07_KUCICKI Janusz.indd
|
|
|
- めぐの わくや
- 7 years ago
- Views:
Transcription
1 Relation between the jews and the christian according to Paul s teaching in Rom11 sociological and theological meaning of the Rom 11, 1 36 Janusz KUCICKI 11, , , , 8 11, , , , , , 1 36
2 92 1, 16 3, 20 5, 1 8, 39 9, , 13, 14 14, 1 15, 13 1, 8 15; 15, , 1 3, 20 3, 21 4, 25 5, 1 8, 39 9, 1 11, , 1 11, Witherington B. Witherington III, Paul s Letter to the Romans. A Socio-Rhetorical Commentary, Grand rapids/cambridge 2004, p E. W. Deibler, A Semantic and Structural Analysis of Romans, Dallas 1998, p C. K. Barrett, The Epistle to the Romans, London 1962, pp
3 Janusz KUCICKI 93 1, 1 7 1, 8 15, 33 16, , 8 11, 36 12, 1 15, , , , , , , , , ; 2, , , , , 7 15, , , 1 15, 33 4 T. R. Schreiner, Romans, ECNT, Grand Rapids 1998, pp , 8 11, 36 1, 8 11, L. Morris, The Epistle to the Romans, Grand Rapids/Cambridge 1988, pp Concerning thematic structure of Rom 12, 1 15, 33, confirm: E. W. Deibler, A Semantic and Structural Analysis of Romans, pp
4 94 A B C B 1 A 1 C A 1, 8 15 A A 1 15, B 1, 16 3, 20 1, , 1 3, 20 7 B 9, 1 11, 36 B C 3, 21 8, 39 3, , , 1 8, , 1 5 9, , 30 10, 21 11, , , 8 15 E. W. Deibler, A Semantic and Structural Analysis of Romans, p , E. W. Deibler, A Semantic and Structural Analysis of Romans, pp , 18 32, E. W. Deibler, A Semantic and Structural Analysis of Romans, pp , 1 3, 20 E. W. Deibler, A Semantic and Structural Analysis of Romans, pp , 21 8, 39 E. W. Deibler, A Semantic and Structural Analysis of Romans, pp
5 Janusz KUCICKI 95 11, , , , , , , , , , , , E. W. Deibler, A Semantic and Structural Analysis of Romans, p. 205; C. H. Dodd, The Epistles of Paul to the Romans, London 1944, p , 1 5 K. Barth, The Epistle to the Romans, London/Oxford/New York 1968, pp ἐκπέπτω J. D. G. Dunn, Romans 9 16, WBC, Neshville 1988, p B, Byrne, Romans, SP, Collegeville 1996, p R. H. Mounce, An Exegetical and Theological Exposition of Holy Scripture. Romans, Nashville 1995, pp ,
6 96 9, , , , 2 10, 3 18, 5 2, , , 6 10, 10 10, 12 10, , , ABA 1 A 11, 1 10 B 11, A 1 11, A 11, , 1 11, 1 11, 5 19, , 5 11, B, Byrne, Romans, p B. Witherington III, Paul s Letter to the Romans, p E. W. Deibler, A Semantic and Structural Analysis of Romans, pp ; A. J. Hultgren, Paul s Letter to the Romans, Grand Rapids/Cambridge 2011, pp ; D. J. Moo, The Epistles to the Romans, Grand Rapids/Cambridge 1996, pp
7 Janusz KUCICKI 97 7 A 1 Rom 11, , , , B 11, B 11, , , , B 11, , , v. 1 10, μὴ γένοιτο προγινώσκω - 20 R. H. Mounce, An Exegetical and Theological Exposition of Holy Scripture. Romans, p L. Morris, The Epistle to the Romans, pp , 11 3, ; 6, 2.15; 7, B. Byrne, Romans, p. 333.
8 v. 3 v. 4 v v v. 7 ἡ ἐκλογὴ - ἡ ἐκλογὴ 7 vv vv. 1 4 vv , D. J. Moo, The Epistle to the Romans, Grand Rapids/Cambridge 1996, pp , A. J. Hultgren, Paul s Letter to the Romans, Grand Rapids/ Cambridge 2011, pp T. R. Schreiner, Romans, BECNT, Grand Rapids 1998, pp E. W. Deibler, A Semantic and Structural Analysis of Romans, Dallas 1998, p J. D. G. Dunn, Romans 9 16, pp
9 Janusz KUCICKI 99 11, μὴ ἔπταισαν ἵνα πέσωσιν - ἔπταισαν - πέσωσιν - 29 ἵνα 11, 11 11, , 1 πλήρωμα πλήρωμα- 11, 1 10 πλήρωμα 31 πλήρωμα 13 v. 14 v πέσωσιν L. Moris, The Epistle to the Romans, Grand Rapids/ Cambridge 1988, pp A. J. Hultgren, Paul s Letter to the Romans, pp D. J. Moo, The Epistle to the Romans, p B. Byrne, Romans, pp ἡ ἀποβολὴ αὐτῶν - 11, 1 ἡ πρόσλημψις -
10 100 11, ἡ ἀπαρχὴ - ἡ ῥίζα v. 18 vv vv v. 24 v , , , , A. J. Hultgren, Paul s Letter to the Romans, Grand Rapids/Cambridge 2011, pp W. Sanday, The Epistles to the Romans, New York 1902, p παῤ B. M. Metzger, A Textual Commentary on the Greek New Testament, Stuttgart 2002, p μυστήριον - 37 τὸ πλήρωμα τῶν ἐθνῶν 38 27, 9; 59, 20 21
11 Janusz KUCICKI , 28 11, 29 11, , 18 32; 3, Rom 11, , 16 11, 33 11, βάθος - 40, , , BYZ νῦν ἐλεηθῶσιν B. M. Metzger, A Textual Commentary on the Greek New Testament, Stuttgart 2002, p , 16 11, v , 3a LXX 1 2, LXX 41, 3a
12 102 11, , 16 11, , 18 3, , 21 8, AD AD 69 AD 122 AD : 2 Divus Claudius 25 Chrestus BC 139 AD 19 Chrestus 45 12, 1 3, 20 1, 18 36
13 Janusz KUCICKI 103 Rom 11, , 2 11, 1 11, 2 11, , , , 4 9, 5 11, 32 v. 32 3, 22 Rom 1, 16 11, 36 3, 21 4, 25 3, 28
14 104
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
Κριτική ανάγνωση της επικούρειας Φιλοσοφίας νος, ή ως ένα παράδειγμα προς μίμηση και γιατί; Και τέλος, η επιστήμη φιλοσοφία διδάσκεται ή ασκείται; Δηλ
Φιλοσοφεῖν: ἐπιστήμη, εὔνοια, παρρησία Κριτική ανάγνωση της επικούρειας φιλοσοφίας: Ποια η διαχρονικότητα ή το δίδαγμά της σήμερα; Γιώργος Σκουλάς, Αν. Καθηγητής Πανεπιστημίου Μακεδονίας Ιωάννα-Παρασκευή
untitled
56 1 2010 67 76 : 21 6 9 : 22 2 1 18 1 ΔΕΛΤΟΣ Deltos, Φίλοι Μουσείου Ελληνικής Ιατρικής 18 19 1. 近代におけるギリシャ文化の再興と古代医学の継承 5 1453 400 τουρκοκρατία 2 18 68 56 1 2010 18 Νεοελληνικός Διαφωτισμός Νεοελληνική
|GO|Gd|Gh|Gg|tf|Gw |Gx|Gr|tc|Gs|Gh|Gw
ThinkCentre Οδηγ ς χρήσης Σηµείωση Πριν χρησιµοποιήσετε τις πληροϕορίες αυτές και το προϊ ν στο οποίο αναϕέρονται, βεβαιωθείτε τι έχετε διαβάσει τον Οδηγ ασϕάλειας και εγγ ησης που συνοδε ει αυτ το προϊ
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
p050_061 西洋古典学研究LXIII_5.indd
50 ἑταίρα 51 οἱ δὲ λέγουσιν μύθους ἡμ ν, οἱ δ Αἰσώπου τι γέλοιον. οἱ δὲ σκώπτουσ, ἵν ἐγὼ γελάσω καὶ τὸν θυμὸν καταθ μαι οὐκ ἀκήκοας λεγόντων, εἰπέ μοι, Νικήρατε, τ ν τραγωιδ ν ὡς γενόμενος χρυσὸς ὁ Ζεὺς
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
第3章
5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 = ( = grad
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =
72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................
振動工学に基礎
Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +
1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±
7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
予稿集(1)の表紙
京都大学人文科学研究所共同研究プロジェクト: 情報処理技術は漢字文献からどのような情報を 抽出できるか 人文情報学の基礎を築く 文字と非文字のアーカイブズ モデルを使った文献研究 文字資料アーカイブズの現在 特に検索可能性を中心に 岡本 真 動画のテキスト処理 安岡孝一 写真の検索可能性について考える 守岡知彦 ネットワーク分析からみた共観福音書間の比較研究 三宅真紀 異なる文献間の数理的な比較研究をふり返る
Men and Women in Early Christianity Early Christian Centuries Conference 2013 The Relation between male and
1 15 45 2 2-3 16 150 215 185 254 310 398 1 Men and Women in Early Christianity Early Christian Centuries Conference 2013 The Relation between male and female in Alexandrian Exegetical Tradition 2 Albert
四変数基本対称式の解放
The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann
nsg04-28/ky208684356100043077
δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!
『共形場理論』
T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B
9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A
N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)
23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3
1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
第86回日本感染症学会総会学術集会後抄録(I)
κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β
4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ
Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +
@08460207ヨコ/立花 220号
παιδεραστεία παιε ραστεύωε ράω ιλέωιλία ε ράω by ιλέω ιλητόν ιλητόν τελεὶα ιλία μέσον α κρότη θεωρειν definition John M. Cooper morally good (in some respect, in some degree) character friendship Cooper
第5章 偏微分方程式の境界値問題
October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ
(Maldacena) ads/cft
SGC - 90 100 1998 (Maldacena) ads/cft 100 2011 4 1 2012 3 1) μ, ν 2) i i, j, k 3) a h a,,h 1.6 4) μ μ = / x μ 5) μ 6) g μν (, +, +, +, ) g μν 7) Γ α μν Γμν α = 1 2 gαβ ( μ g βν + ν g βμ β g μν ) 8) R μναβ
液晶の物理1:連続体理論(弾性,粘性)
The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers
untitled
( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
