w[2]) = b 1 (2) a 0,1 s 0 (A) = = b 0 (0) = b 1 (1) a 0,1 s 0 (w[1]) + b 0 (1) a 0,0 s 0 (w[1]) = b 1 (1) a 0,1 s 0 (A) + b 0 (1) a 0,0 s 0 (A) = = L w = b 0 (0) = Backward algorithm b 0 (0) Forward algorithm f 3 (4) b 0 (0) = f 3 (4) 31

33 3.2.3 Viterbi algorithm Forward algorithm f j (t) = s i (w[t]) f i (t 1)a i,j q i Q w Viterbi algorithm W Rm(w) N L w = arg max s g(m,t) (w[t]) a g(m,t),j g(m, t) = r m [t] (23) t=0 f j (t) = s i (w[t]) max q Q f i(t 1)a i,j (24) 32

34 3.2.4 Baum-Welch algorithm HMM Viterbi algorithm HMM Θ Θ w Viterbi algorithm w Θ Baum-Welch algorithm Θ HMM w Θ Θ Forward algorithm L w 18 left-to-light 33

35 18: Baum-Welch algorithm Baum-Welch algorithm O i,j : W = {w 1, w 2,..., w l } q i q j E i (x) : W = {w 1, w 2,..., w l } x q i P (w k Θ) : W = {w 1, w 2,..., w l } Θ w k L w P (w k Θ) = L w W P (W Θ) P (W Θ) = l k=1 L k l 34

36 , O i,j E i (x) t 1 O i,j = l k=1 1 fi k (t 1) a i,j s i (w k [t]) b k j (t) (25) P (w k Θ) t E i (x) = l k=1 1 P (w k Θ) t:w k [t]=x f k i (t 1) b k i (t 1) (26) O i,j E i (x) a i,j s i (x) a i,j = s i (x) = O i,j j O i,j E i(x) x E i (x ) (27) (28) 35

37 17 AABC AABC L w O i,j = = = t 1 1 f i (t 1) a i,j s i (w 1 [t]) b j (t) P (w k Θ) k=1 t 1 f i (t 1) a i,j s i (w 1 [t]) b j (t) P (w 1 Θ) t f i (t 1) a i,j s i (w 1 [t]) b j (t) L w t q i q j ξ t (i, j) ξ t (i, j) = f i(t 1) a i,j s i (w k [t]) b j (t) L w O i,j = t ξ t (i, j) PROCESS1PROCESS4 36

38 PROCESS 1 ξ t (i, j) ξ t (i, j) ξ 1 (0, 0) = f 0(0) a 0,0 s 0 (w 1 [1]) b 0 (1) = f 0(0) a 0,0 s 0 (A) b 0 (1) L w L w = = ξ 1 (0, 1) = f 0(0) a 0,1 s 0 (w 1 [1]) b 1 (1) = f 0(0) a 0,1 s 0 (A) b 1 (1) L w L w = = ξ 2 (0, 1) = f 0(1) a 0,1 s 0 (w 1 [2]) b 1 (2) = f 0(1) a 0,1 s 0 (A) b 1 (2) L w L w = = ξ 2 (1, 1) = f 1(1) a 1,1 s 1 (w 1 [2]) b 1 (2) = f 1(1) a 1,1 s 1 (A) b 1 (2) L w L w = = ξ 2 (1, 2) = f 1(1) a 1,2 s 1 (w 1 [2]) b 2 (2) = f 1(1) a 1,2 s 1 (A) b 2 (2) L w L w = = ξ 3 (1, 2) = f 1(2) a 1,2 s 1 (w 1 [3]) b 2 (3) = f 1(2) a 1,2 s 1 (B) b 2 (3) L w L w = = ξ 3 (2, 2) = f 2(2) a 2,2 s 2 (w 1 [3]) b 2 (3) = f 2(2) a 2,2 s 2 (B) b 2 (3) L w L w = = ξ 4 (2, 3) = f 2(3) a 2,3 s 2 (w 1 [4]) b 3 (4) = f 2(3) a 2,3 s 2 (C) b 3 (4) L w L w = =

39 ξ 1 (0, 0) + ξ 1 (0, 1) = 1.0 ξ 2 (0, 1) + ξ 2 (1, 1) + ξ 2 (1, 2) = 1.0 ξ 3 (1, 2) + ξ 3 (2, 2) = 1.0 ξ 4 (2, 3) = 1.0 PROCESS 2 a i,j PROCESS 1 ξ t (i, j) a i,j = O i,j j O i,j O i,j O i,j = ξ t (i, j) t j 29 O i,j = t ξ t (i, j) a i,j j a i,j = t ξ t(i, j) j ξ t(i, j) t (29) a i,j 38

40 a 0,0 = = a 0,1 = = a 1,1 = = a 1,2 = = a 2,2 = = a 2,3 = = ξ 1 (0, 0) ξ 1 (0, 0) + ξ 1 (0, 1) + ξ 2 (0, 1) ξ 1 (0, 1) + ξ 2 (0, 1) ξ 1 (0, 0) + ξ 1 (0, 1) + ξ 2 (0, 1) ξ 2 (1, 1) ξ 2 (1, 1) + ξ 2 (1, 2) + ξ 3 (1, 2) ξ 2 (1, 2) + ξ 3 (1, 2) ξ 2 (1, 1) + ξ 2 (1, 2) + ξ 3 (1, 2) ξ 3 (2, 2) ξ 3 (2, 2) + ξ 4 (2, 3) ξ 4 (2, 3) ξ 3 (2, 2) + ξ 4 (2, 3) a i,j a i,j 39

41 PROCESS 3 s i (x) s i (x) l 1 L w P (w k Θ) k=1 l 1 1 P (w k Θ) = 1 P (w 1 Θ) = 1 L w k=1 k=1 26 E i (x) = 1 L w t:w k [t]=x f i (t 1) b i (t 1) (30) 3022 E i (x) = 1 L w = 1 = = t:w k [t]=x L w t:w k [t]=x f i (t 1) b i (t 1) f i (t 1) b j (t)a i,j s i (w[t]) q j Q t:w k [t]=x f i(t 1) q j Q b j(t)a i,j s i (w[t]) t:w k [t]=x q j Q L w f i (t 1) b j (t)a i,j s i (w[t]) L w (31) ξ t (i, j) = f i(t 1) a i,j s i (w k [t]) b j (t) L w 31 E i (x) = t:w k [t]=x q j Q f i (t 1) b j (t)a i,j s i (w[t]) L w = t:w k [t]=x q j Q ξ t (i, j) (32) 40

42 28 s i (x) = = = E i (x) x E i (x ) t:w k [t]=x x t:w k [t]=x t t:w k [t]=x q j Q ξ t(i, j) q j Q ξ t(i, j) q j Q ξ t(i, j) q j Q ξ t(i, j) (33) 41

43 33 s i (x) s 0 (A) = ξ 1(0, 0) + ξ 1 (0, 1) + ξ 2 (0, 1) ξ 1 (0, 0) + ξ 1 (0, 1) + ξ 2 (0, 1) = 1.0 s 0 (B) = 0 ξ 1 (0, 0) + ξ 1 (0, 1) + ξ 2 (0, 1) = 0.0 s 0 (C) = 0 ξ 1 (0, 0) + ξ 1 (0, 1) + ξ 2 (0, 1) = 0.0 s 1 (A) = = s 1 (B) = = s 1 (C) = s 2 (A) = s 2 (B) = = s 2 (C) = = ξ 2 (1, 1) + ξ 2 (1, 2) ξ 2 (1, 1) + ξ 2 (1, 2) + ξ 3 (1, 2) ξ 3 (1, 2) ξ 2 (1, 1) + ξ 2 (1, 2) + ξ 3 (1, 2) ξ 2 (1, 1) + ξ 2 (1, 2) + ξ 3 (1, 2) = ξ 3 (2, 2) + ξ 4 (2, 3) = 0.0 ξ 3 (2, 2) ξ 3 (2, 2) + ξ 4 (2, 3) ξ 4 (2, 3) ξ 3 (2, 2) + ξ 4 (2, 3)

44 3.3 HMM Forward algorithmbackward algorithmbaum-welch algorithm 17 AABC 1 t G = {G 1, G 2,...G t,...g l } k G t t k k G t = Γ t (0, 0) Γ t (0, 1) Γ t (0, k 1) Γ t (1, 0) Γ t (1, 1) Γ t (1, k 1) Γ t (k 1, 0) Γ t (k 1, 1) Γ t (k 1, k 1) 4 k = 4 G t Γ t (i, j) t i s i (w[t]) i j 0 i s i (w[t]) i j t = 1 A i A Γ 1 (i, j) = 1, i 43

45 A i j Γ 1 (i, j) = 1 i j t = 1 t = 4 44

46 t = 1 t = 1 0 i = 0 G 1 i 0 1 t = 4 t = 4 4 i 3(... k 1 = 4 1 = 3) a i,3 0 i 1, 0 i = 0 1 Γ 1 (0, 0) = 0 (... s 0 (A) a 0,0 0) Γ 1 (0, 1) = 0 (... s 0 (A) a 0,1 0) Γ 1 (0, 2) = 1 (... s 0 (A) a 0,1 = 0) Γ 1 (0, 3) = 1 (... s 0 (A) a 0,1 = 0) 45

47 Γ 1 (1, 0) = 1 Γ 1 (2, 0) = 1 Γ 1 (3, 0) = 1 Γ 1 (1, 1) = 1 Γ 1 (2, 1) = 1 Γ 1 (3, 1) = 1 Γ 1 (1, 2) = 1 Γ 1 (2, 2) = 1 Γ 1 (3, 2) = 1 Γ 1 (1, 3) = 1 Γ 1 (2, 3) = 1 Γ 1 (3, 3) = 1 t G t 19 46

48 19: G t G t STEP 1 G 1 j 1 2 G 2 j 1 20 G 1 G 2 G 3, G 4 t = 1 G t j 1 G t+1 j 1 t = l 1 G 47

49 20: G STEP t = l G t i 1 G t 1 i 1 t = 2 G 21 48

50 21: G STEP STEP t i j G t Γ t (i, j) AABC

51 22: G 50

52 4 隠れマルコフ球面自己組織化マップ (HMM-S-SOM) 隠れマルコフ球面自己組織化マップとは,S-SOM のノードに隠れマルコフモデル を用いたものであり 図 23, 入力データには, ベクトルではなく文字列集合を用い る. ノード上に内包された隠れマルコフモデルは, すべて同じ構造を持つ この自 己組織化マップは, データを直接分類するのではなくデータの背景にある確率モデ ルにもとづいて, 確率モデルを球面上にクラスタリングし, その分類結果を視覚的に も容易に提示することのできる学習モデルである S-SOM と HMM-S-SOM の違い については表 2 に示す ノードや入力データの形式の違い以外に, 勝者ノードの決 定方法や, ノードの更新の方法が異なる その詳細については, 次の HMM-S-SOM の学習アルゴリズムの説明に記す 図 23: 隠れマルコフ球面自己組織化マップ 51

53 2: S-SOM HMM-S-SOM 4.1 HMM-S-SOM STEP 0: HMM Θ k STEP 1: STEP 2: Baum-Welch algorithm STEP 3,, STEP 3: HMM Baum-Welch algorithm, HMM SOM 52

54 SOM, STEP1STEP3, STEP2,,,, 24,,,Baum-Welch algorithm HMM,,,,Baum-Welch algorithm HMM,STEP3 24: 53

55 4.2, left to right, Ergodic, U-matrix, U-matrix U-matrix,,,, A,B,C 3 HMM HMM M 1, M 3,..., M 10,,,, ,

56 3: M 1 4: M 2 5: M 3 6: M 4 7: M 5 8: M 6 55

57 9: M 7 10: M 8 11: M 9 12: M 10 13: M 1 14: M 2 56

58 15: M 3 16: M 4 17: M 5 18: M 6 19: M 7 20: M 8 57

59 21: M 9 22: M 10 25: HMM-S-SOM HMM-S-SOM M 1 Data1 M 1 M 10 M 1 M 10 M 3, M 8, M 9, M 7, M 2, M 5, M 6, M 4 M 1,U-matrix HMM, U-matrix HMM 58

60 26:, HMM,, 27,,,,model 1 model 4,HMM -matrix,, 59

61 27: 60

62 5 (F-HMM-S-SOM), Baum-Welch algorithm,,som,hmm,, SOM HMM, (F-HMM-S-SOM) ( 28) 28: F-HMM-S-SOM,, HMM,, 61

63 , F-S-HMM-SOM, A,B,C, n, n + 1,A,B,C,,, A,B,C, l, l 1 l, 12 (l 1) m, l max, (m 2 + m)(l max 1) ACCB, BCC,,, 2,ACCB, AC, 29 AC, 0, , CC , CB ACCB 62

64 ,BCC :,,, 30,, 0( 30: ) Θ k : HMMS-SOMHMMΘ k = {A k, S k } 63

65 30: A k = a k 01 a k 02 a k 0j a k 11 a k 12 a k 1j S k = s k 01 s k 02 s k 0h s k 11 a k 12 s k 1h a k i1 a k i2 a k ij s k i1 s k i2 s k ih a i,j i j s i,h i x h X : X = {x 1, x 2, x 3,..., x h } V = {v 1, v 2, v 3,..., v h } STEP 1: HMM Θ k STEP 2: W n Baum-Welch algorithm N i HMM L i, N i E i STEP 3:, 64

66 (1 E i E max ) L i,e max E i STEP 4: Baum-Welch algorithm, STEP 5:,SOM N n k Θ k STEP 4 Nk n HMM Θ n k = {An k, Sn k } A = β h(p nx, P nx )(A n k A k) A new k = A k + A S = β h(p nx, P nx )(Sk n S k) S new k = S k + S Θ new k Θ k Θ new k = {A new k, Sk new } h(p nx, P nx ) = exp( P nx P nx θ 2 ) P jx N j k P jx 65

67 P jx P jx β,baum-welch algorithm STEP 6: SOM SOM STEP2STEP5,,, U-matrix, 66

68 5.1 F-HMM-S-SOM,, HMM-S-SOM, F-HMM-S-SOM HMM U-matrix 31,, 31: HMM U-matrix, ( 32),, 67

69 32: U-matrix 5.2 F-HMM-S-SOM,,,DNA (HMM-S-SOM) DNA, DNA ATGC,ATGC [14], 1024, , (Hsall), Mmuall, (Cfaall), Ecoall, (Dmaall), (Osaall),HMM- S-SOM, U-matrix 33 68

70 33: HMM-S-SOM,,.. F-HMM-S-SOM,HMM U-matrix, ( 34), ( 35),,,,,,,,,, 69

71 34: F-HMM-S-SOM : U-matrix 35: F-HMM-S-SOM : U-matrix 70

72 5.2.2, ,,,,,,, 36,,,, U, D, S, U D,, F-HMM-S-SOM,F- HMM-S-SOM HMM, 37 4, U,S,D 3,Umatrix, 71

73 36: 72

74 37:,,. t t+1, HMM-S-SOM F-HMM-S-SOM , , S-HMM-SOM, F-S-HMM-SOM,, S-HMM-SOM,U-matrix,,F-S-HMM-SOM, 73

75 38: 74

76 39: 75

77 , U-matrix,,,, F-S-HMM-SOM 1.377,S-HMM-SOM 2.623,,., 40,, S-HMM-SOM 40,,,, F-S-HMM-SOM 40,,,,,,,,,,,,,,,,, 76

78 40: 77

79 ,, 41,,,, , ,,,,, 4,,,,,, 78

80 41: 79

81 図 42: 移動平均線との比較 80

82 図 43: 移動平均線との比較 81

83 : 82

84 6,,,,,,,,,,,,, 44, 1,2, SOM v j x i 1, (mask-vector)w i w i,, ,1,0 83

85 44:, 1, 0 1,1 2, 30 5,,,, 45: SOM,, 45, h a, 84

86 STEP 1: 1 x i = {x i0, x i1,..., x in }, h a = {h a0, h a1,..., h an } 2 w i = {w i0, w i1,..., w in } 1 STEP 2: i,l 1 [argmin] i {w ij (h aj v aj w ij x ij )} L 2 (34) j L = j w2 ij w i w i STEP 3: wi,, µ a µ a µ ai ω 46 46: 85

87 (35) m [argmin] m { 1 m m k=2 ( ω k ω m ) 2 } ϕ (35),ϕ 0.5 µ t ω k f(t) = k, f(t) m w new it = w old it + γ(1 w old it ) (36) m < f(t) w new it = w old it + γ(0 w old it ) (37),γ 0 < γ < 1, wi w i 1 0 h a STEP 4:, x new j = x old j + α(v a x old j ) (38) w new j = w old j + β(w i w old j ) (39) α,,0 < α < 1, β 0 < β < 1 86

88 STEP2STEP4,,, h a, 6.1, h a, 1 3,,, noise Mersenne Twister[15] 01 1x,y,z y = 3 x + noise z = noise 2x 0.5, x,y,z x,y,z 87

89 47: y = 3 x + noise z = noise (x 0.5) y = 2 x + noise z = noise (x > 0.5) 3x 0.5,x,z, x 0.5,y z y = 3 x + 2 noise z = noise (x 0.5) 88

90 48: 2 y = 2 z + noise + 2 x = noise (x > 0.5) ,, x y model z, x y 0.819, SOM 51 SOM, 8, 89

91 49: 3 50: 90

92 51: SOM, x y, , x y, x y z, , SOM 53,, x y z, x y 2,model 91

93 52: 53: SOM 92

94 , xy x y, y,x,y,y z x ,, 78, 54: yz,xy, 56 93

95 55: 56: 94

96 56, 54 yz,yz, yz,xy,x, yz,x,, xy,,, SOM, 57 57: SOM,, x z SOM, 95

97 7,,,,,,,, DNA,,,,,,,,,,,,,,,,,,,,.,,,, 96

98 , k-means,., 2,,,.,, SOM F-HMM-S-SOM,, 97

99 ,,,,,,,,,.,,, 98

100 [1],,2012. [2],,,, DEIM Forum 2010 F4-2,2010. [3]Teuvo Kohonen,, :,. [4]Chie Morita and Hiroshi Tsukimoto:Knowledge discovery from numerical data, Knowledge-based Systems,Vol.10,No7,pp ,1998. [5] :,2009. [6] /,, HMM-SOM. [7], HMM-SOM MIDI. [8],,,, : A spherical SOM and its examples/thecnical Report of IEICE. [9],,, : S-SOM, ,

101 [10],,,, : SOM,, Vol.2010-MPS-77 No.29,2010. [11] Ying Xin WU SOM Vol.19, No.6, pp ,2007. [12]N2Factory DirectX. [13]Jeffrey Richter, Christophe Nasarre:Advanced Windows 5, BP,2008. [14]Hiroshi Dozono. et.al:a Design Method of DNA Chips for sequence Analysis Using Self Organizing Maps, Proceeding of WSOM 2003,pp ,2003. [15]M. Matsumoto and T. Nishimura:A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30,

102 1. Gen Niina, Kazuhiro Muramatsu, Hiroshi Dozono: Basic Study on the Classification of Time Series Data Using a Frequency Integrated Spherical Hidden Markov Self Organizing Map, Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.19 No.2, pp , Gen Niina, Kazuhiro Muramatsu, Hiroshi Dozono: Causal analysis of data using 2-layerd Spherical Self-Organizing Map, The 2015 International Conference on Computational Science and Computational Intelligence (CSCI 15), Las Vegas, USA, pp , Gen Niina, Kazuhiro Muramatsu, Hiroshi Dozono, Tatsuya Chuuto: The data analysis of stock market using a Frequency Integrated Spherical Hidden Markov Self Organizing Map, ICSIIT 2015, 4th International Conference on Soft Computing, Intelligent System and Information Technology, March 11-14, 2015 / Bari, Indonesia, pp , Gen Niina, Kazuhiro Muramatsu, Hiroshi Dozono: The Frequency Integrated Spherical Hidden Markov Self Organizing Map for Learning Time Series Data, ISIS2013, The International Symposium on Advanced Intelligent Systems, Daejeon, Korea, pp ,

103 4. Hiroshi Dozono, Gen Niina and Kazuhiro Muramatsu,: Mapping of DNA sequences using Hidden Markov Model Self-Organizing Maps, Proceedings of The 10th annual IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, IEEE Press, Singapore, Hiroshi Dozono, Gen Niina and Yutaro Kaneko: Mapping the Groups of DNA Sequences using Hidden Markov Model Self Organizing Maps, The First BMIRC International Symposium on Frontiers in Computational Systems Biology and Bioengineering, Fukuoka, Japan, Gen Niina, Hiroshi Dozono: The Spherical Hidden Markov Self Organizing Map for Learning Time Series Data, 22nd International Conference on Artificial Neural Networks, Lausanne, Switzerland, pp , Part I, ,, :, 15,, , : DirectX SOM 19, ,, : 64,

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

untitled

untitled K-Means 1 5 2 K-Means 7 2.1 K-Means.............................. 7 2.2 K-Means.......................... 8 2.3................... 9 3 K-Means 11 3.1.................................. 11 3.2..................................

More information

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N RMT 1 1 1 N L Q=L/N (RMT), RMT,,,., Box-Muller, 3.,. Testing Randomness by Means of RMT Formula Xin Yang, 1 Ryota Itoi 1 and Mieko Tanaka-Yamawaki 1 Random matrix theory derives, at the limit of both dimension

More information

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i 20 SOM Development of Syllabus Vsualization System using Spherical Self-Organizing Maps 1090366 2009 3 5 SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i Abstract Development of Syllabus Vsualization

More information

知能と情報, Vol.29, No.6, pp

知能と情報, Vol.29, No.6, pp 36 知能と情報知能と情報 ( 日本知能情報ファジィ学会誌 ( ))Vol.29, No.6, pp.226-230(2017) 会告 Zadeh( ザデー ) 先生を偲ぶ会 のご案内 Zadeh( ) とと と 日 2018 1 20 日 ( ) 15:00 17:30(14:30 18:00 ) 2F ( ) 530-8310 1-1-35 TEL: 06-6372-5101 https://www.hankyu-hotel.com/hotel/osakashh/index.html

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self-

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self- TC1-31st Fuzzy System Symposium (Chofu, September -, 15) Proposing a Growing Self-Organizing Map Based on a Learning Theory of a Gaussian Mixture Model Kazuhiro Tounaga National Fisheries University Abstract:

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

Real AdaBoost HOG 2009 3 A Graduation Thesis of College of Engineering, Chubu University Efficient Reducing Method of HOG Features for Human Detection based on Real AdaBoost Chika Matsushima ITS Graphics

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

untitled

untitled IT E- IT http://www.ipa.go.jp/security/ CERT/CC http://www.cert.org/stats/#alerts IPA IPA 2004 52,151 IT 2003 12 Yahoo 451 40 2002 4 18 IT 1/14 2.1 DoS(Denial of Access) IDS(Intrusion Detection System)

More information

2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,, DEIM Forum 2016 E1-4 525-8577 1 1-1 E-mail: is0111rs@ed.ritsumei.ac.jp, oku@fc.ritsumei.ac.jp, kawagoe@is.ritsumei.ac.jp 373 1.,, itunes Store 1, Web,., 4,300., [1], [2] [3],,, [4], ( ) [3], [5].,,.,,,,

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

i

i 24 i 1 1 1.1.................................. 1 1.2....................... 2 1.3........................... 5 2 7 2.1............................... 7 2.2............ 8 2.3.......................... 9

More information

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) kawasumi.ryo@ist.osaka-u.ac.jp 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, ryo-f@hiroshima-cu.ac.jp, fukuda@cv.ics.saitama-u.ac.jp,

More information

Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U

Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U Computer Security Symposium 017 3-5 October 017 1,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) 1. 017 5 [1] 1 Meiji University Graduate School of Advanced Mathematical Science

More information

BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO

BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO DEIM Forum 2012 C8-5 WikiBOK 252 5258 5 10 1 E-mail: shunsuke.shibuya@gmail.com, {kaz,masunaga}@si.aoyama.ac.jp, {yabuki,sakuta}@it.aoyama.ac.jp Body Of Knowledge, BOK BOK BOK BOK BOK, BOK Abstract Extention

More information

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal 1 2 3 A projection-based method for interactive 3D visualization of complex graphs Masanori Takami, 1 Hiroshi Hosobe 2 and Ken Wakita 3 Proposed is a new interaction technique to manipulate graph layouts

More information

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai, 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] 1 599 8531 1 1 Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai, Osaka 599 8531, Japan 2 565 0871 Osaka University 1 1, Yamadaoka, Suita, Osaka

More information

27 28 2 15 14350922 1 4 1.1.................................... 4 1.2........................... 5 1.3......................... 6 1.4...................................... 7 2 9 2.1..........................

More information

1.0, λ. Holt-Winters t + h,ỹ t ỹ t+h t = ỹ t + hf t.,,.,,,., Hassan [5],,,.,,,,,,Hassan EM,, [6] [8].,,,,Stenger [9]. Baum-Welch, Baum-Welch (Incremen

1.0, λ. Holt-Winters t + h,ỹ t ỹ t+h t = ỹ t + hf t.,,.,,,., Hassan [5],,,.,,,,,,Hassan EM,, [6] [8].,,,,Stenger [9]. Baum-Welch, Baum-Welch (Incremen DEIM Forum 2009 E8-4 HMM 184 8584 3-7-2 E-mail: kei.wakabayashi.bq@gs-eng.hosei.ac.jp, miurat@k.hosei.ac.jp, (HMM)., EM HMM, Baum-Welch,,,, Forecasting Time-Series on Data Stream using Incremental Hidden

More information

独立行政法人情報通信研究機構 Development of the Information Analysis System WISDOM KIDAWARA Yutaka NICT Knowledge Clustered Group researched and developed the infor

独立行政法人情報通信研究機構 Development of the Information Analysis System WISDOM KIDAWARA Yutaka NICT Knowledge Clustered Group researched and developed the infor 独立行政法人情報通信研究機構 KIDAWARA Yutaka NICT Knowledge Clustered Group researched and developed the information analysis system WISDOM as a research result of the second medium-term plan. WISDOM has functions that

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1 ACL2013 TACL 1 ACL2013 Grounded Language Learning from Video Described with Sentences (Yu and Siskind 2013) TACL Transactions of the Association for Computational Linguistics What Makes Writing Great?

More information

Vol. 43 No. 2 Feb. 2002,, MIDI A Probabilistic-model-based Quantization Method for Estimating the Position of Onset Time in a Score Masatoshi Hamanaka

Vol. 43 No. 2 Feb. 2002,, MIDI A Probabilistic-model-based Quantization Method for Estimating the Position of Onset Time in a Score Masatoshi Hamanaka Vol. 43 No. 2 Feb. 2002,, MIDI A Probabilistic-model-based Quantization Method for Estimating the Position of Onset Time in a Score Masatoshi Hamanaka, Masataka Goto,, Hideki Asoh and Nobuyuki Otsu, This

More information

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2 IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 MI-Hough Forest () E-mail: ym@vision.cs.chubu.ac.jphf@cs.chubu.ac.jp Abstract Hough Forest Random Forest MI-Hough Forest Multiple Instance Learning Bag Hough Forest

More information

平成○○年度知能システム科学専攻修士論文

平成○○年度知能システム科学専攻修士論文 A Realization of Robust Agents in an Agent-based Virtual Market Makio Yamashige 3 7 A Realization of Robust Agents in an Agent-based Virtual Market Makio Yamashige Abstract There are many people who try

More information

本 ディスカッションペーパーの 内 容 や 意 見 は 全 て 執 筆 者 の 個 人 的 見 解 であり 金 融 庁 あるいは 金 融 研 究 センターの 公 式 見 解 を 示 すものではありません

本 ディスカッションペーパーの 内 容 や 意 見 は 全 て 執 筆 者 の 個 人 的 見 解 であり 金 融 庁 あるいは 金 融 研 究 センターの 公 式 見 解 を 示 すものではありません FSA Institute Discussion Paper Series エージェントシミュレーションを 用 いた 価 格 規 制 と ネイキッド ショート セ リングの 禁 止 の 有 効 性 の 検 証 大 井 朋 子 DP 2012-5 2012 年 12 月 金 融 庁 金 融 研 究 センター Financial Research Center (FSA Institute) Financial

More information

Introduction of Self-Organizing Map * 1 Ver. 1.00.00 (2017 6 3 ) *1 E-mail: furukawa@brain.kyutech.ac.jp i 1 1 1.1................................ 2 1.2...................................... 4 1.3.......................

More information

27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U

27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U YouTube 2016 2 16 27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM UGC UGC YouTube k-means YouTube YouTube

More information

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI 24 GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI 1 1 1.1 GUI................................... 1 1.2 GUI.................... 1 1.2.1.......................... 1 1.2.2...........................

More information

1

1 005 11 http://www.hyuki.com/girl/ http://www.hyuki.com/story/tetora.html http://www.hyuki.com/ Hiroshi Yuki c 005, All rights reserved. 1 1 3 (a + b)(a b) = a b (x + y)(x y) = x y a b x y a b x y 4 5 6

More information

BB 報告書完成版_修正版)040415.doc

BB 報告書完成版_修正版)040415.doc 3 4 5 8 KW Q = AK α W β q = a + α k + βw q = log Q, k = log K, w = logw i P ij v ij P ij = exp( vij ), J exp( v ) k= 1 ik v i j = X β αp + γnu j j j j X j j p j j NU j j NU j (

More information

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2 DEIM Forum 2013 B10-4 Web Index 223-8522 3-14-1 E-mail: haseshun@db.ics.keio.ac.jp, toyama@ics.keio.ac.jp, URL WIX, Web Web Index(WIX). WIX, WIX.,,. Web Index, Web, Web,, Related Contents Recommendation

More information

Visit Japan Campaign OD OD 18 UNWTO 19 OD JNTO ODUNWTO 1 1

Visit Japan Campaign OD OD 18 UNWTO 19 OD JNTO ODUNWTO 1 1 UNWTO OD 2 FURUYA, Hideki 1 LCC 1 2 OD 1 2 OD 3 4 5 6 7 8 9 10 11 /1 GDP M. H. Mohd Hanafiah and M. F. Mohd Harun 12 GDP 1 13 Vol.15 No.4 2013 Winter 041 3 3.1 6222011 Visit Japan Campaign2003521 10119

More information

syuu_2_10_3.dvi

syuu_2_10_3.dvi [1] [1, 2, 3] [1, 4, 5] 6 7 3 (0.66) (0.65) 1 [6] 0 1 1 2 3 2.1................................ 3 2.1.1.................................. 3 2.1.2.................................. 3 2.2...........................

More information

guideline_1_0.dvi

guideline_1_0.dvi Version 1.0 ( 22 5 ) cflkanta Matsuura Laboratory 2010, all rights reserved. I 3 1 3 2 3 3 4 II 8 4 8 5 9 5.1......................... 9 5.2......................... 10 5.3......................... 10

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

Run-Based Trieから構成される 決定木の枝刈り法

Run-Based Trieから構成される  決定木の枝刈り法 Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network

More information

Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3 36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there

More information

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4 G-002 R Database and R-Wave Detecting System for Utilizing ECG Data Takeshi Nagatomo Ikuko Shimizu Takeshi Ikeda Akio Sashima Koichi Kurumatani R R MIT-BIH R 90% 1. R R [1] 2 24 16 Tokyo University of

More information

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan MachineDancing: 1,a) 1,b) 3 MachineDancing 2 1. 3 MachineDancing MachineDancing 1 MachineDancing MachineDancing [1] 1 305 0058 1-1-1 a) s.fukayama@aist.go.jp b) m.goto@aist.go.jp 1 MachineDancing 3 CG

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T 第 55 回自動制御連合講演会 212 年 11 月 日, 日京都大学 1K43 () Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. Tokumoto, T. Namerikawa (Keio Univ. ) Abstract The purpose of

More information

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2) Vol. 47 No. SIG 14(TOM 15) Oct. 2006 RBF 2 Effect of Stock Investor Agent According to Framing Effect to Stock Exchange in Artificial Stock Market Zhai Fei, Shen Kan, Yusuke Namikawa and Eisuke Kita Several

More information

日本分子第4巻2号_10ポスター発表.indd

日本分子第4巻2号_10ポスター発表.indd JSMI Report 62 63 JSMI Report γ JSMI Report 64 β α 65 JSMI Report JSMI Report 66 67 JSMI Report JSMI Report 68 69 JSMI Report JSMI Report 70 71 JSMI Report JSMI Report 72 73 JSMI Report JSMI Report 74

More information

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twitter Ustream 1 Graduate School of Information Science and Technology, Osaka University, Japan 2 Cybermedia Center, Osaka University,

More information

DEIM Forum 2017 H2-2 Android LAN Android 1 Android LAN

DEIM Forum 2017 H2-2 Android LAN Android 1 Android LAN DEIM Forum 2017 H2-2 Android LAN 112-8610 2-1-1 163-8677 1-24-2 E-mail: {ayano,oguchi}@ogl.is.ocha.ac.jp, sane@cc.kogakuin.ac.jp Android 1 Android LAN Ayano KOYANAGI, Saneyasu YAMAGUCHI, and Masato OGUCHI

More information

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme DEIM Forum 2009 C8-4 QA NTT 239 0847 1 1 E-mail: {kabutoya.yutaka,kawashima.harumi,fujimura.ko}@lab.ntt.co.jp QA QA QA 2 QA Abstract Questions Recommendation Based on Evolution Patterns of a QA Community

More information

Microsoft Word - deim2011_new-ichinose-20110325.doc

Microsoft Word - deim2011_new-ichinose-20110325.doc DEIM Forum 2011 B7-4 252-0882 5322 E-mail: {t08099ai, kurabaya, kiyoki}@sfc.keio.ac.jp A Music Search Database System with a Selector for Impressive-Sections of Continuous Data Aya ICHINOSE Shuichi KURABAYASHI

More information

untitled

untitled 2007 55 2 255 268 c 2007 2007 1 24 2007 10 30 k 10 200 11 110 6 60 3 1. 1 19 Mendenhall 1887 Dickens, 1812 1870 Thackeray, 1811 1863 Mill, 1806 1873 1960 610 0394 1 3 256 55 2 2007 Sebastiani 2002 k k

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

DEIM Forum 2009 B4-6, Str

DEIM Forum 2009 B4-6, Str DEIM Forum 2009 B4-6, 305 8573 1 1 1 152 8550 2 12 1 E-mail: tttakuro@kde.cs.tsukuba.ac.jp, watanabe@de.cs.titech.ac.jp, kitagawa@cs.tsukuba.ac.jp StreamSpinner PC PC StreamSpinner Development of Data

More information

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2 Curved Document Imaging with Eye Scanner Toshiyuki AMANO, Tsutomu ABE, Osamu NISHIKAWA, Tetsuo IYODA, and Yukio SATO 1. Shape From Shading SFS [1] [2] 3 2 Department of Electrical and Computer Engineering,

More information

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 1 1 1 GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Self-location is very informative for wearable systems.

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc iphone 1 1 1 iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Processing Unit)., AR Realtime Natural Feature Tracking Library for iphone Makoto

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

TOKUSHIMA PREFECTURAL INDUSTRIAL TECHNOLOGY CENTER 1 1 1 2 3 3 3 6 1 4 1 6 9 1 10 9 1 10 8 1 9 5 1 6 5 5 5 43 8 1 6 10 8 9 9 43 14 21 112 126 69 74 416 192 976 892 1,312 1,323 842 5,537 2,255 310 749

More information

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat 1 1 2 1. TF-IDF TDF-IDF TDF-IDF. 3 18 6 Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Satoshi Date, 1 Teruaki Kitasuka, 1 Tsuyoshi Itokawa 2

More information

21 Pitman-Yor Pitman- Yor [7] n -gram W w n-gram G Pitman-Yor P Y (d, θ, G 0 ) (1) G P Y (d, θ, G 0 ) (1) Pitman-Yor d, θ, G 0 d 0 d 1 θ Pitman-Yor G

21 Pitman-Yor Pitman- Yor [7] n -gram W w n-gram G Pitman-Yor P Y (d, θ, G 0 ) (1) G P Y (d, θ, G 0 ) (1) Pitman-Yor d, θ, G 0 d 0 d 1 θ Pitman-Yor G ol2013-nl-214 No6 1,a) 2,b) n-gram 1 M [1] (TG: Tree ubstitution Grammar) [2], [3] TG TG 1 2 a) ohno@ilabdoshishaacjp b) khatano@maildoshishaacjp [4], [5] [6] 2 Pitman-Yor 3 Pitman-Yor 1 21 Pitman-Yor

More information

Fuzzy Multiple Discrimminant Analysis (FMDA) 5) (SOM) 6) SOM 3 6) SOM SOM SOM SOM SOM SOM 7) 8) SOM SOM SOM GPU 2. n k f(x) m g(x) (1) 12) { min(max)

Fuzzy Multiple Discrimminant Analysis (FMDA) 5) (SOM) 6) SOM 3 6) SOM SOM SOM SOM SOM SOM 7) 8) SOM SOM SOM GPU 2. n k f(x) m g(x) (1) 12) { min(max) SOM 1 2 2 3 1 (SOM: Self-Organizing Maps) 3 SOM SOM SOM SOM GPU A Study on Visualization of Pareto Solutions by Spherical Self-Organizing Maps MASATO YOSHIMI, 1 KANAME NISHIMOTO, 2 LUYI WANG, 2 TOMOYUKI

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So 1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract:

More information

Trial for Value Quantification from Exceptional Utterances 37-066593 1 5 1.1.................................. 5 1.2................................ 8 2 9 2.1.............................. 9 2.1.1.........................

More information

22 Google Trends Estimation of Stock Dealing Timing using Google Trends

22 Google Trends Estimation of Stock Dealing Timing using Google Trends 22 Google Trends Estimation of Stock Dealing Timing using Google Trends 1135064 3 1 Google Trends Google Trends Google Google Google Trends Google Trends 2006 Google Google Trend i Abstract Estimation

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

johnny-paper2nd.dvi

johnny-paper2nd.dvi 13 The Rational Trading by Using Economic Fundamentals AOSHIMA Kentaro 14 2 26 ( ) : : : The Rational Trading by Using Economic Fundamentals AOSHIMA Kentaro abstract: Recently Artificial Markets on which

More information

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF   a m Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki

More information

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam 1 1 1 1 1 NetMAS NetMAS NetMAS One-dimensional Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yamashita, 1 Masaki Onishi, 1 Ikushi Yoda 1 and Itsuki Noda 1 We propose the one-dimentional

More information

dsample.dvi

dsample.dvi 1 1 1 2009 2 ( ) 600 1 2 1 2 RFID PC Practical Verification of Evacuation Guidance Based on Pedestrian Traffic Measurement Tomohisa Yamashita, 1 Shunsuke Soeda 1 and Noda Itsuki 1 In this paper, we report

More information

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and MIDI 1 2 3 2 1 Modeling Performance Indeterminacies for Polyphonic Midi Score Following and Its Application to Automatic Accompaniment Nakamura Eita 1 Yamamoto Ryuichi 2 Saito Yasuyuki 3 Sako Shinji 2

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

No. 26 March 2016 IoT innovation IoT innovation 1 2 ICT Industry and IoT Innovation-Case Study of Competition and Cooperation between ICT and Automobi

No. 26 March 2016 IoT innovation IoT innovation 1 2 ICT Industry and IoT Innovation-Case Study of Competition and Cooperation between ICT and Automobi No. 26 March 2016 1 2 ICT Industry and IoT Innovation-Case Study of Competition and Cooperation between ICT and Automobile Industries Naoko Iwasaki, Toshio Obi Information and Communication Industry faces

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

ii

ii I05-010 : 19 1 ii k + 1 2 DS 198 20 32 1 1 iii ii iv v vi 1 1 2 2 3 3 3.1.................................... 3 3.2............................. 4 3.3.............................. 6 3.4.......................................

More information

2009/9 Vol. J92 D No. 9 HTML [3] Microsoft PowerPoint Apple Keynote OpenOffice Impress XML 4 1 (A) (C) (F) 2. 2. 1 1484 Fig. 1 1 An example of slide i

2009/9 Vol. J92 D No. 9 HTML [3] Microsoft PowerPoint Apple Keynote OpenOffice Impress XML 4 1 (A) (C) (F) 2. 2. 1 1484 Fig. 1 1 An example of slide i a) Structure Extraction from Presentation Slide Information Tessai HAYAMA a), Hidetsugu NANBA, and Susumu KUNIFUJI Web 1. Web Graduate School of Knowledge Science, Japan Advanced Institute of Science and

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root 1,a) 2 2 1. 1 College of Information Science, School of Informatics, University of Tsukuba 2 Faculty of Engineering, Information and Systems, University of Tsukuba a) oharada@iplab.cs.tsukuba.ac.jp 2.

More information

11 22 33 12 23 1 2 3, 1 2, U2 3 U 1 U b 1 (o t ) b 2 (o t ) b 3 (o t ), 3 b (o t ) MULTI-SPEAKER SPEECH DATABASE Training Speech Analysis Mel-Cepstrum, logf0 /context1/ /context2/... Context Dependent

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

DEIM Forum 2012 E Web Extracting Modification of Objec

DEIM Forum 2012 E Web Extracting Modification of Objec DEIM Forum 2012 E4-2 670 0092 1 1 12 E-mail: nd11g028@stshse.u-hyogo.ac.jp, {dkitayama,sumiya}@shse.u-hyogo.ac.jp Web Extracting Modification of Objects for Supporting Map Browsing Junki MATSUO, Daisuke

More information