Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1..."

Transcription

1 DT-870/5100 &DT-5042RFB

2

3 1-1

4

5

6 1-1

7

8

9 cos cos

10

11

12

13

14

15

16 1-3

17 2.

18

19

20

21 3-1

22 3-2

23 3-3

24 3-4

25 4-1.

26

27 4-2

28 4-3

29

30

31

32

33 4-4

34

35

36 4-5

37

38

39 5-1.

40 5-2

41

42

43 5-3

44

45

46

47

48

49

50

取扱説明書 [N-03A]

取扱説明書 [N-03A] 235 1 d dt 2 1 i 236 1 p 2 1 ty 237 o p 238 1 i 2 1 i 2 1 u 239 1 p o p b d 1 2 3 0 w 240 241 242 o d p f g p b t w 0 q f g h j d 1 2 d b 5 4 6 o p f g p 1 2 3 4 5 6 7 243 244 1 2 1 q p 245 p 246 p p 1

More information

取扱説明書[N906i]

取扱説明書[N906i] 237 1 dt 2 238 1 i 1 p 2 1 ty 239 240 o p 1 i 2 1 u 1 i 2 241 1 p v 1 d d o p 242 1 o o 1 o 2 p 243 1 o 2 p 1 o 2 3 4 244 q p 245 p p 246 p 1 i 1 u c 2 o c o 3 o 247 1 i 1 u 2 co 1 1 248 1 o o 1 t 1 t

More information

2 3 4 mdv/dt = F cos(-)-mg sin- D -T- B cos mv d/dt = F sin(-)-mg cos+ L- B sin I d 2 /dt 2 = Ms + Md+ Mn FMsMd MnBTm DLg 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Hm H h

More information

取扱説明書[N-02B]

取扱説明書[N-02B] 187 1 p p 188 2 t 3 y 1 1 p 2 3 4 5 p p 1 i 2 189 190 1 i 1 i o p d d dt 1 2 3 4 5 6 9 0 191 192 d c d b db d 1 i 1 193 194 2 d d d r d b sla sla 1 o p i o o o op 195 u u 1 u t 1 i u u 1 i 196 1 2 bd t

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

02.O...r.A..

02.O...r.A.. 8 300ha k (m 3 / / ) (0 2 ) 0405 135 270 2 12 0540 162 351 12 24 0810 216 486 500kg 135 459 127 1987 (m 3 / / ) 0566 2266 5947 9 18kg 0057 0425 1019 18 45 0142 0566 1358 45 675 0198 0708 2038 675 945 0283

More information

DII_カタログ.pdf

DII_カタログ.pdf DIRECT IMAGING INDENTER OINT m A = 2 3 E* = E 2 E d * R tan A 2 3 E* H M = A H M E 2 tan Y = C A f - 2 E tan E (t) = 2 tan (t) A ve (0) D(t) = tan 2 0 A ve (t) D(t)= tan 2k p da ve (t) dt E H M Y H(=C

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

取扱説明書 P703i 日本語

取扱説明書 P703i 日本語 289 290 29 2 3 2 2 3 +m-4-6 m l Vo Co Oo Oo 292 293 Oo l i Oo Oo l i i r 294 295 l Oo l l i i i 296 297 i Mo r i l i Mo 2 3 i Oo Oo r h 298 299 i l MoOo l i Oo i Oo i No No i l i 300 i l MoOo Oo i l i

More information

法人のお客様用サンプル

法人のお客様用サンプル 2007 4 06 144 TFJ Bi-Weekly Monetary Affairs TFJ 4 5 6 7 8 9 10-13 14-18 19-20 ( ) 21-22 1 2-3 23-24 25-26 27-28 (TFJ ) 29 Page 1 RP TFJ Bi-Weekly Monetary Affairs 4/06/2007 Page 2 Page 3 Page 4 Page 5

More information

2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4)

2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4) 1 1 1.1 2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4) 1.1 3 M m r a a = d2 r dt 2 (1.4) r d 2 r dt 2 = GM r 3 r (1.5)

More information

untitled

untitled Web - - - - - - - - - - - - - - - - () () () sin θ,cosθ, tanθ () 3 5 () 4 () 12 5 r y 13 x x = r cosθ () y = r sinθ y = x tanθ P P () () A C 2,24 C -9- -10- -11- -12- 9 9 10 10-13- 4 4 4 1 0.5 4 10 30

More information

MDV-737DT_535DT_01.indb

MDV-737DT_535DT_01.indb MDV-737DT MDV-535DT 2012 JVC KENWOOD Corporation B64-4916-08/02(J) LVT2315-001C 2 3 4 5 6 P45 P64 P78 P80 P42 P82 P88 7 P110 P113 P116 P95 P98 P125 P169 P120 P120 P132 P146 P138 P63 P114 8 P143 P162 9

More information

082 N N N N

082 N N N N 082 N 1608 300 N 1610 700 N 1658 280 N 1640 650 N 1667 380 083 N 1664 220 N 1609 300 N 1659 280 N 1620 400 084 N 1622 250 N 1624 200 N 1623 250 N 1623S 150 085 N 1617 300 N-1615 680 N-1630 340 N 1600A

More information

競技スポーツの科学研究 ~ アトランタ五輪を終えて ~ 新潟大学・山崎 健

競技スポーツの科学研究  ~ アトランタ五輪を終えて ~ 新潟大学・山崎  健 1997 3 1998 12 sin cos 1997 3 1998 12 1997 3 1998 12 1997 3 1998 12 4 1997 3 1998 12 1964!? 100m 94 100m 100mH 10 100m 1964 1997 3 1998 12 1996 100m 7 0.174 0.14 9 84 1988 200m 25m 1986 1997 3 1998 12

More information

9 13 9 14 9 15 9 16 9 17 9 18 9 19 9 20 9 21 9 22 9 23 9 24 9 25 NPO 9 26

9 13 9 14 9 15 9 16 9 17 9 18 9 19 9 20 9 21 9 22 9 23 9 24 9 25 NPO 9 26 C 11 1 9 12 30 14 00 p.277 289 9 1 9 2 A 9 3 A 9 4 9 5 9 6 9 7 9 8 9 9 PEAP 9 10 9 11 9 12 9 13 9 14 9 15 9 16 9 17 9 18 9 19 9 20 9 21 9 22 9 23 9 24 9 25 NPO 9 26 10 12 30 14 00 p.290 304 10 1 10 2 10

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

A大扉・騒音振動.qxd

A大扉・騒音振動.qxd H21-30 H21-31 H21-32 H21-33 H21-34 H21-35 H21-36 H21-37 H21-38 H21-39 H21-40 H21-41 H21-42 n n S L N S L N L N S S S L L log I II I L I L log I I H21-43 L log L log I I I log log I I I log log I I I I

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4...........................

1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4........................... 11 2 5 1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4................................. 3 2.5...............................

More information

SKT表紙.PDF

SKT表紙.PDF SKT CCHS Research and Review 3 23 45 64 90 College of Community and Human Services, Rikkyo(St. Paul s) University SS 2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 3 4 5 b. c. 6 7 8 . 9 10 11 12 13 14 . (2)

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

Untitled

Untitled 23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ 13030607050208 2007 03. 070503 177, 02 4 0806 タ07 09 090908090107060109 04030801 080607040500 0505 タ080601 ァ080504030203 "0806 タ07 09 090908090107060109 04030801" 0908050107050905040905 05.02. 閨090408010007030503

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電 気 回 路 学 I 秋 田 県 立 大 学 システム 科 学 技 術 学 部 電 子 情 報 システム 学 科 徐 粒 第 1 回 基 本 概 念 : 電 気 回 路 電 気 回 路 解 析 とは? 電 流 電 圧 とは? オームの 法 則 抵 抗 とコンダクタンス その 物 理 的 な 意 味 電 気 回 路 とは? 抵 抗 (R) キャパシタ(C) インダクタ(L) 直 流 電 圧 源 直

More information

有機性産業廃棄物の連続炭化装置の開発

有機性産業廃棄物の連続炭化装置の開発 ( ) Development of the apparatus conveyer type which carbonizes continuously organic industrial waste (About the form of blade in conveyer) 1055047 1 1-1 1 1-2 1-3 2 2 2-1 2-2 2-3 2-4 7 3 3-1 20 3-2 3-3

More information

調査対象技術の技術概要

調査対象技術の技術概要 20 21 Business-to-Consumer 1997 1 (Cos) :,,, :,,, :,,, ) cos( ) cos( ) cos( 2 1 1 2 1 2 1 2 2 2 1 1 1 n n n n n A A A A A A x θ θ θ ω ω ω θ ω θ ω θ ω + + + + + + = (1) A (1) 2 8 8 / (1) DCT MPEGJPEG MPEGJPEG

More information

JGA

JGA JGA -101-1 JGA 101 14 * i * * * ii 1 1 ( ) 3 3 1. 6 1. 4 4-11 N mm 4-11 N mm 4-11 N mm N mm N mm N mm N mm (4)(b) *1 (3)(c) (4)(b) 1 (c) ( i ) cos (ii) 4..3.(3)(b) sin N mm (3)() (3)(b) 4..3.(3)(b)

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0: = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n

a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0: = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n apier John apier(550-67) 0 2 3 4 5 6 7 8 9 0 2 4 8 6 32 64 28 256 52 024 4 32 = 28 2+5=7 2 n n 2 n 2 m n + m a 0 ;a ;a 2 ;a 3 ; a = a 0 ; r = a =a 0 = a 2 =a = a 3 =a 2 = n a n a n = ar n a r 2 a m = ar

More information

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P . ϵριµϵτρoζ perimetros 76 Jones, Euler. =.,.,,,, C, C n+ P, P,, P n P, P n P n, P P P P n P n n P n,, C P, P j P j j =,,, n P n P., C.,, C. f [a, b], f. C = f a b, C l l = b a + f d P j P j a b j j j j

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

+ (agbr - ar&t)ee + (aftz - atbt)e:t 9.2.

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

.j...[.X55

.j...[.X55 ANALYTICAL NEWS No.055 2 ANALYTICAL NEWS MS a b c d ANALYTICAL NEWS 3 NMR SEM 4 ANALYTICAL NEWS ANALYTICAL NEWS 5 6 ANALYTICAL NEWS CA NMR Data process 1D analysis 2D analysis Report 1H-NMR (CDCl3) : 8.06

More information

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init 8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

WECPNL = LA +10log10 N 27 N = N 2 + 3N3 + 10( N1 + N 4) L A N N N N N 1 2 3 4 Lden Lden Lden Lden LAE L pa pa 2 a /10 LpA = 20 log 10 ( pa = p 10 ) n na p0 p na n an n p0 2 Lp p L p

More information

untitled

untitled ( x, T ( x, T = D t T, x, t, (1-1) x D T T HP 005 HP http://www.nuce.nagoyau.ac.jp/e8/matsuoka/mathce/05mathce.html 10/18 T ( x, 0) = Ti ( x) (1-) T ( 0, = Tb0( T ( l, = Tbe ( (1-3) 1 Dirichlet Excel Octave

More information

3 10 14 17 25 30 35 43 2

3 10 14 17 25 30 35 43 2 THE ASSOCIATION FOR REAL ESTATE SECURITIZATION 40 2009 July-August 3 10 14 17 25 30 35 43 2 ARES SPECIAL ARES July-August 2009 3 4 ARES July-August 2009 ARES SPECIAL 5 ARES July-August 2009 ARES SPECIAL

More information

1 2009 JANUARY No.707 http://www.jcmanet.or.jp/ 2009 1 No. 707 7 8 12 18 25 30 35 40 45 49 53 58 62 66 71 76 85 86 87 88 CMI 94 99 106 107 110 2009 21 1 PR 21 20 200 15 09. 1 09. 1 1 1 2

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

観測量と物理量の関係.pptx

観測量と物理量の関係.pptx (I! F! ( (! "! (#, $ #, $!! di! d"! =!I! + B! (T ex T ex : "! n 2 / g 2 = exp(! h! n 1 / g 1 kt ex " I! ("! = I! (0e "! +! e ("! " #! B! [T ex ("! ]d " d! " = # " ds = h" 4$ %("(n dsb h" 1 12 [1! exp(!

More information

...............y.\....07..

...............y.\....07.. 150 11.512.0 11.812.0 12.013.0 12.514.0 1 a c d e 1 3 a 1m b 6 20 30cm day a b a b 6 6 151 6 S 5m 11.511.8 G 515m 11.812.0 SG 10m 11.812.0 10m 11.511.8 1020m 11.812.0 SF 5m 11.511.8 510m 11.812.0 V 5m

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

-

- - - v vt t y r y W0W9WwWq c zx t - -4 ud d dr y r y x dx id d d d d x d d r Wq Wq d Uu Xd Xd -5 x dt r o Tx Ii Xd XdXd v c z x d t r o Ii Xd XdXd -6 -7 o y v vt t y W0W9WwWq -8 cc zx t d d v z r d y -9

More information

calpain の基質である細胞骨格タンパク質 fodrin の分解 さらに各種類の calpain~ 害薬投 血導入後 28 日にわたり脳梁白質の局所脳血流が前値の 30~60% に減少し慢性的脳低潅流状態を呈してい ~ ~ ~ ~ ~ 己 ~ 膨 ~ ~ ~ [ 方法 体重 50~90g の成熟雄砂ネスゃミ 52 匹を対象とした o ~ ~L ~ ニ,..;;t.

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

esba.dvi

esba.dvi Ehrenberg-Siday-Bohm-Aharonov 1. Aharonov Bohm 1) 0 A 0 A A = 0 Z ϕ = e A(r) dr C R C e I ϕ 1 ϕ 2 = e A dr = eφ H Φ Φ 1 Aharonov-Bohm Aharonov Bohm 10 Ehrenberg Siday 2) Ehrenberg-Siday-Bohm-Aharonov ESBA(

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

7.1.3 µb cos β µb β µb β 1cm 1 20N d =ls +rs + dlsrs d m 7.1.2 ls m rs R km 1 2 3 4 5 7.1.2 α β γ R 0.0957 2.84 0.8 40 0.0194 0.56 2.18 20 0.0027 8.51

7.1.3 µb cos β µb β µb β 1cm 1 20N d =ls +rs + dlsrs d m 7.1.2 ls m rs R km 1 2 3 4 5 7.1.2 α β γ R 0.0957 2.84 0.8 40 0.0194 0.56 2.18 20 0.0027 8.51 7 7.1.1 7.1 7.1.1 7.1.1 86 2 G + P G + P + S G + P + 0.7 S G + P + S G + P + S G + P + W G + P + W G + P + 0.35 S + W G + P + K G + P + 0.35 S + K 7.1.1 7.1.2 62 7.1.3 µb cos β µb β µb β 1cm 1 20N d =ls

More information

2 1958 10 2 2 60 60020 20 10 1 10 2, 3 2, 3 5 6 108 6 357

2 1958 10 2 2 60 60020 20 10 1 10 2, 3 2, 3 5 6 108 6 357 3 860 8555 2 39 1 e-mail: keitaro@sci.kumamoto-u.ac.jp 1 3 1958 1 195710 1957 7 * 1 12 Fred Lawrence Whipple * 1 1957 7 1 1958 12 31 356 2015 6 2 1958 10 2 2 60 60020 20 10 1 10 2, 3 2, 3 5 6 108 6 357

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

投 資 部 門 別 株 式 売 買 状 況 東 証 第 二 部 [ 金 額 ] 全 50 社 Trading Value of TSE 2nd Section Stocks by Investor Type - All 50 trading participants 東 証 第 二 部 総 売 買

投 資 部 門 別 株 式 売 買 状 況 東 証 第 二 部 [ 金 額 ] 全 50 社 Trading Value of TSE 2nd Section Stocks by Investor Type - All 50 trading participants 東 証 第 二 部 総 売 買 投 資 部 門 別 株 式 売 買 状 況 東 証 第 一 部 [ 金 額 ] 全 50 社 Trading Value of TSE 1st Section Stocks by Investor Type - All 50 trading participants 東 証 第 一 部 総 売 買 代 金 1,153,002,381,923 95.7% 13.5% 82.2% 金 額 Value 差

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

投 資 部 門 別 株 式 売 買 状 況 東 証 第 二 部 [ 金 額 ] 全 51 社 Trading Value of TSE 2nd Section Stocks by Investor Type - All 51 trading participants 東 証 第 二 部 総 売 買

投 資 部 門 別 株 式 売 買 状 況 東 証 第 二 部 [ 金 額 ] 全 51 社 Trading Value of TSE 2nd Section Stocks by Investor Type - All 51 trading participants 東 証 第 二 部 総 売 買 投 資 部 門 別 株 式 売 買 状 況 東 証 第 一 部 [ 金 額 ] 全 51 社 Trading Value of TSE 1st Section Stocks by Investor Type - All 51 trading participants 東 証 第 一 部 総 売 買 代 金 27,511,650,550 96.8% 13.3% 83.5% 金 額 Value 差 引

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

幼 稚 園 入 園 案 内 市 内 在 住 で 審 査 により 園 長 が 認 めた 幼 児 学 年 該 当 年 齢 保 育 時 間 と き ところ 入 園 審 査 幼 稚 園 名 募 集 人 数 電 話 番 号 刈 谷 小 高 原 衣 浦 住 吉 かりがね 平 成 富 士 松 南 富 士 松 北

幼 稚 園 入 園 案 内 市 内 在 住 で 審 査 により 園 長 が 認 めた 幼 児 学 年 該 当 年 齢 保 育 時 間 と き ところ 入 園 審 査 幼 稚 園 名 募 集 人 数 電 話 番 号 刈 谷 小 高 原 衣 浦 住 吉 かりがね 平 成 富 士 松 南 富 士 松 北 2016 201010 15 1 幼 稚 園 入 園 案 内 市 内 在 住 で 審 査 により 園 長 が 認 めた 幼 児 学 年 該 当 年 齢 保 育 時 間 と き ところ 入 園 審 査 幼 稚 園 名 募 集 人 数 電 話 番 号 刈 谷 小 高 原 衣 浦 住 吉 かりがね 平 成 富 士 松 南 富 士 松 北 小 垣 江 双 葉 日 高 重 原 東 刈 谷 小 垣 江 東 井

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

The Characterization of Pigment Surface and Some of their Resulting Optical Properties in Coatings" Lehigh Univ. A. C. Zettlemoyer New Aspect in Paint Research" Stuttgart Univ. W. Funke The Use of Diblock

More information

untitled

untitled 2010128 * *2164 2000.10 1993.11 2001.4 1997.4 2001.4 2002.5 2001.5 2001.4 2000.6 1. 2. 3. 4. 5. 1. *1986 0.3kg/m 3 2. Cl 1 2 *21945 *50 *3835mm *2111 -8 * *()35m6.5m56 2821715 (16) * 0.05mdd * -- 200911.55-60

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション カム リンク 機 構 の 設 計 2010/02/02 テクファ ジャパン( 株 ) 香 取 英 男 カム 機 構 は 半 導 体 や 電 子 部 品 などを 高 速 かつ 多 量 に 製 造 する 機 械 に 数 多 く 用 いられている 重 要 な 機 構 の 一 つである カム 機 構 の 設 計 製 作 を 正 しく 行 えば 長 期 間 にわたって 信 頼 性 の 高 い 性 能 を 発

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

5988_3484JA.ppt

5988_3484JA.ppt Part 2: 1 1 Part 2: 2 2 (BTS) (MS) Part 2: 3 3 Part 2: 4 4 6 26.666 ms PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q

More information

研究シリーズ 第34号

研究シリーズ 第34号 personal income distribution 64 life stage 4134 (R.E.Mouer) 21 38 32 1 30 2 37 44 45 3 65 1 30 1. 12 3 4 5 4 8 5 2 28 1 37 38 5 1 41 34 2 30 4 2 5 38 66 38 2 40 38 6 1 1 5 3 34 67 12 3 31 3 52 8 3 1 1

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

荳狗沿螳ョ-koubo_1508_toku_4C.indd

荳狗沿螳ョ-koubo_1508_toku_4C.indd 1 PROFILE & WORKS 2003 007 008 1 2 STEP1 PR STEP STEP 1 STEP 3 STRT 3 POINT 1Illustrator POINT 4 POINT 2 POINT 5Photoshop POINT FINISH 009 入選確率が 上がる ロゴ シンボルマーク の作り方 2 ロゴ シンボルマーク系公募の場合 入選者のほとんどがプロだと思われがちですが

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

P P P P P P P P P P P

P P P P P P P P P P P P P P P P P P P P P P -1- -2- -3- -4 - P P P P P P P P P P P P P P -1- -2- -3 - -4 - -5- -6- -7- -8- -9- - 10 - -11- - 12 - - 13 - 予防接種支払集計 別表 1 ( 円 ) H23.04 H23.05 H23.06 H23.06 H23.07 H23.08 H23.09

More information

-

- - - v vt t y r y W0W9WwWq czx t - -4 u d d dr y r y x dx dd dd d d Wt Wq Wq f d x dt r o rd Wt XdXd Xd tx d Uu Xd Xd -5 v czx d t r o XdXd Xd -6 -7 o t t v vt t y y W0 W9WwWq -8 cc zx t d d y r Xd v iz

More information

極限

極限 si θ = ) θ 0 θ cos θ θ 0 θ = ) P T θ H A, 0) θ, 0 < θ < π ) AP, P H A P T PH < AP < AT si θ < θ < ta θ si θ < θ < si θ cos θ θ cos θ < si θ θ < θ < 0 θ = h θ 0 cos θ =, θ 0 si θ θ =. θ 0 cos θ θ θ 0 cos

More information

1

1 1 2 B 3 4 5 6 10 Ss 1.5 G 7 1G 1G 1G 1G 1G G 8 2 9 10 11 12 SSs Sd Ss LOCA AS Sd AS Sd 13 14 15 16 SsSd Ss Sd X Y X Y 1 IC16 2 IC16 SsSd Ss Sd X Y X Y 1 IC16 2 IC16 17 18 19 20 21 22 AB F 23 D 24 1.2~1.3

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information