30
|
|
|
- そよ ねごろ
- 9 years ago
- Views:
Transcription
1 r t t
2 30
3 31
4 32
5 r t r t 33
6 34
7 35
8 λ 36
9 37
10 38
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
学歴内婚のシミュレーション分析
18 i 1 3 2 5 2.1... 5 2.2... 8 3 1 11 3.1 1... 11 3.2 1... 14 4 2 15 4.1 2... 15 4.2 2... 15 5 3 17 5.1 3... 17 5.2 3... 17 6 19 6.1... 19 6.2... 19 21 1 2.1 1:-1955... 6 2.2 2:1956-70... 6 2.3 3:1971-85...
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
新しい在胎期間別出生時体格標準値の導入について
表 新 しい 在 胎 期 間 別 出 生 時 体 格 値 作 成 の 対 象 (V: 経 膣 分 娩,C: 帝 王 切 開 ) 在 胎 数 C 初 産 C 経 産 男 児 V 初 産 V 経 産 C 初 産 C 経 産 女 児 V 初 産 V 経 産 8 7 7 9 7 7 8 88 7 8 7 9 7 9 9 8 7 8 7 9 8 9 7 79 8 8 7 89 77 8 8 9 89 88 8
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
産総研TODAY
4 AIST Today 2004.5 AIST Today 2004.5 5 Ωµ 6 AIST Today 2004.5 AIST Today 2004.5 7 8 AIST Today 2004.5 µ AIST Today 2004.5 9 10 AIST Today 2004.5 AIST Today 2004.5 11 12 AIST Today 2004.5 AGGTCAnnnTGACCT
r~ お 持 拡 ~I ;.~l" 冷 ま 二 次 ;~-t1 λ4 ぷ ~j 尽 '" ~~.2わ 新 g ト þ,j' ミ 習 ~..t'l'"? 修 今 川 φ 義 険 制 高 が 九 ~S ~~"'2J~ 副 都 瀞 ドヤ 謝 持 s 仲? 州 議 時 X 品 川.:>~,."" 君 事 ゆけS E
…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå
[email protected] II 2009 6 11 [A] D B A B A B A B DVD y = 2x + 5 x = 3 y = 11 x = 5 y = 15. Google Web (2 + 3) 5 25 2 3 5 25 Windows Media Player Media Player (typed lambda calculus) (computer
/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)
3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S
106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2
105 4 0 1? 1 LP 0 1 4.1 4.1.1 (intger programming problem) 1 0.5 x 1 = 447.7 448 / / 2 1.1.2 1. 2. 1000 3. 40 4. 20 106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >
5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =
. ------------------------------------. ----------------------------------------------- ------------------------------------- -------------------. ---
. ------------------------------------. ----------------------------------------------- ------------------------------------- -------------------. -----------------------------------------------. -----------------------------------------------
一 ~"'I, 働 組 綱 ~. 目 ',R ~-"\ スタン ド ~ デ 漸 減 淑 淑 淑 東 東 淑 淑 収 減 東 東 収 減 淑 東 京 滅 城 東 漸 鴻 1(**)11(** 淑 淑 淑 海 **~ 淑 鴻 I()II( ti~ 同 ~~の 合 間 もつ 訪 らこ 内 は 工 す 統 訪 ~Ij ~J( 密 訟 担 tj~す 5 ;-~ 劃 ~ i 介 ~ ~ ~i てい 古 さる
23 14 24 14 25 15 26 15 27 15 28 15 29 16 30 N = Q 17 31 R = R 2 18 32 N < R 18 33 19 34 20 35 20 36 21 37 21 38 21 39 22 40 22 2
1 3 2 3 2.1...................................... 4 3 7 4 7 5 7 6 7 7 7 8 8 9 8 10 9 11 10 12 10 13 10 14 10 15 11 16 11 17 11 18 11 19 12 20 12 21 13 22 13 1 23 14 24 14 25 15 26 15 27 15 28 15 29 16
ρ 二 二 中 J1Vしにλ~, 一 主 i
引き戸金物 ~OOR A C C E S S O R I E S ハイ首仁川 1 46 イ ハ2 JC11 1 4 6 147 鴇 出 荷 1 147 14 6 ノ需品ヰ 1 面付けレール ハイスペックレール 148 川 1 48 ハイ仙一編 1 1 4 7 レール1101 3 即ラ半 日 149 川市号 1 1 4 9 ストツバ荊鴬 ' 1 4 9 刈 LY S R 1 5 4 L Y s R T
…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä
2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,
1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP 4095 3004 1091 GNP A Q 1995 7 A 2 2
/, 2001 1 GDP................................... 2 2.......................... 2 3.................................... 4 4........................................ 5 5.....................................
3-D Unitary ESPRIT 2 BS(Rx) 120 MS(Tx) A/D ( ) ( ) 2 2 λ/ 3 λ 5.85[GHz] 20 500[kHz] 9.5[MHz] 12bit 20Ms/s 60[deg] 100[ns] Rb atomic osc. 10MHz IF Local 880MHz RF Local 4970MHz 2 way Power Splitter RF
20000926手引き(セット版).PDF
2000 11 30 375 (1) Aeq,T,vehcle pa A ASJ Model 1998 d ASJ Model 1998 g AE Aeq,T,vehcle T (2) Aeq,T,store 15 pa r 0 pa (r 0 ) r pa d A d Aeq,T,a 10 pa 11 11 pa (r 0 ) r Aeq,T,b 12 AE 13 13 AE (r 0 ) r Aeq,T,c
EQV EV [ ] E d+ EQV = = 1 ( 1+ r ) Clean Surplus Concep) BVE = BVE 1 + NI RI NI r BVE = 1 d EQV BVE + E [ RI+ ] ( + r ) = 1 1 + BVE lm = 0 ( 1 r ) + +
2005 [email protected] Ohlson EQV EV [ ] E d+ EQV = = 1 ( 1+ r ) Clean Surplus Concep) BVE = BVE 1 + NI RI NI r BVE = 1 d EQV BVE + E [ RI+ ] ( + r ) = 1 1 + BVE lm = 0 ( 1 r ) + + RIV EVA FCF = EBIT (1 T
A~AKt
Title ELECTRONARCOSIS BY DIRECT STIMULATI THE BRAIN STEM Author(s) ASAI, SHIGEZO Citation 日 本 外 科 宝 函 (1958), 27(1): 21-40 Issue Date 1958-01-01 URL http://hdl.handle.net/2433/206591 Right Type Departmental
A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2
1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)
r3.dvi
2012 3 / Lisp(2) 2012.4.19 1 Lisp 1.1 Lisp Lisp (1) (setq) (2) (3) setq defun (defun (... &aux...)...) ( ) ( nil ) [1]> (defun sisoku (x y &aux wa sa sho seki) (setq wa (+ x y)) (setq sa (- x y)) (setq
RL_tutorial
)! " = $ % & ' "(& &*+ = ' " + %' "(- + %. ' "(. + γ γ=0! " = $ " γ=0.9! " = $ " + 0.9$ " + 0.81$ "+, + ! " #, % #! " #, % # + (( + #,- +. max 2 3! " #,-, % 4! " #, % # ) α ! " #, % ' ( )(#, %)!
NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................
NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................
パーソナルコンピュータに関するヘドニック回帰式(再推計結果)
2007 9 1 1. 2 2 8 2 2007 8 2. 121011 AV 1 6 BOX 2001 01-24 2007 1 2 1 3 n.a. 2 KB HDD GB CPU Core 2 Duo 2 4MB LAN 1000 BASE LAN LAN TV TV OS Windows XP Professional / Media Center Edition Windows XP Professional
2 p T, Q
270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =
Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in
Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2
1 2 3 2 2.1 -countif Excel 22 http://software.ssri.co.jp/statweb2/ 1. 111 3 2. 4 4 3 3.E4:E10E4:E10 OK 2/27
1....................... 1 2............................... 2 2.1 -countif(2 ) 2.2 (7 ) 2.3 frequency(7 ) 3....................... 8 4 [].................... 10 5................................ 10 5.1
dvipsj.4131.dvi
7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :
~f !ぬ 振 る07--47~(1[ 泌 氏 志 向 } ず 枚 -J-~'{ j:j 草 寺?の 終 i~ -~t 考 t 主 おh 偽 品 f 手 ;: - t ぜ γ ル 1 1~ ~- Ii 控 伸 常 1~jft 人 々 奇 心 判 事 J 体 緑 色 d 何 々が"tifる 1~1'.t 免 ミ{ 草 刈 11til1m:すj 中 力 払 l'f 子 (~ 材 料
/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM )
2012 01 25 1/ 55 ( II) : (2012 1 ) 2 2 (GLM) 2012 01 25! [email protected] http://g.gl/76c4i 2012 01 25 2/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM ) 2012 01 25 3/ 55 1. : 2.
Untitled
23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
2/ 36 2012 2012 ERATO
2013 2 18 1,2 1. 2. JST, ERATO, 2/ 36 2012 2012 ERATO Given n n A 1,..., A N Find P s.t. P A 1 P,..., P A N P A 1 A 2 A N simultaneously P A 1 P P A 2 P P A N P 3/ 36 4/ 36 5/ 36 6/ 36 [Wigner 1931 ].
こんにちは由美子です
1 2 λ 3 λ λ. correlate father mother first second (obs=20) father mother first second ---------+------------------------------------ father 1.0000 mother 0.2254 1.0000 first 0.7919 0.5841 1.0000 second
(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2
sdmp Maple - (Ver.2) ( ) September 27, 2011 1 (I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology
168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad
13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =
導入基礎演習.ppt
Multi-paradigm Programming Functional Programming Scheme Haskell ML Scala X10 KL1 Prolog Declarative Lang. C Procedural Lang. Java C++ Python Object-oriented Programming / (root) bin home lib 08 09
