Microsoft PowerPoint - stat-2014-[9] pptx

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Microsoft PowerPoint - stat-2014-[9] pptx"

Transcription

1 統計学 第 17 回 講義 母平均の区間推定 Part 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 website: htt://www3.u-toyama.ac.j/kkarato/ 1

2 講義の目的 標本平均は正規分布に従うという性質を いて, 集団の平均を推定する 法を理解する. keywords: 中 極限定理, 標本平均の分布, 区間推定, 信頼区間 参考書 砂 居 屋

3 1 復習 標本平均の分布と正規分布 ( 中心極限定理 ) 例 集団 平均, 分散 集団はどのような分布でもよい Exoetial Distributio x 標本抽出 ~ N, ~ N 0,1 ( 十分に大きい ) 個の観測データ 計算される標本平均 は正規分布 における ( 数ある ) 実現値の一つ z 3

4 復習 標本平均の分布と正規分布 ( 中心極限定理 ) 実際には 集団全体の特徴はよくわからない しかしながら標本調査を うことができる 集団がどのような分布であったとしても, ある程度のサンプルサイズを持った標本があれば, その標本平均は正規分布の実現値の つと考えることができる どのようなデータであっても, そのデータから計算できるたった つの標本平均の背後には正規分布が控えていることを理解する 平均, 分散 作られる標本平均 の母集団分布からサンプルサイズ の標本を抽出して は平均, 分散 の正規分布にしたがう ~ N, 4

5 復習 二項分布と正規分布 (1) 5 の分布に等しい で割った値をにしたがう確率変数の分布は, 二項分布個の確率変数の平均にしたがう互いに独立な試行回数がの二項分布 B B, 1, 1 1 V E 中心極限定理の分布平均値 V V E E の分布 V E B 1,, ~ ただし, N 1, ~

6 復習 二項分布と正規分布 () は何を意味するか? : 成功回数を示す確率変数 : 試行回数 成功する割合 ( 率 ) を す確率変数 例. サイコロを 60 回投げて 6 が x 回出る割合の分布 確率 N ~ 6, 6 で近似できる 実現値 6

7 例 1 30 個のサイコロを同時に投げるときの出目の平均値の分布 1個のサイコロの出目の期待値は 3.5, ~ N, 分散 個の平均値 ~ N3.5,

8 実験. 30 個のサイコロを同時に投げたときの標本平均の分布 (500 回の繰り返し実験 ) ~ N 3.5, で近似できる 標本 10 の標本平均 = 3.33 標本 1 の標本平均 = 回の標本調査で得られる標本平均はたった つだけど, その背後には正規分布が控えている. データとして得られる標本平均は正規分布の実現値の つであると考える

9 例 30 歳代独 性の貯蓄額は平均 600 万円, 標準偏差 400 万円の 集団分布にしたがうという 30 歳代独 性 100 をランダムに選び, 平均貯蓄額を計算するとき, その平均値はどのような分布に近似できるか 密度 集団分布 600, 貯蓄額 [ 万円 ] 標本抽出 標本平均の分布 ( 正規分布 ) 密度 ~ N 600, 貯蓄額 [ 万円 ] 9

10 例 3 コインを 50 回投げて表が出る回数の割合の分布はどのような分布に近似できるか? : 50 回投げて表が出る回数の割合 ( 比率 ) 1 ~ N, 50 の平均値 ~ N50, 50 10

11 例 4 6 xx に放映されたあるテレビ番組の真の視聴率 ( 本当はわからない ) が10% であるとしよう 600 世帯を対象に視聴率調査を う場合, 600 世帯中その番組を た の割合 ( 率 ) はどのような分布で近似できるか? 調査数 = 600, = 0.1で る回数 ( 成功回数 ) の分布 B(600,0.1) 1 1 見た 0 見なかった Pr Pr B ~ 1, 中 た 数の分布 600 B ~ 600, ていたかもしれないし,83 ていたかもしれない 調査しないとわからない 標本変動 600 の平均値 1 ~ N, ~ N0.1, 600 調査をすれば平均的にみて 10% ぐらいの視聴率がありそうだが, それよりも かったり, 低かったりすることもある ( 誤差がある ) 11

12 視聴率 () / の分布 ~ N0.1, 600 確率 ±3% ぐらいまでの誤差はありうる 視聴率 真の視聴率は 10% ( = 0.1) であるが,600 世帯の標本調査では 9.4% になったり,11.6% になったりすることがある しかしながらその標本調査の結果は正規分布の実現値の つとみなすことができる 1

13 復習 標本平均の分布 30 歳代独 性の貯蓄額は平均 600 万円, 標準偏差 400 万円の 集団分布にしたがうという 30 歳代独 性 100 をランダムに選び, 平均貯蓄額を計算するとき, その平均値はどのような分布に近似できるか 貯蓄額は母平均 600, 分散 ただし, 母集団は正規分布ではないかもしれない 100人の貯蓄額の標本平均をとおくと, 中心極限定理の 近似できる 400 考え方により, その分布は平均, 分散 ~ 400 N 600, 100 の分布をしている. の正規分布に 問題 : これから計算する標本平均が 700万円を超える確率は何 % か? 13

14 標本平均の分布と確率 (1) 母平均, 母分散 を とおく の母集団からサイズの標本を抽出し, その標本平均 がA以上である確率 Pr A Pr Z と標準化して, 標準正規分布表からその確率を求める 標準化のときの注意点 A を計算するには, 標本平均 の分散は 中 極限定理 なので, 標準偏差は である. ~ N, ~ N 0,1 標準化された標本平均は標準正規分布にしたがう 14

15 例題 1 30 歳代独 性の貯蓄額は平均 600 万円, 標準偏差 400 万円の 集団分布にしたがうという 30 歳代独 性 100 をランダムに選び, 平均貯蓄額を計算するとき, その平均値が700 万円を超える確率を計算しなさい 情報の整理 600, , 100 Pr Pr Z Pr Z Pr 標準化 Z.5 標準正規分布表を利 As. 平均値が 700 万円を超える確率は 0.6% 15

16 標本平均が 700 万円を超える確率 平均 = 600 万円, 標準偏差 = 400 万円の 集団分布 ( 点線 ) 100の標本平均 の分布 ( 実線 ) 400 ~ N 600, ~ 400 N 600, Pr Pr Z 確率は標準化して考える Pr Z.5 16

17 練習問題 (1) 例題 1 のケースで平均貯蓄額が 650 万円以上である確率を計算しなさい 17

18 例題. 標本平均と確率 () 都市に隣接した A 市に住む就業者の通勤時間は平均 55 分, 標準偏差 0 分の 集団分布にしたがうという 就業者 81 をランダムに選び, 平均通勤時間を計算するとき, その平均値が60 分以内である確率を計算しなさい. Pr 60 Pr Z Pr Z 0.5 Pr Z.5 標準化 As. その平均値が 1 時間以内である確率は 98.78% 18

19 練習問題 () [1]. 平均 563 万円, 分散 4000 の年収の 集団分布から =100 の標本を抽出するとき,100 の標本平均が 570 万円以上である確率は? []. 平均 563 万円, 分散 4000 の年収の 集団分布から =40 の標本を抽出するとき, 40 の標本平均が 570 万円以上である確率は? 19

20 例題 3. 標本平均の分布と臨界値 都市に隣接した A 市に住む就業者の通勤時間は平均 55 分, 標準偏差 0 分の 集団分布にしたがうという 就業者 11 をランダムに選び平均通勤時間を計算するとき, その平均値がA 分以下である確率が.5% であるような A の値を計算しなさ い A P z A P A A 分 ( 平均通勤時間が 51.4 分以下である確率は.5%) 0

21 練習問題 (3) 30 歳代独 性の貯蓄額は平均 600 万円, 標準偏差 400 万円の 集団分布にしたがうという 30 歳代独 性 100 をランダムに選び, 平均貯蓄額を計算するとき, その平均値が B 万円以上である確率が.5% であるような B の値を計算しなさい. 1

22 母平均の推定 集団分布 平均 :? 分散 : 標本抽出 点推定 : 観測データから つの推定値を計算して, 平均や 分散を推定する 法. 標本平均を計算して, 平均の推定量とする. 標本分散を計算して, 分散の推定量とする. 推定 : 平均 はどのような値か? 区間推定 : 平均や 分散が 95%(99%) の確率で存在するような範囲を求める 法.

23 復習 臨界値と有意な値 臨界値と確率 きわめて稀な値 であると判断される境界の値のことを臨界値(Critical Value) とよぶ. 臨界値以上の値は, 分布の平均に べてきわめて きな値である. したがって, 臨界値を定めている確率は 常に さな値である (5%,.5%, 1%, 0.1% など ) 有意な値 臨界値以上の値のことを有意な値とよぶ. そのようにめったに起こらないほど きい値であることを 有意に きい と表現する. または, 有意である と表現する. 区間推定は有意でない値の集合を つけることであり, そのために両端の臨界値を求めなければならない.5% めずらしい値 ( 有意な値 ) 平均 が95% の 確率で る範囲.5% めずらしい値 ( 有意な値 ) 臨界値 ( 有意でない値 ) 臨界値 3

24 母集団分布の例 例.A 市の 40 歳既婚 性の 供の数 に関する 集団分布 の実現値 確率 x i Pr( = x i ) 合計 1 E V 平均 分散 0.63 標準偏差 V

25 標本の例 集団分布 の実現値確率 x i Pr( = x i ) 合計 1 母平均 1.6 母分散 母標準偏差 標本 { i } = { 1, 0, 1,,,1 } サイズ = 64 の標本を抽出 たまたま得られた値 ( 標本変動 ) 標本平均 標本分散 s 標本標準偏差 s 0.86 点推定値 5

26 区間推定 (1) 例.A 市の 40 歳既婚 性の 供の数 に関する 集団分布 集団分布 平均 :? 分散 : わかっていること 64, 1.1, 分散 はわかっているものと仮定 ( この仮定が成 しないケースは後で扱う ) 標本抽出 サンプル サイズ 64 調べたいこと 母平均 が95% の確率で存在する ような範囲 95% 信頼区間 : Pr a b の標本平均 1.1 標本抽出を何回も繰り返したとき, は 95% の確率で上記の区間に含まれる 6

27 区間推定 () Ste-1 標本平均を標準正規分布に直して考えてみる 0.63 ~ N, より, Pr 1.96 が95% で存在する範囲は ~ N 0,1 であるから Ste- 確率関数の不等式を について解くと a b 7

28 区間推定 (3) b a 信頼区間 はの 母平均 % 下限と上限の値を計算する. Ste-3

29 区間推定 (4) 95 % 信頼区間 母分散 ( 母標準偏差 ) の母集団分布からサイズの標本を抽出し, 標本平均を とする このとき母平均 の95% 信頼区間は次の式から 求める

30 例題 4. 区間推定 ランダムに 30 歳代独 性を 100 を選び平均貯蓄額を計算したところ,570 万円であった 貯蓄額の 平均 の 95% 信頼区間を求めなさい ただし, 標準偏差は = 00 万円であることがわかっている わかっていること 570, 100, 00 区間推定 a b 歳代独 性の貯蓄額の 平均 の 95% 信頼区間は

31 練習問題 (4) B 市に住む就業者をランダムに 64 を選び平均通勤時間を計算したところ,50 分であることがわかった.B 市における通勤時間の 平均 の 95% 信頼区間を求めなさい ただし, 標準偏差は = 0 [ 分 ] であることがわかっているものとする 31

32 言葉の定義 : 信頼区間, 信頼限界, 信頼係数, 信頼区間 Pr 下側信頼限界上側信頼限界 0.95 信頼係数 1.96, 1.96 を信頼区間とよぶ. 信頼区間の下限を下側信頼限界, 上限を上側信頼限界とよぶ. 信頼区間を定めている確率を信頼係数とよぶ. 3

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

Microsoft PowerPoint - statistics-2016-15-0607.pptx

Microsoft PowerPoint - statistics-2016-15-0607.pptx 統 計 学 第 回 講 義 標 本 平 均 の 分 布 0 年 7 ( ) 3 限 担 当 教 員 : 唐 渡 広 志 (からと こうじ) 研 究 室 : 経 済 学 研 究 棟 4 階 43 号 室 emal: kkarato@eco.u-toyama.ac.j webste: htt://www3.u-toyama.ac.j/kkarato/ 講 義 の 目 的 中 極 限 定 理 を 利 すると,

More information

Microsoft PowerPoint - A1.ppt [互換モード]

Microsoft PowerPoint - A1.ppt [互換モード] 011/4/13 付録 A1( 推測統計学の基礎 ) 付録 A1 推測統計学の基礎 1. 統計学. カイ 乗検定 3. 分散分析 4. 相関係数 5. 多変量解析 1. 統計学 3 統計ソフト 4 記述統計学 推測統計学 検定 ノンパラメトリック検定名義 / 分類尺度順序 / 順位尺度パラメトリック検定間隔 / 距離尺度比例 / 比率尺度 SAS SPSS R R-Tps (http://cse.aro.affrc.go.jp/takezawa/r-tps/r.html)

More information

Excelにおける回帰分析(最小二乗法)の手順と出力

Excelにおける回帰分析(最小二乗法)の手順と出力 Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:master@keijisaito.info 1 Excel Excel.1 Excel Excel

More information

解析センターを知っていただく キャンペーン

解析センターを知っていただく キャンペーン 005..5 SAS 問題設定 目的 PKパラメータ (AUC,Cmax,Tmaxなど) の推定 PKパラメータの群間比較 PKパラメータのバラツキの評価! データの特徴 非反復測定値 個体につき 個の測定値しか得られない plasma concentration 非反復測定値のイメージ図 測定時点間で個体の対応がない 着目する状況 plasma concentration 経時反復測定値のイメージ図

More information

第4回

第4回 Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information

Microsoft PowerPoint - Econometrics-2013-04-1018.pptx

Microsoft PowerPoint - Econometrics-2013-04-1018.pptx 計 量 経 済 学 講 義 第 回 記 述 統 計 の 基 礎 Part 0 年 0 8 ( ) 限 担 当 教 員 : 唐 渡 広 志 研 究 室 : 経 済 学 研 究 棟 階 号 室 email: kkarato@eco.u-toyama.ac.jp website: http://www.u-toyama.ac.jp/kkarato/ 講 義 の 目 的 般 的 なデータの 集 約 法 や

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Partner logo サイエンス右揃え上部に配置 XLfit のご紹介 マーケティング部 15 年 3 月 23 日 概要 1. XLfit 機能の確認 - 特徴 3 Step Wizard - 主なツールについて - 主なグラフの表現 2. 実用例 % Inhibition 9 7 6 5 3 1-1 Comparison 1 Concentration 2 1. 基本編 1 特徴 (3 Step

More information

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ マルコフレジームスイッチングモデルの推定 1. マルコフレジームスイッチング (MS) モデルを推定する 1.1 パッケージ MSwM インスツールする MS モデルを推定するために R のパッケージ MSwM をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の

More information

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6 23 第 6 章 母数の推定 I 二項母集団の母比率 6.1 Audiece Ratig Survey (視聴率調査) テレビ局では視聴率の獲得にしのぎを削っているようである. 果たして, コンマ以下の数字に 意味はあるのだろうか? 2016 年 4 月 25 日 (月) 5 月 1 日 (日) ドラマ (関東地区) 視聴率ベスト 10 番組名 放送局 連続テレビ小説 とと姉ちゃん 真田丸 日曜劇場

More information

英語                                    英-1

英語                                    英-1 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

システムデザイン System Design

システムデザイン System Design 01/5/7 北海道大学工学部情報エレクトロニクス学科システム情報コース システムマネジメント System Maagemet ー品質のマネジメントー 担当 : 小野里雅彦 品質 (Quality) とは JIS 品物又はサービスが, 使用目的を満たしているかどうかを決定するための評価の対象となる固有の性質 性能の全体 ISO9000 ( 国際標準 ) Degree to which a set of

More information

Microsoft PowerPoint - Ⅱ(リスク計量化入門).ppt

Microsoft PowerPoint - Ⅱ(リスク計量化入門).ppt Ⅱ. 統計 確率の基礎知識 リスク計量化の前提となる統計 確率の基礎知識について整理 復習します 図解中心の説明ですので 統計 確率は苦手だと感じている方も理解度アップに繋がります 1 目 次 1. 基本統計量 (1 変量 ) 2. 基本統計量 (2 変量 ) 3. 確率変数と確率分布 4. 推定と検定 2 1. 基本統計量 (1 変量 ) (1) 平均 (2) 分散 (3) 標準偏差 (4) パーセント点

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

カメラレディ原稿

カメラレディ原稿 IS2-A2 カメラを回転させた時の特徴点軌跡を用いた魚眼カメラの内部パラメータ推定 - モデルと評価関数の変更による改良 - 田中祐輝, 増山岳人, 梅田和昇 Yuki TANAKA, Gakuto MASUYAMA, Kazunori UMEDA : 中央大学大学院理工学研究科,y.tanaka@sensor.mech.chuo-u.ac.jp 中央大学理工学部,{masuyama, umeda}@mech.chuo-u.ac.jp

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

経営戦略研究_1.indb

経営戦略研究_1.indb 56 経営戦略研究 vol.1 図 4 1971 年度入社と 1972 年度入社の複合的競争 徴である Ⅳ 昇格と異動に関する回帰分析 1 回帰分析の変数 ここでは高い資格に到達 昇格 した人がどのような異動傾向を有しているかを回帰分 析で推定する 資格毎に 理事 10 参事 9 主幹 2 級 8.5 副参事 8 主幹 3 級 7.5 主事 技師 7 E 等級主任 6 P 等級主任 5 P 等級 4

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 調査統計法 ( 杉浦 ) 第 1 回 オリエンテーション ( 自己紹介 ) 京都警察 ~ 大和総研を経て独立 ユニクロやソフトバンクなどで IT マーケティングやデータ分析を支援 1 調査統計法で何を学ぶのか - 学術研究でもビジネスでも必要となるデータ分析の知識 - なぜ 統計学が最強の学問なのか? http://diamond.jp/articles/-/52085 エビデンスベースドメディスン

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 220

正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 220 5. 判別分析 5. 判別分析の原理 判別分析は後ろ向き研究から得られたデータに適用する手法 () 判別分析 医学分野では病気の診断を必要とする場面が多い ある検査項目を用いて被験者が疾患かどうかを判断したいまたはある検査項目が疾患の診断に寄与するかどうかを検討したい 判別分析は多種類のデータに基いて被験者を特定の群に判別したり 判別に強い影響を及ぼ すデータを探索したりするための手法 後ろ向き研究から得られたデータに適用する

More information

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション 313 第 10 章 Excel を用いた統計処理 10.1 Excel の統計処理レポートや卒業研究などでは 大量のデータを処理 分析し 報告しなければならない場面が数多く登場する このような場合 手計算では多くの時間を要するため現在では計算機を用いて一括処理することが一般的である これにより 時間短縮だけでなく手軽に詳細な分析を行うことができる Excel ではこのような大量のデータに対する分析を容易に行えるよう

More information

Excelによる統計分析検定_知識編_小塚明_1_4章.indd

Excelによる統計分析検定_知識編_小塚明_1_4章.indd 第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは,

More information

2. 時系列分析 プラットフォームの使用法 JMP の 時系列分析 プラットフォームでは 一変量の時系列に対する分析を行うことができます この章では JMP のサンプルデ ータを用いて このプラットフォームの使用法をご説明します JMP のメニューバーより [ ヘルプ ] > [ サンプルデータ ]

2. 時系列分析 プラットフォームの使用法 JMP の 時系列分析 プラットフォームでは 一変量の時系列に対する分析を行うことができます この章では JMP のサンプルデ ータを用いて このプラットフォームの使用法をご説明します JMP のメニューバーより [ ヘルプ ] > [ サンプルデータ ] JMP を用いた ARIMA モデルのあてはめ SAS Institute Japan 株式会社 JMP ジャパン事業部 2013 年 2 月作成 1. はじめに JMP の時系列分析では 一変量の時系列データに対する分析や予測を行うことができ 時系列データに対するグラフ表示 時系列モデルのあてはめ モデルの評価 予測まで 対話的に分析を実行することができます 時系列データにあてはめるモデルとしては

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

umeda_1118web(2).pptx

umeda_1118web(2).pptx 選択的ノード破壊による ネットワーク分断に耐性のある 最適ネットワーク設計 関西学院大学理工学部情報科学科 松井知美 巳波弘佳 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 0 / 20 現実のネットワーク 現実世界のネットワークの分析技術の進展! ネットワークのデータ収集の効率化 高速化! 膨大な量のデータを解析できる コンピュータ能力の向上! インターネット! WWWハイパーリンク構造

More information

PowerPoint Presentation

PowerPoint Presentation 2 9/ 3 3 9/ 9 4 5 , PR () 6 ,,, (11) 7 PR 8 9 10 11 TEL. 106 8/131512/291/3 TEL. 107 12/291/3 12 http://www.f-turn.jp/ 13 21 4 21 14 200910 U 200911 U 200911 20102 15 20102 PR 20103 20103 16 20103 20104

More information

17 17 17 17 11 21 28 1 24 12 36 2,000 2 22 11 3.67 3.38 22 2.97 21 10 1.7 1.12 22 10 13 2.75 11 10 15 24 10 12 14 3 17 17 2006 4 17 10 24 12 17 5 15 17 17 11 40 6 17 40 17 11 7 24 17 24 17 8 40 17 17 9

More information

untitled

untitled ,337 37 35 0,349,09 35 55 988 3 0 0 3,387 7 90 0,369,46 5 57 5 0 90 38 8,369 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 6 8 9 30 3 3 5,400 7,00 9,000 0,800,600 4,400 6,00 8,000 9,800,600 3,400 5,00 7,000 8,800

More information

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767,

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767, 02 02 02 180,771 07 02 01 1,377 07 02 02 1,051,703 07 02 05 220,099 07 03 01 926,597 08 02 04 1,877,566 08 04 02 2,973,603 08 05 03 672,950 10 06 03 778,433 10 06 04 735,789 10 06 06 225,392 10 06 07 365,442

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

基礎統計

基礎統計 基礎統計 第 2 回講義資料 講義資料 テキスト 入門統計解析 倉田博史 星野崇宏, 新世社,2009. (2500 円 + 税 ) スライド資料 http://lecture.ecc.u-tokyo.ac.jp/~candoma/ 基礎統計 ( 16) にてスライド資料 (PDF ファイル ) 学内の PC 端末からアクセスするには 情報教育棟にある PC 端末で Safari を起動すると 講義用

More information

OpRisk VaR3.2 Presentation

OpRisk VaR3.2 Presentation オペレーショナル リスク VaR 計量の実施例 2009 年 5 月 SAS Institute Japan 株式会社 RI ビジネス開発部羽柴利明 オペレーショナル リスク計量の枠組み SAS OpRisk VaR の例 損失情報スケーリング計量単位の設定分布推定各種調整 VaR 計量 内部損失データ スケーリング 頻度分布 規模分布 分布の補正相関調整外部データによる分布の補正 損失シナリオ 分布の統合モンテカルロシミュレーション

More information

本資料は 様々な世帯類型ごとに公的サービスによる受益と一定の負担の関係について その傾向を概括的に見るために 試行的に簡易に計算した結果である 例えば 下記の通り 負担 に含まれていない税等もある こうしたことから ここでの計算結果から得られる ネット受益 ( 受益 - 負担 ) の数値については

本資料は 様々な世帯類型ごとに公的サービスによる受益と一定の負担の関係について その傾向を概括的に見るために 試行的に簡易に計算した結果である 例えば 下記の通り 負担 に含まれていない税等もある こうしたことから ここでの計算結果から得られる ネット受益 ( 受益 - 負担 ) の数値については 世帯類型別の受益と負担について 参考資料 2-4(2) 未定稿 平成 23 年 6 月 8 日内閣府 類型 世帯主年齢 性別 配偶者 子ども人数 1 20 代男性 なし ( 単身 ) なし 2 20 代女性 なし ( 単身 ) なし 3 30 代男性 なし ( 単身 ) なし 4 30 代男性 あり なし 5 30 代男性 あり 1 人 6 30 代男性 あり 2 人 7 30 代男性 あり ( 共働き

More information

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計 8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

. 実験方法 ヒノキ板を断面形状を高さ 8mm および 16mm の 種類としいずれも幅 mm として用意した 試験片長さを 1mm mm 3mm mm mm に切断し 写真 1, のように万能試験機で垂直になるように設置後 圧縮荷重をかけ最大圧縮荷重値を最大座屈荷重値としてデータを収集した 折れ曲

. 実験方法 ヒノキ板を断面形状を高さ 8mm および 16mm の 種類としいずれも幅 mm として用意した 試験片長さを 1mm mm 3mm mm mm に切断し 写真 1, のように万能試験機で垂直になるように設置後 圧縮荷重をかけ最大圧縮荷重値を最大座屈荷重値としてデータを収集した 折れ曲 研究結果報告書 公益財団法人長野県学校科学教育奨励基金 理事長小根山克雄様 1 研究テーマ 座屈現象の測定について 平成 8 年 1 月 1 日 学校名長野工業高等学校 校長森本克則印 研究グループ名 長野工業高等学校機械班 西村神之将 丸山颯斗 酒井達也 塚田郁哉 3 指導者土屋善裕 研究の動機及び目標工業 機械科の教科書 機械設計 には様々な公式が記載されているが なかには式の由来について説明もなくいきなり出てくる場合もあり日常生活の実体験とイメージしにくいものがある

More information

要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント 犠牲フライ ) は得点に対しては有意ではないが勝敗

要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント 犠牲フライ ) は得点に対しては有意ではないが勝敗 平成 26 年度卒業論文 高校野球における各プレーの貢献度 所属ゼミ 村澤ゼミ 学籍番号 1110402082 氏 名 野村剛志 大阪府立大学経済学部 要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント

More information

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A> 第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です

More information

238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろ

238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろ 238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろうか この あ に関して あいづち研究の中では 主に 理解して いる信号 堀口1 7 として取り上げられているが

More information

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか 時系列データ解析でよく見る あぶない モデリング 久保拓弥 (北海道大 環境科学) 1/56 今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか (危 1) 時系列データを GLM で (危 2) 時系列Yt 時系列 Xt 相関は因果関係ではない 問題の一部

More information

MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った.

MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った. MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った. http://hdr.undp.org/en/-report. HDI MT Mahalanobis- Taguchi Method

More information

ブック 1.indb

ブック 1.indb Graduate School of Policy and Management, Doshisha University 17 職務満足度からみる学校図書館の現状 概要 5 1. 差異と認識のズレ 学校図書館に影響するネガティブ要因の探索 1 18 1 2.2 2 1 3 4,5,6 図 1 学校図書館で働く人の雇用上の立場の差異 1 1953 1997 2014 1990 2 28 http://www.mext.go.jp/a_menu/shotou/dokusho/link/

More information

CompuSec SW Ver.5.2 アプリケーションガイド(一部抜粋)

CompuSec SW Ver.5.2 アプリケーションガイド(一部抜粋) 64 PART 9 65 66 PART10 67 1 2 3 68 PART 10 4 5 69 1 2 3 4 5 70 PART 10 6 7 8 6 9 71 PART11 72 PART 11 1 2 3 73 4 5 6 74 PART 11 7 8 9 75 PART12 76 PART 12 1 2 3 4 1 2 3 4 77 1 2 3 4 5 6 7 8 78 PART13 79

More information

はじめに 2 子ども手当 児童手当 扶養控除 子育て支援 : 家庭等における生活の安定 次代の社会を担う児童の健やかな成長 2010 年の民主党政権で従来の児童手当を拡充して子ども手当創設 2013 年の自民党政権で新たな児童手当に置き換え, 予算は同規模 2011 年度に年少親族扶養控除は廃止 :

はじめに 2 子ども手当 児童手当 扶養控除 子育て支援 : 家庭等における生活の安定 次代の社会を担う児童の健やかな成長 2010 年の民主党政権で従来の児童手当を拡充して子ども手当創設 2013 年の自民党政権で新たな児童手当に置き換え, 予算は同規模 2011 年度に年少親族扶養控除は廃止 : 1 子ども手当, 扶養控除と家計の 労働供給 別所俊一郎慶應義塾大学経済学部 はじめに 2 子ども手当 児童手当 扶養控除 子育て支援 : 家庭等における生活の安定 次代の社会を担う児童の健やかな成長 2010 年の民主党政権で従来の児童手当を拡充して子ども手当創設 2013 年の自民党政権で新たな児童手当に置き換え, 予算は同規模 2011 年度に年少親族扶養控除は廃止 : 控除から手当へ 日本の児童手当拡充

More information

研究紀要 第5号

研究紀要 第5号 3 4 5 6 7 8 a s d f a 9 10 s d a 11 12 s d f g 13 h j a d s 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 a 35 s 36 a 37 s 38 a 39 s 40 a 41 s d 42 f 43 44 46 47 48 49 50 a s d as d 51

More information

(fnirs: Functional Near-Infrared Spectroscopy) [3] fnirs (oxyhb) Bulling [4] Kunze [5] [6] 2. 2 [7] [8] fnirs 3. 1 fnirs fnirs fnirs 1

(fnirs: Functional Near-Infrared Spectroscopy) [3] fnirs (oxyhb) Bulling [4] Kunze [5] [6] 2. 2 [7] [8] fnirs 3. 1 fnirs fnirs fnirs 1 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. fnirs Kai Kunze 599 8531 1 1 223 8526 4 1 1 E-mail: yoshimura@m.cs.osakafu-u.ac.jp, kai@kmd.keio.ac.jp,

More information

untitled

untitled ② ICM & Safety Division Newsletter No.24 解 説 ISO12100とはどのような内容か 長岡技術科学大学システム安全系 福田 隆文 ISO12100は機械安全の基本規格で 本ニュースレタ それぞれの技術原則を提示している 具体的な内容はぜ ーでも何回か取り上げられているように機械安全の実現 ひ規格を見て頂きたい 自分の担当している機械 設備 の仕方の原則を決めている

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx // データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される

More information

2

2 () () 980-8578 Tel: 022-795-6092 Fax: 022-795-6096 email: 1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 17 46 47 4.1.1

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

また 初期化について 以下のサンプルコードのように指定すれば 定義時に値を代入できます * オマケ配列は同名で複数個の箱を用意出来ます 同名ではありますが それぞれは別々の個体であるわけです また この複数個の変数は メモリ上に連続で確保されます 2. 文字と文字列 C 言語では文字と文字列は異なる

また 初期化について 以下のサンプルコードのように指定すれば 定義時に値を代入できます * オマケ配列は同名で複数個の箱を用意出来ます 同名ではありますが それぞれは別々の個体であるわけです また この複数個の変数は メモリ上に連続で確保されます 2. 文字と文字列 C 言語では文字と文字列は異なる 第 4 回 C 言語講座 1. 配列についていままで 変数は1 個ずつ指定してました が 同名で たくさん必要なときもあるかもしれませんね 例えば 複数人の点数だけを格納するときとか このときは 配列が便利なわけです それぞれを添字によって区別しながら扱えるという便利なものです というわけで サンプルコード %.2lf で小数点以下 2 桁表示を示しています定義時は個数を指定します が その後は []

More information

Overview Simulation Kleisli Simulation Contribution 1. Implementation 2. Increasing the Chance of Simulation Experimental Results and Comparison 2

Overview Simulation Kleisli Simulation Contribution 1. Implementation 2. Increasing the Chance of Simulation Experimental Results and Comparison 2 Kleisli Simulation for Real-Weighted Automata and its Algorithm 卜部夏木 ( 蓮尾研究室 ) 1 Overview Simulation Kleisli Simulation Contribution 1. Implementation 2. Increasing the Chance of Simulation Experimental

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

- 2 -

- 2 - 計算機工学 第1回 計算機利用の基礎1 計算機の仕組み 1 1 計算機はどのようなハードウェアによって構成されているのか 1 2 計算機の五大装置 制御の流れ データの流れ 制御装置 記憶装置に記録されているプログラムを解読し その指示に従ってその他の装置 を制御する 演算装置 四則演算 条件判断 論理演算を行う 上記2つを合わせて CPU(Central Processing Unit)と呼ぶ 記憶装置

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 担当教員名 単位数西田健 2 単位 教室 時間 4-1A 教室火曜 4 限 目的不確定性を有する対象の制御に有効な確率システム制御理論について解説する また 確率的要因を考慮した状態推定のために 宇宙ロケットや自律ロボットなどの幅広い分野で利用されているカルマンフィルタやパーティクルフィルタについて解説し それらを用いる制御系の構成手法を教授する 授業計画 (1) ガイダンスと導入 (2) 線形動的システムの時系列モデリング

More information

untitled

untitled 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) 1 ( ) ( ) ( ) ( ) 3 ( ) a b ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 ( ) ( ) ( ) ( ) ( ) ( ) < > 5 a b c d ( ) ( ) ( ) ( ) ( ) 18 73 ( ) ( ) a b 6 6 c ( ) (

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx 1// 小テスト内容 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I) 1 1 第 章の構成. 単一始点最短路問題 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 1 1 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ

More information

先端社会研究所紀要 第12号☆/1.巻頭言

先端社会研究所紀要 第12号☆/1.巻頭言 Kwansei Gakuin University Rep Title Author(s) Citation < 研 究 ノート> 他 者 問 題 解 決 の 遅 延 要 因 としての 正 統 性 : 実 験 的 手 法 による 検 討 寺 島, 圭 関 西 学 院 大 学 先 端 社 会 研 究 所 紀 要 = Annual review of advanced social research,

More information

DVIOUT-mem

DVIOUT-mem 統計学講義メモ (1): 記述統計 高木真吾, 北海道大学 目次 1 データの全体像を見る 1 1.1 全体像を把握する : ヒストグラム.................................. 1 1. 分布状態を比較する : ローレンツ曲線................................ 3 データを要約する 8.1 データを代表する尺度 : 代表値...................................

More information

Microsoft Word - 操作マニュアル-Excel-2.doc

Microsoft Word - 操作マニュアル-Excel-2.doc Excel プログラム開発の練習マニュアルー 1 ( 関数の学習 ) 作成 2015.01.31 修正 2015.02.04 本マニュアルでは Excel のプログラム開発を行なうに当たって まずは Excel の関数に関する学習 について記述する Ⅰ.Excel の関数に関する学習 1. 初めに Excel は単なる表計算のソフトと思っている方も多いと思います しかし Excel には 一般的に使用する

More information

(2002) (1995)

(2002) (1995) OSIPP Discussion Pper: DP-2003 -J-007 28 July, 2003 2002 9 gohtni@osipp.osk-u.c.jp mtusige@osipp.osk-u.c.jp umezki@i.hosei.c.jp 1 1. 1 3 (2002) 1 2003 2 (1995) 3 2000 4 2 2 3 Oxc 4 2. 2-1 1997 6000 20

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

win版8日目

win版8日目 8 日目 : 項目のチェック (2) 1 日 30 分くらい,30 日で何とか R をそこそこ使えるようになるための練習帳 :Win 版 昨日は, 平均値などの基礎統計量を計算する試行錯誤へご招待しましたが (?), 今日は簡 単にやってみます そのためには,psych というパッケージが必要となりますが, パッケー ジのインストール & 読み込みの詳しい方法は, 後で説明します 以下の説明は,psych

More information

第9回 配列(array)型の変数

第9回 配列(array)型の変数 第 12 回 配列型の変数 情報処理演習 ( テキスト : 第 4 章, 第 8 章 ) 今日の内容 1. 配列の必要性 2. 配列の宣言 3. 配列変数のイメージ 4. 配列変数を使用した例 5. 範囲を超えた添字を使うと? 6. 多次元配列変数 7. 多次元配列変数を使用した例 8. データのソーティング 9. 今日の練習問題 多数のデータ処理 1. 配列の必要性 ( テキスト 31 ページ )

More information

第2章

第2章 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください

More information

る そんな解析もしてみたい と 好奇心が刺激されます 二つ目の理由は 統計解析を受け止める立場の話です 猛烈に発信されるデータは 現在 さまざまに解釈されながらマスコミ等で発表されています 困ったことは その解析は必ずしも正しいとは限らないことです です 一を聞いて十を知る という諺がありますが 1

る そんな解析もしてみたい と 好奇心が刺激されます 二つ目の理由は 統計解析を受け止める立場の話です 猛烈に発信されるデータは 現在 さまざまに解釈されながらマスコミ等で発表されています 困ったことは その解析は必ずしも正しいとは限らないことです です 一を聞いて十を知る という諺がありますが 1 はじめに 統計解析って 統計学とどう違うんだろう? そんな疑問をもっている方が多いのではないでしょうか 実際 統計学がわかる といった本を読んで なんとなく理屈がわかったとしても そのあと 現実の場で統計の知識を活かして使っている方はほとんど見あたりません それは 統計解析の知識が不足しているから といってよいでしょう 統計解析というのは 統計学の知識を応用しつつ 実際に統計データの分析を行なえるようにすること

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作 五心へのアプローチ札幌新川高等学校吉田奏介 数学 Ⅰ の授業のあと 生徒から 内心や外心と頂点の延長線は中点と一致しないんですか? と質問があった その生徒には角の二等分線の話や鈍角三角形のときの話をしたら納得していたが 確かに一般的な点におけることは紙面上の図を見ただけではわかりづらいだろうし 生徒が自分で描く図は都合のよい図を描いてしまいがちである そんなことを発端にして考えてみた 1 FLSH

More information

1. 中古マンション価格の属性別変化 物件属性別のm2単価の違いを押さえる方法 近畿圏の中古マンション価格は 213 年以来 上昇を続けているが一貫して上昇するエリアがある一方で弱含みのエリアもみられる 物件属性についても同様で 駅からの徒歩分数や築年数 住棟 住戸の規模 階数 方位などによって 価

1. 中古マンション価格の属性別変化 物件属性別のm2単価の違いを押さえる方法 近畿圏の中古マンション価格は 213 年以来 上昇を続けているが一貫して上昇するエリアがある一方で弱含みのエリアもみられる 物件属性についても同様で 駅からの徒歩分数や築年数 住棟 住戸の規模 階数 方位などによって 価 ( 公社 ) 近畿圏不動産流通機構市況レポート 特集 中古マンション価格の属性別分析 上昇が続く中古マンション価格だが エリアや物件属性によって価格の動きには違いがみられる 価格査定では駅徒歩条件や築年数 住戸の階数などが重要な要素となるが 今回は統計的手法を用いてこれらの条件で価格がどのように変化するのかレインズデータから把握を試みる 1. 中古マンション価格の属性別変化 駅徒歩条件別では駅に近い徒歩

More information

Blue circle & gradation

Blue circle & gradation 数学 1 に関連した統計教材 Takakazu Sugiyama http://www.statistics.co.jp/ これは 2013 年に東京都教育委員会の要請による講演のパワーポイントです. データの要約をしよう! 1.1 データの性格 日本人の死因を集積したデータ アンケートや問診票にある性別 薬局の満足度を 非常に満足 やや満足 どちらともいえない やや不満 非常に不満 によって評価したデータなどのように

More information

質量計の管理におけるはかり・分銅の不確かさの求め方について

質量計の管理におけるはかり・分銅の不確かさの求め方について 質量計の管理における はかり 分銅の 不確かさ の求め方について 村上衡器製作所技術開発部伊藤登. 不確かさとは ISO ガイド Gde o he Expeon of Unceany n Meaemen 通称 GUM ( ガム ) 和文訳 計測における不確かさの表現のガイド ( 日本規格協会 ) 不確かさの定義測定の結果に付随した 合理的な測定量に結びつけられ得る値のばらつきを特徴づけるパラメータ.

More information