2

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2"

Transcription

1

2 2

3 Basic window size CCF

4 MATLAB 4

5 2.1 Fourier Transform Fourier Transform G ( f ) = g( x)exp( 2πxf ) dx 2.1) ( 2.1 f x g(x) G( f ) g(x) G( f ) G ( f ) sin G( f ) φ12( τ ) = φ12( f )exp(2 π if τ ) df g 1 ( x ) g2 ( x τ ) dx ( 2.2) φ12 φ 12 τ 2 5 =

6 CCF moving window Look1 moving window Look2 moving window FFT 1 2 FFT- CCF moving window

7 2-3 Look2 2-4 moving window 1 2-4Look2 moving window 7

8 2.3 5 Look1 Look2 1 Look1 moving window Look1Look2 FFT Basic Look 44 Look1 moving window Look2 Look Basic 8

9

10

11 window size window size window size 11

12

13

14 3.2 CCF CCF 14

15

16

17 4 3-4 Look14 Look28 Look312 Look Look1 Look2Look1 Look3Look1 Look4 17

18 Look4 4 Look4 4 Look5 18

19 Look5 3-7 CCF 3-7 Look5 3 19

20 Look5 1 3 Look1 Look5 20

21 4 Moving Window MovingWindow [1] [2] MATLAB M [3]Matlab [4]

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

untitled

untitled JPEG yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka u.ac.jp/member/yoshi/ (Computer Graphics: CG) (Virtual/Augmented(Mixed) Reality: VR AR MR) (Computer Graphics: CG) (Virtual/Augmented(Mixed)

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

社会学部紀要 3号/11.吉田

社会学部紀要 3号/11.吉田 2009 3 1 3 201 222 AStudy of the Basic Way of Moving a Living Body Naturally Tadashi YOSHIDA 1998 10 1 2 3 3 1 2004 2004 2 4 6 30 30 30 180 2007 1 2 1 1 16 500 16 20 7 16021719 14 2 6 32 15 9 1 DVD 14

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

住宅ローンのリスク管理

住宅ローンのリスク管理 NSSOL & CPC 2008 (p.23) Credit Pricing Corp. @ Now Printing PD i 1 i 2 t = 1 α t Now Printing T i i i 1 1 2 2 n n T exp( βx ) βx = β x + β x + Lβ x x i DTI x i Now Printing Now Printing Now Printing

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

untitled

untitled 4-1 4-2 3 X 4 2 2 3 Y 1 1 4 5 4-3 4-4 4-5 { P} K { U} = T { P} = [ L][ K][ L] { U} { P} K { U} = K = [ L][ D][ U] { p 0 } { p} = [ K]{ u} + { p } 0 T [ L] = [ U] 4-6 4-7 sin θ,cosθ 0 4-8 K = [ L][ D][

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

untitled

untitled 1 BASIC (Beginner s All-purpose Symbolic Instruction Code) EXCEL BASIC EXCEL EXCEL VBA (Visual Basic for Applications) 2 3 1.1 Excel Excel Excel Check Point 1. 2. 1.1.1 Sheet1 A Sheet2 Sheet A A10 4 1

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

橡Taro9-生徒の活動.PDF

橡Taro9-生徒の活動.PDF 3 1 4 1 20 30 2 2 3-1- 1 2-2- -3- 18 1200 1 4-4- -5- 15 5 25 5-6- 1 4 2 1 10 20 2 3-7- 1 2 3 150 431 338-8- 2 3 100 4 5 6 7 1-9- 1291-10 - -11 - 10 1 35 2 3 1866 68 4 1871 1873 5 6-12 - 1 2 3 4 1 4-13

More information

5990-7569JAJP.indd

5990-7569JAJP.indd Agilent 33503A BenchLink Waveform Builder Pro/Basic Agilent InfiniiVision Data Sheet DC FFT CCDF Agilent 33503A BenchLink Waveform Builder Pro Agilent BenchLink Waveform Builder Pro Microsoft Windows BenchLink

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

untitled

untitled No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46

More information

J.qxd

J.qxd IQ 2 I/Q IQ IQ IQ IQ 3 IQ 4 5 6 I Q 7 IQ 0 deg 8 IQ I QI I Q Q Q Q { I Q { I I 9 I/QI/QI/Q IQ IQ I/Q Q Σ I IQ I Q 10 I/Q I/Q I/Q IQ IQ 11 π 12 01 00 11 10 13 I/Q I QI I/Q IQ 14 π QI π I/QI Q IQ IQ π 15

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

組N

組N 2 421 @0836532028 88 202 14 38 70 25 3 21 21 4 π 20 12 21 01 02 5 6 7 21 300 100 50 100 1 0839333188 1 0839213090 034145 040176 065 8 9 山口県の中小企業 10 11 128 0836831403 41 19 10839222606 21 6020 12 13 60

More information

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init 8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

6 1

6 1 (c) Masaya Kasuga Shaltics 2001 6 1 1 1 2 1 1.1 USO 2 3 4 EPR 5 6 27 2 (Unfinded Superconducting Object) 3 - - - 342K (Physica C 351 (2001) pp.78-81) 4 40K 5 Einstein-Podolsky-Rosen s paradox 1/2 ( 0)

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

x(t) + t f(t, x) = x(t) + x (t) t x t Tayler x(t + t) = x(t) + x (t) t + 1 2! x (t) t ! x (t) t 3 + (15) Eular x t Teyler 1 Eular 2 Runge-Kutta

x(t) + t f(t, x) = x(t) + x (t) t x t Tayler x(t + t) = x(t) + x (t) t + 1 2! x (t) t ! x (t) t 3 + (15) Eular x t Teyler 1 Eular 2 Runge-Kutta 6 Runge-KuttaEular Runge-Kutta Runge-Kutta A( ) f(t, x) dx dt = lim x(t + t) x(t) t 0 t = f(t, x) (14) t x x(t) t + dt x x(t + dt) Euler 7 t 1 f(t, x(t)) x(t) + f(t + dt, x(t + dt))dt t + dt x(t + dt)

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu II 4 : 2001 11 7 keywords: 1 OCaml OCaml (first-class value) (higher-order function) 1.1 1 2 + 2 2 + + n 2 sqsum 1 3 + 2 3 + + n 3 cbsum # let rec sqsum n = # if n = 0 then 0 else n * n + sqsum (n - 1)

More information

SICE東北支部研究集会資料(2013年)

SICE東北支部研究集会資料(2013年) 280 (2013.5.29) 280-4 SURF A Study of SURF Algorithm using Edge Image and Color Information Yoshihiro Sasaki, Syunichi Konno, Yoshitaka Tsunekawa * *Iwate University : SURF (Speeded Up Robust Features)

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv - - m k F = kx ) kxt) =m d xt) dt ) ω = k/m ) ) d dt + ω xt) = 0 3) ) ) d d dt iω dt + iω xt) = 0 4) ω d/dt iω) d/dt + iω) 4) ) d dt iω xt) = 0 5) ) d dt + iω xt) = 0 6) 5) 6) a expiωt) b exp iωt) ) )

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h]

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h] 第 3 章変形と理論強度 目的 弾性変形および塑性変形に関し, 原子レベルからの理解を深める. 3. 弾性変形 (elastic defomation) 3.. 原子間に作用する力 3.. ポテンシャルエネルギー 33 3..3 フックの法則 3..4 弾性率の温度依存性 3..5 弾性変形時のポアソン比 3..6 理論強度 3. 塑性変形 (plastic defomation) 3.. すべり

More information

h1_

h1_ 1 1 1 1 NCP SCP Octans τ 9 3 6 0 2020 2028 2032 2024 2012 3 2016 6 0 NCP SCP 3 0 2020 2012 2028 2032 3 2016 2024 9 3 Octans 6 τ Octans τ NCP 9 SCP 3 2020 2028 2032 2024 2012 2016 ガイド星が中心から外れたら

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション スペクトル 解 析 (Spectrum analysis) 5.1 フーリエ 級 数 Fourier series 5.2 フーリエ 変 換 Fourier Transform 5.3 パワースペクトル Power spectrum 5.4 離 散 データのフーリエ 展 開 For discrete time series ナイキスト 周 波 数 とエイリアジング Nyquist frequency

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

Title 菌株保存と分類の話題 Author(s) 阿部, 歩 Citation 北海道大学大学院農学研究科技術部研究 技術報告, 12: 11-15 Issue Date 2005-03 DOI Doc URLhttp://hdl.handle.net/2115/35477 Right Type bulletin Additional Information File Information 12_p11-15.pdf

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

MSA500技術資料1(和文)

MSA500技術資料1(和文) 技 術 資 料 シグナルアナライザMSA500 シリーズ リアルタイム 方 式 の 基 礎 知 識 1 リアルタイム 方 式 とは MSA500 シリーズは 掃 引 方 式 とリアルタイム 方 式 の2 方 式 を 搭 載 しています 掃 引 方 式 は 従 来 のスペクトラムアナライザの 方 式 です 掃 引 方 式 時 間 軸 波 形 RBW フィルタが 移 動 移 動 速 度 = 掃 引 時

More information

34号 目 次

34号 目 次 1932 35 1939 π 36 37 1937 12 28 1998 2002 1937 20 ª 1937 2004 1937 12 º 1937 38 11 Ω 1937 1943 1941 39 æ 1936 1936 1936 10 1938 25 35 40 2004 4800 40 ø 41 1936 17 1935 1936 1938 1937 15 2003 28 42 1857

More information

第 章 VBA 活 用 法 目 的 開 発 製 造 現 場 で 大 活 躍 できる 全 ての 分 野 のエンジニアは PCを 用 いた 計 算 計 測 制 御 の 技 術 を 持 っていなければならない マイクロソフト 社 のエクセルには 非 常 に 使 用 しやすい Visual を 基 Basi

第 章 VBA 活 用 法 目 的 開 発 製 造 現 場 で 大 活 躍 できる 全 ての 分 野 のエンジニアは PCを 用 いた 計 算 計 測 制 御 の 技 術 を 持 っていなければならない マイクロソフト 社 のエクセルには 非 常 に 使 用 しやすい Visual を 基 Basi PC 数 学 活 用 法 テキスト 静 岡 大 学 工 学 部 物 質 工 学 科 木 村 元 彦 前 澤 昭 礼 著 第 章 VBA 活 用 法 目 的 開 発 製 造 現 場 で 大 活 躍 できる 全 ての 分 野 のエンジニアは PCを 用 いた 計 算 計 測 制 御 の 技 術 を 持 っていなければならない マイクロソフト 社 のエクセルには 非 常 に 使 用 しやすい Visual

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

1 Microsoft Office Power Point

1 Microsoft Office Power Point \n Title 情 報 教 育 におけるグループ 課 題 の 試 み Author(s) 五 月 女, 仁 子, Soutome, Hiroko Citation 商 経 論 叢, 48(3): 1-12 Date 2013-03-20 Type Departmental Bulletin Paper Rights publisher KANAGAWA University Repository

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

Microsoft PowerPoint - MATLABの使い方.ppt

Microsoft PowerPoint - MATLABの使い方.ppt MATLAB の使い方 東京大学橋梁研究室 MATLAB とは 技術計算のための高性能言語 特徴配列が基本的データ要素変数宣言不要. 対話的システム. 豊富な関数ライブラリ, グラフィックスツール. 使用される分野 数値計算, アルゴリズムの開発, モデル化, シミュレーション, データ解析,GUI アプリケーションの開発, グラフィックス, etc. MATLAB の動かし方 1 コマンドウィンドウにプログラムを打ち込み,

More information

広大紀要(両面プリント).ren

広大紀要(両面プリント).ren を 配 布 した 平 均 年 齢 は 20.5 歳 v~ (SD~6.l)であり, 合 計 2433 の 記 述 が 得 られた () 内 の%はこれを 100~ した 割 合 けた Chronbach の α 係 数 を 算 出 したところ, 人 とのかかわり 方 に 関 する 姿 勢 では α~.869, 自 ~ SD~ ~10.40, df~ ~ () 内 の%はこれを 100~ した

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

( ) p.2/70

( ) p.2/70 p.1/70 ( ) p.2/70 ( p.3/70 (1)20 1970 cf.box and Jenkins(1970) (2)1980 p.4/70 Kolmogorov(1940),(1941) Granger(1966) Hurst(1951) Hurst p.5/70 Beveridge Wheat Prices Index p.6/70 Nile River Water Level p.7/70

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information