dvipsj.4131.dvi
|
|
|
- なお みおか
- 9 years ago
- Views:
Transcription
1 7 1 7 : (b)
2
3
4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx : x =0,l w =0 B =0, Asin αl + B cos αl =0 A sin αl =0 (7.7) w = A sin αx 7.7 A =0 A 0 sin αl =0 αl = nπ (n =1, 2,,n) P = (nπ)2 EI l 2 n =1 P = π2 EI l 2 = P E
5 σ E = P E EI = π2 A Al = π2 E 2 (l/r) = π2 E 2 λ 2 r = I/A : λ = l/r : λ c = λ = Y ( λ Y σ E λ Y = π E/σ Y, λ = π E/σ E )
6 7 6 dx 7.4 ( ) x P P dw dx P dw dx + d2 w dx dx 2 = P d2 w dx 2 q = P d2 w dx 2 w q(x) EI d4 w dx 4 = q(x) EI d4 w dx 4 + P d2 w dx 2 =0 P E = π2 EI (βl) 2 = π2 EI (l ef ) 2 l ef : β : x =0 x = l w(0) = 0, M(0) = EI d2 w dx 2 =0 w(l) =0, M(l) = EId2 w dx 2 =0 w(0) = 0, θ(0) = dw dx =0 w(l) =0, θ(l) =dw dx =0
7 ( : ) l : (cm)
8 a
9 b
10 (1) EI d2 w +(w + e)p =0 dx2 α 2 = P/EI w = A sin αx + B cos αx e : x =0,l w =0 e(1 cos αl) B = e, A = sin αl (1 cos αl) sin αx + cos αx sin αl w = e 1 sin αl { } sin αl cos αx cos αl sin αx + sin αx = e 1 sin αl sin(αl αx) + sin αx = e 1 sin αl 1 w c = e cos(αl/2) 1 M c = P (w c + e) = Pe cos(αl/2) 7.11
11 (e=0.01k)
12 7 12 (2) ( ) EI d2 w dx + P (w + w 0)=0 2 w 0 w 0 = A 0 sin πx l α 2 = P/EI α 2 w = A sin αx + B cos αx α 2 (π/l) 2w 0 : x =0,l w =0 x =0 B =0 x = l A sin αl =0 A =0 (sin αl =0 ) w = A 0 α 2 sin(πx/l) (π/l) 2 α 2 w c = M c = P (w c + A 0 )=A 0 P A 0 α 2 (π/l) 2 α 2 = 1 1 P/P E A 0P P E P 7.14
13 A 0 σ cr
14 : 7.17
15 7 15 (tangent modulus theoty) E E t σ = P/A > σ cr = π2 E t (l/r) 2 E t : σ ( ) l = π E t (7.33) r σ cr cr σ ε σ E t (7.33) 7.18
16 7 16 (reduce modulus theoty) 1 σ cr = π2 E r (l/r) 2 E r : 2 3 : : > 7.19
17 7 17 : M ext = Pw : ( ) ( ) ( ) σ = Eε = E y R = Eφy φ =1/R (R : ) ) ) M int = 1 2 (φe td 1 )d 1 b ( 2 3 d (φed 2)d 2 b ( 2 3 d 2 ( ) 1 b = R 3 (E td Ed3 2 )=E ri R ( )( 1 b E r = (E t d I 3) Ed3 2 ) (7.39) 1 2 φe td 1 d 1 b = 1 2 φed 2 d 2 b d 2 1 = E E t d 2 2, d 1 d 2 = E E t (7.41) 7.20 ( ) (7.41) I = 1 12 b(d 1 + d 2 ) 3 (7.39) E r = 4EE t ( E + E t ) 2 (7.42)
18 7 18 Shanley Shanley
19 ( )
20 7 20 σ Y 1/ H 7.25
21 : = / : = P cr = π2 E t (βl/r) 2A g = σ cr A g E t : A g : βl/r : β : l : r : : 7.26
22 7 22 H (da ) dm =(θe t y)(da)(y) ( ) M = θe ty 2 da = θ A R = 1 θ = 1 θ R = M E I = M E I θ = E ty 2 da E = 1 A I E ty 2 da A : I e E = E I A:elastic y2 da = E I e I P cr = π2 E y 2 da (βl/r) 2 A g = π2 E(I e /I) I (βl/r) 2 A g A E ty 2 da
23 7 23 A H B k = 2x 0 = A e b A f E I e I = E t f(2x 0 ) t f b 3 = Ek 3 E t = = dp/a = A ee dp/a e A E E t A = A e E =(A w +2kA f )E (7.54) A w : A f : A : (7.54) k k = E ta A w 2EA f 2A f σ cr = π2 Ek 3 (βl/r) 2 = π2 E (βl/r) 2 AE t 2A f E A w 2A f 3 E I e I = E 2A e(d/2) 2 2A f (d/2) = Ek 2 σ cr = π2 Ek (βl/r) 2 (7.61) E I e I = E 2kA f(d 2 /4) + t w d 3 /12 2A f (d 2 /4) + t w d 3 /12 = E 2kA f + A w /3 = E ta/e 2A w /3 2A f + A w /3 2A f + A w /3 ( (7.54) 2kA f = E t A/E A w ) σ cr = π2 E E (βl/r) 2 ta/e 2A w /3 2A f + A w /3 (7.62) 7.28 H
24 7 24 [ 1] H (σ cr βl) (a) P = A σda = σa P =(A A e )σ Y + A e σda σ cr = P/A (2/3)σ Y E t = E, E = EI e /I, I e = I σ cr = 2 3 σ Y = π2 E (βl/r) 2 βl r = π2 (200000) =65.4 2/3(690) σ cr = P/A > (2/3)σ Y : 7.30 [ -1] I e /I =(b/2) 3 /b 3 =1/8 σ cr = 2 3 σ Y = π2 E(I e /I) βl r =23.2 σ cr = P/A = σ Y σ cr = σ Y π 2 E 8(βl/r) 2 σ cr = σ Y = π2 E (βl/r) 2 8(βl/r) 2 βl r =18.9 βl r =53.5
25 7 25 [ 2] H
26 H σ cr = P/A (2/3)σ Y E t = E, σ cr = 2 3 σ Y = π2 E (βl/r) 2 σ cr = P/A > (2/3)σ Y : σ cr = π2 EI e /I (βl/r) 2 I e I = 2(1/12)(2z 0) 3 t 2(1/12)b 3 t = 8(z 0) 3 b 3 σ cr = 8π2 E(z 0 /b) 3 (βl/r) 2 [ ( )( 1 P cr =2 σbt 2 σ σ Y σ 2 3 σ Y ( 1 2 z 0 b ) = {( P cr =2bt 1 z 0 b = A f σ Y σ cr = P cr A f = σ Y 2 3 σ Y b 2 ) 4 3 σ Y ( z0 b σ = [( )( 1 2 z 0 b [ 1 z 0 b ) ] bt 1 z ) 0 4 b 3 σ Y 2 3 σ Y ) ( z0 b ) 3 ] 4 3 σ Y ]( 1 2 z )} 0 b
27 σ cr = σ Y σ cr σ Y 7.34 SSRC 1 =1 λ2 c 4 σ Y 4π 2 E ( βl r (λ c 2), )2, λ c = βl σy r π 2 E 1 λ 2 c (λ c 2)
28 7 28 σ cr =1.0 (λ λ 0 ) σ Y σ cr = 1 1+α(λ σ Y 2λ 2 λ 0 )+λ 2 λ 0 : : ECCS Eurocode 3 {1+α(λ λ 0 )+λ 22 4λ 2 } (λ >λ 0 ) 7.35 ECCS
29
30 7 30 σ =1.0 (λ c 0.2) σ = λ c (0.2 <λ c 1.0) σ =1.0/( λ 2 c) (1.0 <λ c ) 7.37 ( )
31 7 31 ( 7.37), 1.7 σ ca = σ cag σ cal /σ cao σ ca : σ cag : σ cal : σ cao : 7.2 ( )
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..
Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =
1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v
A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3
π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E
B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 P2 P P3P4 P5P8 P9P10 P11 P12
1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520
I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +
I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.
untitled
- k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =
150MHz 28 5 31 260MHz 24 25 28 5 31 24 28 5 31 1.... 1 1.1... 1 1.2... 1 1.3... 1 2.... 2 2.1... 2 2.2... 3 2.3... 7 2.4... 9 2.5... 11 3.... 12 3.1... 12 3.2... 13 3.3... 16 3.4... 24 4.... 32 4.1...
取扱説明書 [F-01D]
F-01D 12.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 a b 18 c d e 19 a b c d e f a b j k l g h i f m n o p a b c d e f g h i j k l m n o p a t y b X 20 a b a b a b c a b c 21 a b a b c a b c a b 22 23
5989_4840JAJP.qxd
Agilent Application Note 1287-11 2 3 4 5 Zc Z T 1+ G 1 e - γ 1+ G 2 G i G 1 G 2 0 0 G2 G 1 G T 1+ G 2 e - γ 1+ G 1 a b [ T XI ] [ T L ] [ T XO ] [ G L ] Zc Zr ZT Zr Γ1 = Γ2 = Γ1ΓT = (1.1) Zc+ Zr ZT + Zr
dvipsj.8449.dvi
9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b
(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37
4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin
.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +
.1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】
B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
平成18年度弁理士試験本試験問題とその傾向
CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3
取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ
B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00
1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP 4095 3004 1091 GNP A Q 1995 7 A 2 2
/, 2001 1 GDP................................... 2 2.......................... 2 3.................................... 4 4........................................ 5 5.....................................
2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................
x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {
K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2
168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad
13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4
35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m
さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n
1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1
2 p T, Q
270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
61“ƒ/61G2 P97
σ σ φσ φ φ φ φ φ φ φ φ σ σ σ φσ φ σ φ σ σ σ φ α α α φα α α φ α φ α α α φ α α α σ α α α α α α Σα Σ α α α α α σ σ α α α α α α α α α α α α σ α σ φ σ φ σ α α Σα Σα α σ σ σ σ σ σ σ σ σ σ σ σ Σ σ σ σ σ
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
kou05.dvi
2 C () 25 1 3 1.1........................................ 3 1.2..................................... 4 1.3..................................... 7 1.3.1................................ 7 1.3.2.................................
a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a
[] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a
1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0
A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1
66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI
65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)
LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)
338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
renshumondai-kaito.dvi
3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
untitled
...1... 3 1... 3 2... 4 3... 4 4... 5...... 6 1... 6 2... 7 3... 8 4... 9 5... 10... 12 1... 12 2... 13 3... 14 4... 16...... 19 1... 19 2... 20 3... 22 4... 24...... 25... 26 1... 26 2... 26 3... 26......
Nobelman 絵文字一覧
Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA
i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................
2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................
Microsoft Word - Wordで楽に数式を作る.docx
Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる
X-FUNX ワークシート関数リファレンス
X-FUNX Level.4a xn n pt 1+ 1 sd npt Bxn3 cin + si + sa ( sd xn) 3 n t1 + n pt xn sd ( t1+ n pt) Bt t t cin + xn si sa ( sd xn) n 1 + +
29 4 ... 1... 1... 1... 2... 3... 4.... 4... 4... 7... 8... 8... 8... 8...12...14...14...14...16...18...18...19...21... 42...42...42....42....46....49...51....51....51... 52...52...52...53 I. I. I. I.
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
DVIOUT-HYOU
() P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.
一般演題(ポスター)
6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A
b3e2003.dvi
15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2
HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語
A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE
