A Survey on Image Recognition Using Geo-tag Information

Size: px
Start display at page:

Download "A Survey on Image Recognition Using Geo-tag Information"

Transcription

1 Geo A Survey on Image Recognition Using Geo-tag Information Abstract Geo-tag is a type of metadata of various media such as photographs, videos, websites and more other media. In the case of photographs, Geo-tag is GPS coordinates where it was taken. In recent years, we have so many Geo-tagged images on the 2006 Web Flickr GPS Geo Geo Flickr photo sharing web site, such as Flickr. This paper shows some works, which apply geo-tag information to image recognition problem. GPS coordinates has only 2 values, latitude and longitude, a point on the earth. However, GPS coordinates has richer information than 2 dimension vector. We can consider GPS coordinates as a hint of more informative resources or some works apply GPS coordinates to latent semantic analysis. Geo-tag is also used to build the database concerning the sightseeing spot and the landmark. Moreover, there are some Geolocalization works; they estimate the place where an untagged image was taken. 1 Geo GPS 2 Exif Exchangeable image file Figure 1 Geo-tag of image format 1 Geo GPS GPS GPS Geo 2010 GoogleMaps Geo 2 Geo 1

2 Figure 2 Geo-tagged Image localize in Google Maps Geo semantic gap World Wide Web Flickr Geo GPS GPS Geo GPS Geo 4 Geo GPS GPS Geo Geo Geolocalization 2 Geo 2 Geo GPS Web GPS Luo GPS 2 GoogleEarth [10] 3 Geo 2

3 , GPS 3 25m, 50m, 150m bag-of-visualwords[3] SIFT [9] HSV, SVM Supprt Vector Machine multiboost tree classifier[6] SVM RBF SVM Luo Geo [12] Flickr Geo GPS plsa LDA GPS Geo Joshi Geonames GIS geographic information system GPS bag-of-geotag Geo [8] GIS GPS,, GIS GPS GPS bag-of-geotag (1) Geo GPS 20 Geonames (2) GPS k = 2 k-means (3) GPS (4) bag-of-geotag Figure 3 Event recognition of using third view I bag-of-geotag : G(I) = {w 1,w 2,...,w mi } 3

4 bag-of-geotag P(I,w) = P(I) P(w z)p(z I) (1) z,em z plsa Cristani Region (2) P(l,w) = P(l) z P(w z) P(z r)p(r l) (2) r l GPS r Region P(l,w) = P(l) z P(w z) P(z r)p(l r)p(r) (3) r p(l r) r GPS 5) Region Visual Figure 4 Event recognition framework of using geographic information system visualwords Geo EM 3 GPS GPS GPS GPS Cristani bag-ofvisualwords plsa Visual Region [2] plsa bagof-visualwords (1) plsa I P(I) Visual z P(z I) visual word w P(w z) (I,w) visual word Geo Geolocalization 4 Geo Flickr Geo Geo GPS 4

5 Figure 6 A geospatial grid is overlaid over the earth Gammeter らは Quack らの研究の根本的な発想を受け 継ぎ 観光地やランドマークを重視したデータベース構築 手法を提案した [5] この研究は 最初に Wikipedia の記事 Figure 5 distribution of region topics につけられている Geo タグ情報を利用し 全手順をすべて 自動化してデータベースを構築している が近い手頃な数の画像間のみで済ませるようにすれば 明 (1) wikipedia の記事で GPS 座標の情報が付いている記事 らかに類似度の低い大量の画像間での計算を行う回数が減 を見つけ その座標をシード座標とする 少し 効率的なデータベースの構築を行うことができると (2) 地球を格子状に分け シード座標で Flickr を検索し 考えられる シード座標を含む格子内にある画像を集めてくる Quack らは GPS 座標を用いた物体とイベント認識のた (3) 格子内で bag-of-visualwords を利用して k-means クラ めのデータベースの効率的な構築手法を提案した [11] こ スタリングを行ない オブジェクトクラスタを作る の手法では 地球を分割する 100m ごとの格子を与え そ (4) オブジェクトクラスタの写真についているタグを利用 の内部でのみ高次元の画像特徴量を用いた計算を行ってい して オブジェクトクラスタへのラベル付けを行う る 図 6 以下のような手順によって 地球規模の大規模 なデータベースを構築している この研究では このようにして構築されたデータベース (1) 地球を格子状に分け 各格子の中心の緯度経度を求め 内の最近傍探索を行うことで クエリ画像に写っている物 る 求めた緯度経度で Flickr を検索し 格子内にある 体の認識が行えるようにしている この研究は 各ランド 画像を集めてくる マークを表す特徴点をクエリ画像から検出し それらの点 を囲うバウンディングボックスも表示するという 物体検 (2) 格子内では SURF[1] による bag-of-visualwords を画像 出の領域にまで踏み込んだ研究となっている 図 7 特徴量として用いてクラスタリングを行ない それら Zheng らは 画像の GPS 座標を用いて効率的に観光地の のクラスタがオブジェクト 建物や像など かイベン データベースを構築する手法を提案した [14] 先の 2 つの ト コンサートやお祭りなど かを人手で判別する 研究と発想は似ているが この研究では格子ではなく GPS (3) クラスタの写真についているタグを利用して クラス 座標のみによるクラスタリングを行うことで近い位置に タへのラベル付を行う 存在している画像のクラスタを作っている この手法は (4) ラベルで Wikipedia の記事を検索し その記事を各ク GPS 座標が近い画像であれば 特に観光地に関しては 似 ラスタに関連させる 5

6 Figure 7 landmark recognition and detection Hay 650 Geo Geolocalization 8 GPS 1 GPS wikitravel 5 Geolocalization Geo Geolocalization Hays 1 Geo GPS [7] Flickr Geo, cameraphone GPS Gallagher IM2GPS [4] Flickr IM2GPS Geolocalization semantic gap Geolocalization Zamir Google Geolocalization [13] Google 12 Google 12 6

7 Figure 8 Results of IM2GPS 分布している また 民生用の GPS 機器より正確な位 計算してしまうも避けたい そこで地理的な距離が一定以 置を得ることができる 上離れている画像間で似た特徴が得られる場合 その特徴 多少の歪みはあるものの 視点を限定すれば 一般的 は地理的な特徴ではないと考え除去するという方法を採っ なレンズで撮影した写真と同様の画像を簡単に得るこ ている つまり GPS 座標を手がかりに 必要十分な画像特 とができる 徴を得ることに成功しているのである GoogleMaps の多機能されたデータセットは 様々なア 6 まとめ プリケーションへの拡張を容易にしてくれると予想さ 本稿では Geo タグ情報が画像認識に及ぼした影響と そ れる 例えば Geolocalization によってカメラの地理 れを利用した研究について述べた GPS 座標自体が潜在的 的な位置が分かれば その地点でのストリートビュー に持っている情報や GPS 座標から得られる 2 次的な情報を の視点を動かして得られる画像とクエリ画像の間で 利用する研究や 地理的な区画を利用して効率的にデータ 簡単なマッチングを行えば カメラの東西南北や上下 ベースを構築する研究 そして Geo タグのついていない画 の姿勢までもが分かることになる 今現在のデジタル 像の地理的な位置を推定する Geolocalization に関する研究 カメラではカメラ自身の姿勢を記録することはできな について述べた いが この研究を用いれば 十分可能になると考えら 現在のところ画像における Geo タグは GPS 座標と同義 れる であるが 画像フォーマットのどのように変化するのか 撮 一方でデータセットが巨大で 通行人や車が写っている事 影デバイスにどのようなセンサを搭載されるのか あるい が多いなどといった欠点も抱えている は どのような画像共有サービスが生まれるのか という 筆者らはデータセットとして 200km の道路の 12 メー こといった事情によって 今後 GPS 座標以外の情報も含む トルごと各地点についての前後/側面/天頂という 5 枚の画 ようになるはずである 例えば 近年の標準的な携帯電話 像とその地点の GPS 座標のセットを作成している 図 9 やスマートフォンには電子コンパスが搭載されており カ データベースが巨大になるため 比較に使用する SIFT 特 メラの地理的な向きに関する情報を得ることは現在でも技 徴を減らす必要がある上 Google ストリートビューでは通 術的には問題なく出来ると思われる より豊かな Geo タグ 行人や車なども写っているため それらの特徴で類似度を が利用出来るようになれば より高度な画像認識を行うこ 7

8 Figure 9 Dataset of Google Street View [1] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. Computer Vision ECCV 2006, pp , [2] M. Cristani, A. Perina, U. Castellani, and V. Murino. Geo-located image analysis using latent representations. In Computer Vision and Pattern Recognition, CVPR IEEE Conference on, pp IEEE, [3] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints. In Workshop on statistical learning in computer vision, ECCV, Vol. 1, p. 22. Citeseer, [4] A. Gallagher, D. Joshi, J. Yu, and J. Luo. Geo-location inference from image content and user tags [5] S. Gammeter, L. Bossard, T. Quack, and L.V. Gool. I know what you did last summer: object-level autoannotation of holiday snaps. In Computer Vision, 2009 IEEE 12th International Conference on, pp IEEE, [6] W. Hao and J. Luo. Generalized multiclass adaboost and its applications to multimedia classification [7] J. Hays and A.A. Efros. IM2GPS: estimating geographic information from a single image. In Computer Vision and Pattern Recognition, CVPR IEEE Conference on, pp IEEE, [8] D. Joshi and J. Luo. Inferring generic activities and events from image content and bags of geo-tags. In Proceedings of the 2008 international conference on Content-based image and video retrieval, pp ACM, [9] D.G. Lowe. Distinctive image features from scaleinvariant keypoints. International journal of computer vision, Vol. 60, No. 2, pp , [10] J. Luo, J. Yu, D. Joshi, and W. Hao. Event recognition: viewing the world with a third eye. In Proceeding of the 16th ACM international conference on Multimedia, pp ACM, [11] T. Quack, B. Leibe, and L. Van Gool. World-scale mining of objects and events from community photo collections. In Proceedings of the 2008 international conference on Content-based image and video retrieval, pp ACM, [12] K. Yaegashi and K. Yanai. Can Geotags Help Image Recognition? Advances in Image and Video Technology, pp , [13] A. Zamir and M. Shah. Accurate Image Localization Based on Google Maps Street View. Computer Vision ECCV 2010, pp ,

9 [14] Y.T. Zheng, M. Zhao, Y. Song, H. Adam, U. Buddemeier, A. Bissacco, F. Brucher, T.S. Chua, and H. Neven. Tour the world: building a web-scale landmark recognition engine. In Computer Vision and Pattern Recognition, CVPR IEEE Conference on, pp IEEE,

LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R

LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R DEIM Forum 24 F5-4 Local Binary Pattern 6 84 E-mail: {tera,kida}@ist.hokudai.ac.jp Local Binary Pattern (LBP) LBP 3 3 LBP 5 5 5 LBP improved LBP uniform LBP.. Local Binary Pattern, Gradient Local Auto-Correlations,,,,

More information

2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient Feature Transform (SIFT) Bay [1] Speeded Up Robust Features (SURF) SIFT 128 SURF 64 Visual Words Ni

2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient Feature Transform (SIFT) Bay [1] Speeded Up Robust Features (SURF) SIFT 128 SURF 64 Visual Words Ni DEIM Forum 2012 B5-3 606 8510 E-mail: {zhao,ohshima,tanaka}@dl.kuis.kyoto-u.ac.jp Web, 1. Web Web TinEye 1 Google 1 http://www.tineye.com/ 1 2. 3. 4. 5. 6. 2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

28 TCG SURF Card recognition using SURF in TCG play video

28 TCG SURF Card recognition using SURF in TCG play video 28 TCG SURF Card recognition using SURF in TCG play video 1170374 2017 3 2 TCG SURF TCG TCG OCG SURF Bof 20 20 30 10 1 SURF Bag of features i Abstract Card recognition using SURF in TCG play video Haruka

More information

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa 3,a) 3 3 ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransac. DB [] [2] 3 DB Web Web DB Web NTT NTT Media Intelligence Laboratories, - Hikarinooka Yokosuka-Shi, Kanagawa 239-0847 Japan a) [email protected]

More information

SICE東北支部研究集会資料(2013年)

SICE東北支部研究集会資料(2013年) 280 (2013.5.29) 280-4 SURF A Study of SURF Algorithm using Edge Image and Color Information Yoshihiro Sasaki, Syunichi Konno, Yoshitaka Tsunekawa * *Iwate University : SURF (Speeded Up Robust Features)

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf 1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

29 jjencode JavaScript

29 jjencode JavaScript Kochi University of Technology Aca Title jjencode で難読化された JavaScript の検知 Author(s) 中村, 弘亮 Citation Date of 2018-03 issue URL http://hdl.handle.net/10173/1975 Rights Text version author Kochi, JAPAN http://kutarr.lib.kochi-tech.ac.jp/dspa

More information

Core Ethics Vol. a

Core Ethics Vol. a Core Ethics Vol. CP CP CP Core Ethics Vol. a - CP - - Core Ethics Vol. CP CP CP b CP CP CP e f a c c c c c c CP CP CP d CP ADL Core Ethics Vol. ADL ADL CP CP CP CP CP CP CP,,, d Core Ethics Vol. CP b GHQ

More information

Microsoft PowerPoint - SSII_harada pptx

Microsoft PowerPoint - SSII_harada pptx The state of the world The gathered data The processed data w d r I( W; D) I( W; R) The data processing theorem states that data processing can only destroy information. David J.C. MacKay. Information

More information

(VKIR) VKIR VKIR DCT (R) (G) (B) Ward DCT i

(VKIR) VKIR VKIR DCT (R) (G) (B) Ward DCT i 24 Region-Based Image Retrieval using Color Histogram Feature 1130340 2013 3 1 (VKIR) VKIR VKIR DCT (R) (G) (B) 64 64 Ward 20 1 20 1 20. 5 10 2 DCT i Abstract Region-Based Image Retrieval using Color Histogram

More information

WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i

WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i 26 WebRTC The data distribution system using browser cache sharing and WebRTC 1150361 2015/02/27 WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i Abstract The data distribution

More information

Web Web Web Web Web, i

Web Web Web Web Web, i 22 Web Research of a Web search support system based on individual sensitivity 1135117 2011 2 14 Web Web Web Web Web, i Abstract Research of a Web search support system based on individual sensitivity

More information

DEIM Forum 2012 E Web Extracting Modification of Objec

DEIM Forum 2012 E Web Extracting Modification of Objec DEIM Forum 2012 E4-2 670 0092 1 1 12 E-mail: [email protected], {dkitayama,sumiya}@shse.u-hyogo.ac.jp Web Extracting Modification of Objects for Supporting Map Browsing Junki MATSUO, Daisuke

More information

(b) BoF codeword codeword BoF (c) BoF Fergus Weber [11] Weber [12] Weber Fergus BoF (b) Fergus [13] Fergus 2. Fergus 2. 1 Fergus [3]

(b) BoF codeword codeword BoF (c) BoF Fergus Weber [11] Weber [12] Weber Fergus BoF (b) Fergus [13] Fergus 2. Fergus 2. 1 Fergus [3] * A Multimodal Constellation Model for Generic Object Recognition Yasunori KAMIYA, Tomokazu TAKAHASHI,IchiroIDE, and Hiroshi MURASE Bag of Features (BoF) BoF EM 1. [1] Part-based Graduate School of Information

More information

1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means

1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means Web, Web k-means 62% Associating Faces and Names in Web Photo News Akio Kitahara and Keiji Yanai We propose a system which extracts faces and person names from news articles with photographs on the Web

More information

08-特集04.indd

08-特集04.indd 5 2 Journal of Multimedia Aided Education Research 2008, Vol. 5, No. 2, 3543 ICT ICT ICT 2 ICT ICT 1100 2008 ICT ICT 2007 ICT ICT ICT ICT IPtalk2008 2006 LAN TCP/IP 1 35 5 22008 1 Enter 1 IPtalk 2 2 2IPtalk

More information

WASEDA RILAS JOURNAL

WASEDA RILAS JOURNAL 27 200 WASEDA RILAS JOURNAL NO. 1 (2013. 10) WASEDA RILAS JOURNAL 28 199 29 198 WASEDA RILAS JOURNAL 30 197 31 196 WASEDA RILAS JOURNAL 32 195 1 3 12 6 23 No 1 3 0 13 3 4 3 2 7 0 5 1 6 6 3 12 0 47 23 12

More information

<95DB8C9288E397C389C88A E696E6462>

<95DB8C9288E397C389C88A E696E6462> 2011 Vol.60 No.2 p.138 147 Performance of the Japanese long-term care benefit: An International comparison based on OECD health data Mie MORIKAWA[1] Takako TSUTSUI[2] [1]National Institute of Public Health,

More information

untitled

untitled Studies in Human Geography 32 Geoenvironmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan ArcGIS Geography Network ArcGIS ArcGIS ArcGIS Geography Network

More information

10_細川直史.indd

10_細川直史.indd GIS Theory and Applications of GIS, 2010, Vol. 18, No.1, pp.79-85 電子タグによる屋内測位を利用した携帯電話からの通報システム 細川直史 * 高梨健一 ** 滝澤修 *** Emergency Call System by Cellular-phone equipped with RFID Positioning Masafumi HOSOKAWA*,

More information

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme DEIM Forum 2009 C8-4 QA NTT 239 0847 1 1 E-mail: {kabutoya.yutaka,kawashima.harumi,fujimura.ko}@lab.ntt.co.jp QA QA QA 2 QA Abstract Questions Recommendation Based on Evolution Patterns of a QA Community

More information

IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [

IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [ ,a),b),,,,,,,, (DNN),,,, (CNN),,.,,,,,,,,,,,,,,,,,, [], [6], [7], [], [3]., [8], [0], [7],,,, Tohoku University a) [email protected] b) [email protected], [3],, (DNN), DNN, [3],

More information

2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1] PLUM [2] LifelogViewer 3 1 Apple iphoto, 2 Goo

2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1]  PLUM [2] LifelogViewer 3 1 Apple iphoto,   2 Goo DEIM Forum 2012 D9-4 606 8501 E-mail: {sasage,tsukuda,nakamura,tanaka}@dl.kuis.kyoto-u.ac.jp,,,, 1. 2000 1 20 10 GPS A A A A A A A 2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1] Email PLUM

More information

IPSJ SIG Technical Report PIN(Personal Identification Number) An Examination of Icon-based User Authentication Method for Mobile Terminals Fum

IPSJ SIG Technical Report PIN(Personal Identification Number) An Examination of Icon-based User Authentication Method for Mobile Terminals Fum 1 2 1 3 PIN(Personal Identification Number) An Examination of Icon-based User Authentication Method for Mobile Terminals Fumio Sugai, 1 Masami Ikeda, 2 Naonobu Okazaki 1 and Mi RangPark 3 In recent years,

More information

16−ª1“ƒ-07‘¬ŠÑ

16−ª1“ƒ-07‘¬ŠÑ The purpose of this study is to clarify a process that Awa dance developed into tourist resources and the factors that it spread out in all over Japan. Consideration was made with the memory magazines,

More information

Microsoft PowerPoint - pr_12_template-bs.pptx

Microsoft PowerPoint - pr_12_template-bs.pptx 12 回パターン検出と画像特徴 テンプレートマッチング 領域分割 画像特徴 テンプレート マッチング 1 テンプレートマッチング ( 図形 画像などの ) 型照合 Template Matching テンプレートと呼ばれる小さな一部の画像領域と同じパターンが画像全体の中に存在するかどうかを調べる方法 画像内にある対象物体の位置検出 物体数のカウント 物体移動の検出などに使われる テンプレートマッチングの計算

More information

橡最終原稿.PDF

橡最終原稿.PDF GIS Simulation analysis of disseminate of disaster information using GIS * ** *** Toshitaka KATADAJunsaku ASADA and Noriyuki KUWASAWA GIS GIS AbstractWe have developed the simulation model expressing the

More information

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth Journal of Geography 116 (6) 749-758 2007 Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth Data: A Case Study of a Snow Survey in Chuetsu District,

More information

16_.....E...._.I.v2006

16_.....E...._.I.v2006 55 1 18 Bull. Nara Univ. Educ., Vol. 55, No.1 (Cult. & Soc.), 2006 165 2002 * 18 Collaboration Between a School Athletic Club and a Community Sports Club A Case Study of SOLESTRELLA NARA 2002 Rie TAKAMURA

More information

陶 磁 器 デ ー タ ベ ー ス ソ リ ュ ー シ ョ ン 図1 中世 陶 磁 器 デ ー タベ ー ス 109 A Database Solution for Ceramic Data OGINO Shigeharu Abstract This paper describes various aspects of the development of a database

More information

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6) 1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology

More information

WikiWeb Wiki Web Wiki 2. Wiki 1 STAR WARS [3] Wiki Wiki Wiki 2 3 Wiki 5W1H 3 2.1 Wiki Web 2.2 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 2.3 Wiki 2015 Informa

WikiWeb Wiki Web Wiki 2. Wiki 1 STAR WARS [3] Wiki Wiki Wiki 2 3 Wiki 5W1H 3 2.1 Wiki Web 2.2 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 2.3 Wiki 2015 Informa 情 報 処 理 学 会 インタラクション 2015 IPSJ Interaction 2015 A17 2015/3/5 Web 1 1 1 Web Web Position and Time based Summary System using Story Style for Web Contents Daichi Ariyama 1 Daichi Ando 1 Shinichi Kasahara

More information

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,

More information

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System 1. (1) ( MMI ) 2. 3. MMI Personal Computer(PC) MMI PC 1 1 2 (%) (%) 100.0 95.2 100.0 80.1 2 % 31.3% 2 PC (3 ) (2) MMI 2 ( ),,,, 49,,p531-532,2005 ( ),,,,,2005,p66-p67,2005 17 Proposal of an Algorithm of

More information

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a)

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) [email protected] b) [email protected] c) [email protected] / 2. Apple iphoto Google Picasa GPS GPS GPS [1][2]

More information

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: [email protected], {ide,murase,hirayama}@is.nagoya-u.ac.jp,

More information

21 e-learning Development of Real-time Learner Detection System for e-learning

21 e-learning Development of Real-time Learner Detection System for e-learning 21 e-learning Development of Real-time Learner Detection System for e-learning 1100349 2010 3 1 e-learning WBT (Web Based training) e-learning LMS (Learning Management System) LMS WBT e-learning e-learning

More information

Google Social Influences and Legal Issues of Google Street View Hiroshi Takada

Google Social Influences and Legal Issues of Google Street View Hiroshi Takada Social Influences and Legal Issues of Google Street View Hiroshi Takada Sanno University Bulletin Vol. No. September Social Influences and Legal Issues of Google Street View Hiroshi Takada In this paper,

More information

2. 2.1 Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou

2. 2.1 Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou 情 報 処 理 学 会 インタラクション 2013 IPSJ Interaction 2013 2013-Interaction (3EXB-06) 2013/3/2 ourcam: 1 2 ourcam ourcam: On-Site Programming Environment for Digital Photography RYO OSHIMA 1 YASUAKI KAKEHI 2 In these

More information

(a) (b) 1 JavaScript Web Web Web CGI Web Web JavaScript Web mixi facebook SNS Web URL ID Web 1 JavaScript Web 1(a) 1(b) JavaScript & Web Web Web Webji

(a) (b) 1 JavaScript Web Web Web CGI Web Web JavaScript Web mixi facebook SNS Web URL ID Web 1 JavaScript Web 1(a) 1(b) JavaScript & Web Web Web Webji Webjig Web 1 1 1 1 Webjig / Web Web Web Web Web / Web Webjig Web DOM Web Webjig / Web Web Webjig: a visualization tool for analyzing user behaviors in dynamic web sites Mikio Kiura, 1 Masao Ohira, 1 Hidetake

More information

生研ニュースNo.132

生研ニュースNo.132 No.132 2011.10 REPORTS TOPICS Last year, the Public Relations Committee, General Affairs Section and Professor Tomoki Machida created the IIS introduction video in Japanese. As per the request from Director

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

D-Cubis [5] [6] 3D D-Cubis PasQ( ) PasQ PasQ Web HotMedia HotMedia [7] IBM Java 3D Audio 360 Web HotMedia PanoramaStudio Panorama

D-Cubis [5] [6] 3D D-Cubis PasQ( ) PasQ PasQ Web HotMedia HotMedia [7] IBM Java 3D Audio 360 Web HotMedia PanoramaStudio Panorama DEWS2006 4B-i12 719 1197 111 719 1197 111 E-mail: {ikeda,knamba,awata,kunishi,yokota}@c.oka-pu.ac.jp GPS GPS Constructing Virtual Spaces Based on Panorama Images Shun IKEDA, Koichiro NAMBA, Tomoko AWATA,

More information

Webサービス本格活用のための設計ポイント

Webサービス本格活用のための設計ポイント The Web Services are a system which links up the scattered systems on the Internet, leveraging standardized technology such as SOAP, WSDL and UDDI. It is a general thought that in the future business enterprises

More information

kut-paper-template.dvi

kut-paper-template.dvi 26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo

More information

,,.,.,,.,.,.,.,,.,..,,,, i

,,.,.,,.,.,.,.,,.,..,,,, i 22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of

More information

”Лï−wŁfl‰IŠv‚æ89“ƒ/‚qfic“NŸH

”Лï−wŁfl‰IŠv‚æ89“ƒ/‚qfic“NŸH March Servio P KURATA YASUMICHI, A Consideration on Change of Welfare Institutions for the Aged through the History of Japan JAPAN JOURNAL OF SOCIAL SERVICES, MAY, NUMBERJAPANESE SOCIETY FOR THE STUDY

More information

ÿþ

ÿþ Abstract Social bookmark service is a tool to classify information on the web with user s own criteria. Organizing website with social bookmark service is fundamentally conducted for individual s benefit.

More information

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website by the author(s) under the agreement with the IPSJ.

More information

ABSTRACT The "After War Phenomena" of the Japanese Literature after the War: Has It Really Come to an End? When we consider past theses concerning criticism and arguments about the theme of "Japanese Literature

More information

22 1,936, ,115, , , , , , ,

22 1,936, ,115, , , , , , , 21 * 2 3 1 1991 1945 200 60 1944 No. 41 2016 22 1,936,843 1945 1,115,594 1946 647,006 1947 598,507 1 60 2014 501,230 354,503 5 2009 405,571 5 1 2 2009 2014 5 37,285 1 2 1965 10 1975 66 1985 43 10 3 1990

More information

1: DTS r 1, r 2 v ρ(x) = π(r1 2 r2) 2 dr dt 1 v x (2) t=x/v DTS [2] wt% KCl %/ 2 3 5wt% NaCl 3wt% ( ) 2 45 NaCl 300Hz 4-1.3%/ [2]

1: DTS r 1, r 2 v ρ(x) = π(r1 2 r2) 2 dr dt 1 v x (2) t=x/v DTS [2] wt% KCl %/ 2 3 5wt% NaCl 3wt% ( ) 2 45 NaCl 300Hz 4-1.3%/ [2] 5 2011 12 14 Distributed temperature sensor (DTS) technology is used widespreadly among many applications, such as temperature monitoring in plant engineering. The author has developped a novel DTS, capable

More information