<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>"

Transcription

1

2 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版発行当時のものです.

3

4 i

5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,

6 iii SN FM FM... 88

7 iv 4.4 FM FM SN M SN

8 v

9

10 v(t) =v(t + n ), n =0, ± 1, ± 2, (1.1) (periodic waveform) (period) v(t) =A 0 + A n cos 2nπt + B n sin 2nπt (1.2) n=1 (Fourier series) A 0 (1.2) ( /2 /2) A 0 = 1 /2 /2 n=1 v(t) dt (1.3) v(t) 1 A n B n (1.2) cos(2πnt/) sin(2πnt/) 1 A n B n (n =1, 2 )

11 2 1 A n = 2 B n = 2 /2 /2 /2 /2 v(t)cos 2πnt v(t)sin 2πnt dt dt (1.4) A n B n (Fourier coefficient) v(t) v(t) =v( t) A 0 = 2 /2 v(t) dt 0 A n = 4 (1.5) /2 v(t)cos 2πnt dt, B n =0 0 v(t) v(t) = v( t) A 0 = A n =0 B n = 4 /2 v(t)sin 2πnt dt 0 (1.2) ( ) 2nπt v(t) =C 0 + C n cos + φ n n=1 (1.6) (1.7) (1.2) (1.7) C 0 = A 0, C n = A n2 + B 2 n (1.8) φ n = tan 1 B n A n f 0 =1/ C n nf 0 C n cos(2πnt/ + φ n ) φ n C n (amplitude spectrum) φ n (phase spectrum) (complex Fourier series) ( v(t) = V n exp j 2πnt ) (1.9) n= V n

12 V n = 1 /2 / ( v(t)exp j 2πnt ) dt (1.10) j j = 1 (1.9) (1.2) cos x = ejx + e jx, sin x = ejx e jx 2 2j A 0 = V 0 A n jb n 2 = V n, A n + jb n 2 = V n (1.11) (1.12) V n (1.7) C n V 0 = C 0 V n = C n 2 exp(jφ n), V n = C (1.13) n 2 exp( jφ n) V n exp(j2πnt/) V n V n = V n exp(jφ n ) (1.14) V n (frequency spectrum) v(t) (1.10) V n = V n, V n = V n (1.15) (1.10) v(t) V n v(t) V n nf 0 nf 0 nf 0 (1.15) V n = V n, φ n = φ n (1.16) V n ( )

13 4 1 V 0 = C 0, V n = V n = C n, n =1, 2, (1.17) 2 φ n ( ) ( /2 /2) v(t) (t 0 t 0 + ) (1.10) V n = 1 t0 + ( v(t)exp j 2πnt ) dt (1.18) t 0 v(t) (t 0 t 0 + ) V n v(t) ( ) A τ (0 <τ<) 1.1 B n 0 A 0 A n (1.5) (0 τ/2) A 0 = 2 τ/2 Adt= Aτ (1.19) 0 A n = 4 τ/2 A cos 2πnt [ ] 2Aτ sin(nπτ/ ) dt = (1.20) 0 nπτ/ (1.8) } C 0 = A 0, C n = A n (1.21) φ n =0 v(t) = Aτ + 2Aτ [ ] sin(nπτ/ ) cos 2πnt nπτ/ n=1 (1.22)

14 1.2 5 (1.10) (1.12) (1.13) V n = Aτ [ sin(nπτ/ ) nπτ/ ], V 0 = Aτ (1.23) v(t) V n v(t) = Aτ [ ] ( sin(nπτ/ ) exp j 2πnt ) (1.24) nπτ/ n= (1.22) (1.24) ( ) ( ) 1.2 τ/ =1/4 V n 1.2 (τ/ =1/4) S a (x) = sin x x (1.25) (sampling function) 1.3 S a (0) = 1, S a (±nπ) =0, n =1, 2, (1.26) x

15 S a (x) (Dirac s delta function) 1.4 ε 1/ε 1 0 { 0 x 0 δ(x) = x =0 (1.27) δ(x) dx = 1 (1.28) σ 2 0 ) 1 δ(x) = lim exp ( x2 σ 0 2πσ 2σ 2 (1.29) k δ(x) = lim k π S a(kx) (1.30) 1.4

16 1.2 7 a δ(x a) x = a f(x) f(x)δ(x a) dx = f(a) (1.31) 1.5 (unit step function) Aτ = I τ I (intensity) τ 0 ( ) sin(nπτ/ ) nπτ = S a 1 (1.32) nπτ/ v(t) = I + 2I cos 2πnt n=1 (1.33)

17 8 1 v(t) = I n= ( exp j 2πnt ) (1.34) 1.3 (linear system), (transfer function) V n exp(j2πf n t), n =0, ± 1, ± 2, (1.35) H(f n )= H(f n ) exp[jθ(f n )] (1.36) f n = n/ = nf 0 ( f 0 ) H(f n )V n exp(j2πf n t) (1.37) v i (t) = V n exp(j2πf n t) (1.38) n= v o (t) = H(f n )V n exp(j2πf n t) (1.39) n=

18 v o (t) =H(0)C H(f n ) C n cos[2πf n t + φ n + θ(f n )] (1.40) n=1, (1.35) V n exp(j2πf n t)+v n exp( j2πf n t) =2Re[V n exp(j2πf n t)] (1.41) H(f n )V n exp(j2πf n t)+h( f n )V n exp( j2πf n t) (1.42) (1.42), H(f n )=H ( f n ) (1.43) H(f n ) = H( f n ), θ(f n )= θ( f n ) (1.44) H(f n ) θ(f n ) 1.7 (a) RC (RC low-pass filter) (b) RC (RC high-pass filter) f V exp (j2πft) ( f = n/ ) ( ) H(f) = 1, f 1 = 1 1+jf/f 1 2πRC (1.45) 1.7 RC

19 10 1 f 1 H(f) H(0) 3[dB] (high-frequency cutoff) ( ) H(f) = 1 1 jf 2 /f, f 2 = 1 2πRC (1.46) f 2 H(f) H(± ) 3[dB] (low-frequency cutoff) H(f) 1.8 ( ) v(t) 1 P = 1 /2 /2 [v(t)] 2 dt (1.47) 1[Ω] P (normalized power) v(t) P v(t) (1.7) P = C 2 2 C n 0 + (1.48) 2 n=1 (1.40) H(f) P o = H 2 (0)C H(f n ) 2 2 C n (1.49) 2 n=1 v(t) (1.38) (1.47) 0 V RC

20 V n exp(j2πf n t) V n exp( j2πf n t), n = ±1, ±2, (1.50) V n = V n P = V n 2 = V V n 2 (1.51) n= n=1 V n 2 f n = nf 0 = n/ (power spectrum) P o = H(f n ) 2 V n 2 n= = H 2 (0)V H(f n ) 2 V n 2 (1.52) n=1 1.3 v o (t) = t t v i (t) dt (1.53) v i (t) =V exp(j2πft) (1.54) v o (t) = t t V exp(j2πft) dt [ ] 1 exp( j2πf) = V exp(j2πft) (1.55) j2πf H(f) = v o(t) v i (t) = 1 exp( j2πf) j2πf ( ) sin πf = exp( jπf) πf = S a (πf)exp( jπf) (1.56)

21 / 0 v(t) 1/ = Δf ( v(t) = V n exp j 2πnt ) = n= n= ( ) Vn exp(j2πnδft)δf (1.57) Δf Δf 0 nδf f v(t) v(t) = V (f) V (f) = V (f)exp(j2πft) df (1.58) V n lim Δf 0 Δf (frequency spectral density) V n = 1 /2 ( v(t)exp j 2πnt ) dt = Δf /2 1/2Δf 1/2Δf (1.59) v(t) exp( j2πnδft) dt (1.60) Δf 0 V (f) V (f) = v(t) exp( j2πft) dt (1.61) (1.58) (1.61) (Fourier transform pair) V (f) v(t) (Fourier transform) v(t) V (f) (inverse Fourier transform)

22

23 60 3 (FDM) (AM), (SN ) 3.1 (baseband signal) (modulating signal) (carrier) (modulated wave) f f m f m f m =3.4 [khz] f m =4.5 [MHz] f c f m (double sideband ; DSB) m(t) cos 2πf c t DSB 1) v DSB (t) =m(t)cos2πf c t (3.1) 1) DSB DSB ( ) DSB DSB AM FM

24 m(t) M(f) DSB V DSB (f) = 1 2 [M(f f c)+m(f + f c )] (3.2) (3.2) DSB DSB 3.1 DSB f c ( ±f c ) (upper sideband; USB) (lower sideband; LSB) DSB 2 2f m DSB DSB (double sideband suppressed carrier; DSB-SC) 3.1 DSB DSB 3.2 AM (DSB ) AM 2 DSB-SC (balanced modulator)

25 DSB (demodulation) (detection) DSB DSB (synchronous detection) (coherent detection) DSB (product detector) DSB v DSB (t) =m(t)cos2πf c t (3.3) v DSB (t) ( ) c(t) =cos2πf c t (3.4) v DSB (t)c(t) =m(t)cos 2 2πf c t = 1 2 m(t)+ 1 2 m(t)cos4πf ct (3.5) V DSB (f) C(f) = 1 2 M(f)+1 4 [M(f 2f c)+m(f +2f c )] (3.6) (3.6) 1 2 ±2f c f m 3.3 DSB (3.3) DSB Δf Δφ

26 DSB c(t) =cos[2π(f c + Δf)t + Δφ] (3.7) v o (t) = 1 m(t)cos(2πδft + Δφ) (3.8) 2 Δf (offset) Δφ Δf Δφ (3.8) Δf =0 v o (t) = 1 m(t)cosδφ (3.9) 2 cos Δφ Δφ = nπ/2(n = ±1, 3, 5, ) DSB DSB ( 3.1 ) (pilot carrier) DSB DSB FM ( )

27 PCM ( ) ( ) (ASK) (FSK) (PSK) ( ) (amplitude shift keying ; ASK) 2 0 (on-off keying ; OOK) ( 1/f c ) OOK } s 1 (t) =A cos 2πf c t, 1, s 0 (t) =0, 0 2 t (6.1) 2 (6.1) (raised cosine) ( 1.1 )

28 OOK 6.1 OOK 1 0 (mark) (spece) OOK (6.1) ( 1) ( 0) OOK (bit error probability) OOK (noncoherent detection) AM ( ) 7 ( ) 6.2 OOK

29 134 6 n(t) =x(t)cos2πf c t y(t) sin 2πf c t (6.2) x(t) y(t) 0 s 1 (t)+n(t) =[A + x(t)] cos 2πf c t y(t) sin 2πf c t (6.3) R 1 (t) = [A + x(t)] 2 + y 2 (t) (6.4) R 0 (t) = x 2 (t)+y 2 (t) (6.5) - p 1 (R) = R [ N exp R2 + A 2 ] ( ) AR I 0 (6.6) 2N N N N = x 2 (t) =y 2 (t) (6.7) p 0 (R) = R ( ) N exp R2 2N (6.8) t = s R } R( s ) >R (6.9) R( s ) <R

30 ( ) 0( ) (incorrect dismissal) P e1 = = R 0 R 0 p 1 (R) dr R N exp [ R2 + A 2 2N ] ( ) AR I 0 dr (6.10) N Q Q(x, y) = exp ( t2 + x 2 ) I 0 (xt)tdt (6.11) 2 y P e1 =1 Q ( 2γ, α ) (6.12) γ = A2 2N, α = R N (6.13) γ SN ( ) A A 2 /2 N γ SN CN ( ) α 0( ) 1 ( ) (false alarm) ) ) R P e0 = p 0 (R) dr = ( R N exp R2 dr =exp ( α2 (6.14) 2N 2 R P e1 P e % ( 1/2) 2 P e = 1 2 (P e1 + P e0 )

31 2012 Printed in Japan ISBN

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2

CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2 1.1 1.1.1 RadarRadio Detection and Ranging 1960 1 10 1 CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2 3 XCTMRI XCTMRI XCT /10

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

高速データ変換

高速データ変換 Application Report JAJA206 V+ R 5 V BIAS Q 6 Q R R 2 Q 2 Q 4 R 4 R 3 Q 3 V BIAS2 Q 5 R 6 V Ω Q V GS + R Q 4 V+ Q 2 Q 3 + V BE V R 2 Q 5 R Op Amp + Q 6 V BE R 3 Q 7 R 4 R 2 A A 2 Buffer 2 ± Ω Ω R G V+ Q.4.2

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

untitled

untitled JPEG yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka u.ac.jp/member/yoshi/ (Computer Graphics: CG) (Virtual/Augmented(Mixed) Reality: VR AR MR) (Computer Graphics: CG) (Virtual/Augmented(Mixed)

More information

取扱説明書 [N-03A]

取扱説明書 [N-03A] 235 1 d dt 2 1 i 236 1 p 2 1 ty 237 o p 238 1 i 2 1 i 2 1 u 239 1 p o p b d 1 2 3 0 w 240 241 242 o d p f g p b t w 0 q f g h j d 1 2 d b 5 4 6 o p f g p 1 2 3 4 5 6 7 243 244 1 2 1 q p 245 p 246 p p 1

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

CMP Technical Report No. 4 Department of Computational Nanomaterials Design ISIR, Osaka University 2 2................................. 2.2......................... 2 3 3 3................................

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

RFID RFID + ) (RFID IC transponder) RFID Tag Antenna wired-line Reader Ethernet/ RS232c Antenna RFID Tag Reader id command id interrogation id radio s

RFID RFID + ) (RFID IC transponder) RFID Tag Antenna wired-line Reader Ethernet/ RS232c Antenna RFID Tag Reader id command id interrogation id radio s RFID 1 RFID 2 RFID 3. RFID 4. RFID E-mail: ichiro@nii.ac.jp RFID RFID RFID (Radio Frequency IDentification system) c.f. IC E-mail: ichiro@nii.ac.jp RFID 2006 6,000 RFID RFID + ) (RFID IC transponder) RFID

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

パワープロジェクター WUX10 使用説明書

パワープロジェクター WUX10 使用説明書 2 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 26 27 28 29 30 1 2 31 32 33 34 35 36 37 38 39 1 2 3 4 40 5 41 42 43 44 45 1 2 3 46 1 2 1 2 3 3 1 2 3 4 47 48 1 2 3 49 1 2 3 50 1

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init 8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

86 7 I ( 13 ) II ( )

86 7 I ( 13 ) II ( ) 10 I 86 II 86 III 89 IV 92 V 2001 93 VI 95 86 7 I 2001 6 12 10 2001 ( 13 ) 10 66 2000 2001 4 100 1 3000 II 1988 1990 1991 ( ) 500 1994 2 87 1 1994 2 1000 1000 1000 2 1994 12 21 1000 700 5 800 ( 97 ) 1000

More information

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem 1 1 1 Posture Esimation by Using 2-D Fourier Transform Yuya Ono, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Recently, research fields of augmented reality and robot navigation are actively investigated. Estimating

More information

取扱説明書[N906i]

取扱説明書[N906i] 237 1 dt 2 238 1 i 1 p 2 1 ty 239 240 o p 1 i 2 1 u 1 i 2 241 1 p v 1 d d o p 242 1 o o 1 o 2 p 243 1 o 2 p 1 o 2 3 4 244 q p 245 p p 246 p 1 i 1 u c 2 o c o 3 o 247 1 i 1 u 2 co 1 1 248 1 o o 1 t 1 t

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1, 264 72 5 216 pp. 264 272 * 43.3. k, Yj; 43.38.Hz 1. 2. 2.1 1 4.8 1 2 [kg m 2 s 1 ] 1.2 1 3 [g/cm 3 ] 34 [m/s] 1.48 1 6 [kg m 2 s 1 ] 1 [g/cm 3 ] 1,48 [m/s] 1, 1 4 1 2,5 1 Tutorial on the underwater or

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます.  このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の 最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/047143 このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 のものです. 3 10 GIS 3 1 2 GPS GPS GNSS GNSS 23 3 3 2015

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

表1票4.qx4

表1票4.qx4 iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

corega UPS 250 取扱説明書

corega UPS 250 取扱説明書 2 3 4 5 6 7 8 9 10 11 12 13 10 A MP ON 1234 1234 14 15 16 17 18 19 20 21 10 A MP 10 A MP ON 1234 1234 ON 1234 1234 22 10 A MP ON 1234 1234 OUT IN 23 24 25 26 27 28 ON 1 2 3 4 29 ON 1 2 3 4 30 31 32 33

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション スペクトル 解 析 (Spectrum analysis) 5.1 フーリエ 級 数 Fourier series 5.2 フーリエ 変 換 Fourier Transform 5.3 パワースペクトル Power spectrum 5.4 離 散 データのフーリエ 展 開 For discrete time series ナイキスト 周 波 数 とエイリアジング Nyquist frequency

More information