untitled

Save this PDF as:
Size: px
Start display at page:

Download "untitled"

Transcription

1

2

3

4 10 log 10 W W 10 L W = 10 log 10 W log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2

5 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p L 3 = 10 log L 1 / L 2 ( /10 ) L 1 =10 log L 3 /10 10 L 2 ( /10 )

6 10 L 1 / L 2 / L 3 / L n L =10 log /10 10 n E i = E r + E a + E t

7 α = E i E r E i = E a + E t E i τ = E t E i Ei Ea Et Er A = Sα α = A S = S i α i + A j S S i α i A j T = K V A = 0.16V Sα

8 1 TL =10 log 10 τ =10 log E i 10 E t TL 0 = 20 log 10 ( f m) 43 TL m = TL 0 10 log 10 ( 0.23 TL 0 )

9

10

11

12

13 L w = K w +10 log 10 Q + 20 log 10 P + C + BFI

14 cosθ R = 10 log S e + 1 α 2πd 2 αs w θ d d = ( ) = 770mm = 0.77m cosθ = 650 / d = 650 / 770 = 0.84 S e = = 0.45m 2 S w = ( )+ ( ) + ( ) = 6.94m 2

15 α = {( S w S e S i ) ( S e + S i ) 1.0} S w { } 6.94 = 0.81 = ( ) ( ) R = 10 log π = 9.3dB L W = K +10 log 10 f + 50 log 10 U +10 log 10 S + 10 log 10 D 18 C = 1 BF = 1 C 1 BF = ( C 1) ( C 1) C 4 BF = C 1 ( ) ( ) C 1 C > 4 BF = 0.68 C U = Q (S BF) St = f DU St < 25 K = log 10 St St > 25 K = log St 10 BF = ( 8 1) ( 8 1)= 0.26 U = ( ) ( ) = 34.2 St = = 14.6 K = log = 7.5

16 L w = log log log 10 ( ) +10 log = 72dB L W = K +10 log 10 f + 50 log 10 U +10 log 10 S + 10 log 10 D + r + T mm (D M = 0.66m) Q = 8500CMH U M = 7.0m / s D = 4 S π mm (D M = 0.39m) Q = 2100CMH U B = 4.9m / s U M U B = = 1.43 St = = 79.6 L w = log log log log = 24.2dB

17 S Di K b = 10 log 10 S Di 10 log 10 Q b Q m K b S Di Q m Q b

18 L W 0 L W 0 R R E E L W L W L W = L W 0 R E R = L W0 L w E R E E E E ore > E E E R + E

19 L W =10 log 10 A + a log 10 V + b + c

20 Q L P = L W +10 log πr 2 R α S = = 241.2m 2 R = ( )= 32.9m log π = 6.3dB

21 L P(all) = L P0 + X n Q i 4πr i =0 X = 10 log i R 10 Q 0 2 4πr R X L P0 L P(all) L P = L W TL D +10 log 10 4S A 1 A 2 TL C

22

23 4 L P = L W +10 log 10 A 4S L P = L W +10 log 10 TL A 1 A 2

24 L W 0 = L W +10 log 10 S A TL L P = L W log 10 Q 4πd 2 L P = L W +10 log 10 S A TL +10 log 10 Q 4πd 2 L P = L W +10 log 10 4S A TL +10 log 10 Q 4πd 2

25 L P = L W log 10 d +10 log 10 Q L P = L log W (m 2 ) 10ψ

26 ( ψ = π 2 ln A A2 )B ( + 1+ B ) 2 A + B + 1+ A 2 + B 2 + kab L P = L +10 log ( ab) log d +10 log Q W (m 2 )

27 N 1.0 N = δ λ 2 R = 10 log 10 N N <1.0 N < R = 5 ± sinh 1 (1) sinh 1 ( N ) R = 0

28

29

30

31

32

33

34

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

x : = : x x

x : = : x x x : = : x x x :1 = 1: x 1 x : = : x x : = : x x : = : x x ( x ) = x = x x = + x x = + + x x = + + + + x = + + + + +L x x :1 = 1: x 1 x ( x 1) = 1 x 2 x =1 x 2 x 1= 0 1± 1+ 4 x = 2 = 1 ± 5 2 x > 1

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

MultiWriter 5600C 活用マニュアル

MultiWriter 5600C 活用マニュアル 1 *1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 9 1 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 a b c 26 27 28 C *1 *2 *2 29 2 2 2 2 2 2 2 2 2 30 *1 *2 ± *1 C C 31 32 33 34 35 36 M C Y K 1 2 3 4 5 6

More information

http://banso.cocolog-nifty.com/ 100 100 250 5 1 1 http://www.banso.com/ 2009 5 2 10 http://www.banso.com/ 2009 5 2 http://www.banso.com/ 2009 5 2 http://www.banso.com/ < /> < /> / http://www.banso.com/

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

BIT -2-

BIT -2- 2004.3.31 10 11 12-1- BIT -2- -3-256 258 932 524 585 -4- -5- A B A B AB A B A B C AB A B AB AB AB AB -6- -7- A B -8- -9- -10- mm -11- fax -12- -13- -14- -15- s58.10.1 1255 4.2 30.10-16- -17- -18- -19-6.12.10

More information

% 32.3 DI DI

% 32.3 DI DI 2011 7 9 28.1 41.4 30.5 35.8 31.9% 32.3 DI 18.2 2.4 8.1 3.5 DI 9.4 32.2 0.0 25.9 2008 1 3 2 3 34.8 65.2 46.753.8 1 2 8.82.9 43.1 10 3 DI 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

More information

31, 21% 24, 17% 8, 5% 23, 16% 24, 16% 91, 62% 19, 13% 39, 27% 33, 23% 73 48 57 51 31 1 9 13.0% 7.4% 5.3% 12.5% 17.1% 13.2% 17.9% 4.5% 36.4% 56.5% 40.7% 36.8% 50.0% 67.1% 56.3% 65.8% 75.0% 26.0% 37.0%

More information

2 DI 28 7 1 37 28 4 18 27 11 21 5 2 26 4 5 1 15 2 25 3 35 4 17 7 5 48 76 31 47 17 2 92 12 2 2 4 6 8 1 12 1 2 4 1 12 13 18 19 3 42 57 57 1 2 3 4 5 6 1 1 1 3 4 4 5 5 5.5 1 1.5 2 2.5 3 3.5 4 4.5 5

More information

37 27.0% 26 19.0% 74 54.0% 9 6.4% 13 9.2% 28 19.9% 26 18.4% 37 26.2%. 24 17.0% 99 69 75 59 39 1 6 4.5% 1.4% 7.7% 2.9% 25.0% 17.9% 20.8% 50.0% 41.7% 47.0% 51.4% 54.3% 61.5% 57.1% 55.6% 42.4% 50.0% 58.3%

More information

3 DI 29 7 1 5 6 575 11 751, 13 1,1,25 6 1,251,5 2 1,51,75 1,752, 1 2,2,25 2,252,5 2,53, 3,3,5 3,5 5 1 15 2 25 3 5 6 575 12 751, 21 1,1,25 27 1,251,5 9 1,51,75 1,752, 1 2,2,25 2 2,252,5 2,53, 2 3,3,5

More information

n=360 28.6% 34.4% 36.9% n=360 2.5% 17.8% 19.2% n=64 0.8% 0.3% n=69 1.7% 3.6% 0.6% 1.4% 1.9% < > n=218 1.4% 5.6% 3.1% 60.6% 0.6% 6.9% 10.8% 6.4% 10.3% 33.1% 1.4% 3.6% 1.1% 0.0% 3.1% n=360 0% 50%

More information

. R R D e R R 7 () r r R R () l t t R R 7 l () () R r rr r r n r n r r 3 6 r 88 R r 360 r = e t t = e r t rt rt, r t, r 3 t, r t R R R R R D = {e, r,

. R R D e R R 7 () r r R R () l t t R R 7 l () () R r rr r r n r n r r 3 6 r 88 R r 360 r = e t t = e r t rt rt, r t, r 3 t, r t R R R R R D = {e, r, 3 3 3 e X X X X X X . R R D e R R 7 () r r R R () l t t R R 7 l () () R r rr r r n r n r r 3 6 r 88 R r 360 r = e t t = e r t rt rt, r t, r 3 t, r t R R R R R D = {e, r, r, r 3, r, t, rt, r t, r 3 t, r

More information

20000926手引き(セット版).PDF

20000926手引き(セット版).PDF 2000 11 30 375 (1) Aeq,T,vehcle pa A ASJ Model 1998 d ASJ Model 1998 g AE Aeq,T,vehcle T (2) Aeq,T,store 15 pa r 0 pa (r 0 ) r pa d A d Aeq,T,a 10 pa 11 11 pa (r 0 ) r Aeq,T,b 12 AE 13 13 AE (r 0 ) r Aeq,T,c

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

WECPNL = LA +10log10 N 27 N = N 2 + 3N3 + 10( N1 + N 4) L A N N N N N 1 2 3 4 Lden Lden Lden Lden LAE L pa pa 2 a /10 LpA = 20 log 10 ( pa = p 10 ) n na p0 p na n an n p0 2 Lp p L p

More information

項 目

項 目 1 1 2 3 11 4 6 5 7,000 2 120 1.3 4,000 04 450 < > 5 3 6 7 8 9 4 10 11 5 12 45 6 13 E. 7 B. C. 14 15 16 17 18 19 20 21 22 23 8 24 25 9 27 2 26 6 27 3 1 3 3 28 29 30 9 31 32 33 500 1 4000 0 2~3 10 10 34

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

卓球の試合への興味度に関する確率論的分析

卓球の試合への興味度に関する確率論的分析 17 i 1 1 1.1..................................... 1 1.2....................................... 1 1.3..................................... 2 2 5 2.1................................ 5 2.2 (1).........................

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T analog-control-mod : 2007/2/4(8:44) E8 E8. PID DC. PID 2. DC PID 3. E8.2 DC PID C8 E8. DC PID E6 DC P M () K M ( T M ) (E8.) DC PID C8 E8. r e u E8.2 PID E8. PID analog-control-mod : 2007/2/4(8:44) 2 E8

More information

untitled

untitled 280 200 5 7,800 6 8,600 28 1 1 18 7 8 2 ( 31 ) 7 42 2 / / / / / / / / / / 1 3 (1) 4 5 3 1 1 1 A B C D 6 (1) -----) (2) -- ()) (3) ----(). ()() () ( )( )( )( ) ( ) ( )( )( )( ) () (). () ()() 7 () ( ) 1

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

05[ ]戸田(責)村.indd

05[ ]戸田(責)村.indd 147 2 62 4 3.2.1.16 3.2.1.17 148 63 1 3.2.1.F 3.2.1.H 3.1.1.77 1.5.13 1 3.1.1.05 2 3 4 3.2.1.20 3.2.1.22 3.2.1.24 3.2.1.D 3.2.1.E 3.2.1.18 3.2.1.19 2 149 3.2.1.23 3.2.1.G 3.1.1.77 3.2.1.16 570 565 1 2

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0

/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0 1. 2018/9/ ) 1) 8 9) 2) 6 14) + 14 ) 1 4 8a 8b) 2 a + b) 4) 2 : 7 = x 8) : x ) x ) + 1 2 ) + 2 6) x + 1)x + ) 15 2. 2018/9/ ) 1) 1 2 2) 4) 2 + 6 5) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x 2 15 12

More information

12~

12~ R A C D B F E H I J K A A A A A A A A A A AD B C BD AD E A DB DB ADB D D DB BD A C D B F E AD B B B B BF AD B B DB B B B B DB B DB D D ADB D D D D D AB AD D DB AB B B B F D D B B D D BF DBF B B B FD

More information

サイバニュース-vol134-CS3.indd

サイバニュース-vol134-CS3.indd NEWS 2012 WINTER 134 No. F=maF ma m af Contents N, X θ 1,θ 2 θ N 0θ i π/2 X i X 0 Θ i Θ 1 = 2θ 1 Θ 2 = 2(θ 1 θ 2) NX N X 0 Θ N N Θ N = 2{θ 1 θ 2θ 3 θ N } Θ N = 2π A 1A 2B 2B 1 mm 3 α α = π /m A 1A

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information