$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA
|
|
|
- いとは おおばま
- 6 years ago
- Views:
Transcription
1 $\bullet$ A Distributed Sorting Algorithm on a Line Network Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASAKI NTT $=$ $\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{c}\mathrm{o}$ atsushi@cslabkecl jp $\text{ }\mathrm{k}\mathrm{s}$ 1 Zaks [1] Zaks[l] - \check / Hofstee [ 2
2 $\ovalbox{\tt\small REJECT}$ $\iota$ Hofstee $nk$ [2] $n$ $B_{i}^{I}$ $=$ $k$ $\langle v_{1}^{i} v_{2}^{i} \ldots v_{k_{i}}^{i}\rangle$ Hofstee [2] $\forall j$ $1\leq$ $k=1$ $j<k_{i}$ $v_{j}^{i}\leq v_{j+1}^{i}$ $B_{i}^{I}$ 3 $\max$ $\min$ 1 4 Hofstee [2] $B_{i}^{F}$ 5 $\forall i$ 6 1 $1\leq i<n$ $\max\{v_{j}^{i} 1\leq j\leq k_{i}\}\leq$ 2 $\min\{v_{j}^{i+1} 1\leq j\leq k_{i+1}\}$ $v_{1^{+1}}$ $v_{k}^{i}\cdot$ $\leq$ $\forall i$ 2 $ B_{i}^{F} = B_{i}^{I} $ $P_{1}$ $P_{2}$ $P_{n}$ $\leq$ $\ldots$ (1 $i$ $<$ $n)$ +++1 $t$ $B_{i}^{t}$ [3] $P_{1}$ lefl right $\forall i$ 3 $k_{i}=1$ $(P_{1})$ 31 $left=$ null $(P_{n})$ right $=null$ lefl right 1 1 $i$ $n$ [1] $[3 4]$
3 $\mathrm{f}$ 1 70 $n$ 1 $-7^{\mathrm{K}\mathrm{s}}$ DBS $n-1$ $2n-1$ [5] $2n(n-1)$ [1] $n-1$ $2n-1^{\uparrow}$ [61 4 $\forall i$ $k_{i}\geq 2$ 1 DBS $u$ $v_{1}$ $v_{2}$ Hofstee [2] DBS (distributed bubble sort) $\forall i$ $k_{i}=k$ $\forall i$ $k_{i}\geq 2$ 32 DBS $2n$ 1 2 $n$ $v_{1}=v_{2}$ $n-1$ DBS $n$ - $2(n-1)$ $2(n-1)$ $2n(n-1)$ $\frac{n^{2}}{2}$ 42 1 DBS $\frac{3}{2}n$ $v_{k_{i-1}}^{i-1}$ } $\max\{v_{j}^{i-1} 1\leq j\leq k_{i-1}\}p$min $\{v_{j}^{i} 1\leq j\leq$ $v_{1}^{i}$
4 $P_{\frac{n}{2}}$ $i^{\gamma}$ 71 2 $\max\{v_{j}^{i} 1\leq j\leq k_{i}\}k\min\{v_{j}^{i+1} 1\leq j\leq$ $k_{i+1}\}$ $v_{k}^{i}\cdot$ $v_{1}^{i+1}$ $S(1 \frac{n}{2}0)$ $P_{\frac{n}{2}}$ $P_{\frac{n}{2}+1}$ 41 $ S(1 \frac{n}{2}0) =\frac{nk}{2}$ DBS $n$ P ( ) $n$ $S(ij r)b_{i^{t}}\cup B_{i+1}^{f}\cup\cdots\cup B_{j}^{r}$ $i\leq j$ $j>n$ $S(ij r)=$ $S(1 \lceil\frac{n}{2}\rceil-10)$ $P_{\lceil\frac{n}{2}\rceil}$ $S(i n r)$ $S_{i}^{+}(r)$ $S_{i}^{-}(r)$ $e_{i\backslash }(S)$ $w_{i}$ $P_{i+1}$ $P_{i-1}$ ( ) $n$ $P_{\frac{n}{2}}$ $P_{\frac{n}{2}+1}$ $\text{ }-$ 1 $\lfloor\frac{n}{2}\rfloor k+1$ $P_{\lceil\frac{n}{2}\rceil}$ $S$ $i$ 2 $\geq$ 2 $\exists j>i$ $e_{i}(s)=e_{j}(s)$ $e_{i}(s)$ $\frac{m-d}{2}+f$ $\exists i$ $e_{j}(s)$ $i$ $w_{i}=e_{i}(s(1 n 0))$ $M(S ij)\{e_{i}(s) e_{i+1}(s) e_{j}(s)\}$ 42 \langle $m= \sum_{i=1}^{n}k_{i}$ $d= \min_{1\leq j<n}\{ \sum_{i=1}^{j}k_{i}-\sum_{i=j+1}^{n}k_{i} \}$ $f=\{$ $ \sum_{i=1}^{a}k_{i}-\sum_{i=a+1}^{n}k_{i} = \sum_{i=1}^{b}k_{i}-\sum_{i=b+1}^{n}k_{i} \square$ 1 $0$ $\forall i$ $k_{i}=k$ otherwise DBS $\forall i$ $k_{i}=k$ 1 $k$ lefl 1 $n$ $\frac{nk}{2}$ $\mathit{2}$ $n$ rig $\mathrm{l}\frac{n}{2}$ $k+1$ 1 $\exists a$ $\exists b>a$ $st$ $d=$
5 $v_{1}^{i}$ 72 3 $x\in S_{i}^{+}(r)\backslash S_{i+1}^{-}(r)$ m\ in $B_{i}^{f}\leq x$ $r=0$ $S_{i-1}^{+}(0)=S_{i}^{-}(0)=\emptyset$ $x\in S_{i}^{+}(_{\backslash }r)\backslash S_{i+1}^{-}(r)$ ( ) $x\in$ $S(1 i 0)$ $x\in S(i+1 n r)$ $x$ +++1 $P_{i+1}$ $r $ $x\underline{\backslash \prime}y$ $x= \min\{s(i+1 i+r 0)\cup+S_{i}^{+}(r-1)\}\backslash S_{i+1}^{-}(r-1)$ $P_{i+1}$ $x$ 3 $x$ $\forall y\in S_{i}^{+}(r)\backslash S_{i+1}^{-}(r)$ $x\leq y$ $n>i+r$ 1 $P_{i+1}$ $B_{i}^{t}\backslash v_{k}^{i}$ $r \leq t\leq r$ $x\geq y$ $\forall y\in$ $B_{i^{\Gamma}}\leq x$ rnin $S_{i+1}^{-}(r)\subseteq S(i+$ $x$ $P_{i+2}$ $1$ $i+r_{}0)\cup+s_{i}^{+}(r)$ $\min S_{i+1}^{-}(r)\leq x$ $\min S_{i+1}^{-}(r)=\min S(i+1 i+r 0)\cup+S_{i}^{+}(r\rangle$ le $=$ $\min S(i i r)$ $\min\{s(i i 0)\cup+S_{i-1}^{+}(r)\oplus\iota\text{\c}_{i+1\backslash }^{-/}r_{\grave{j}}\}$ $ (\cup$ $=$ $\backslash \{S_{i\backslash }^{+}(r)\cup+s_{i}^{-}(r)\}$ 4 1 $n-i$ $v_{1}^{i}= \min\{s_{(i\perp r0)\cdot(r)\}^{\backslash _{\backslash }}S_{i}^{-}(r)} \dot{7}_{j1} -\cdot!\mathrm{q}+arrow i-\underline{\rceil}f$ $S(i i 0)$ $B_{i}^{I}$ $i$ $1<i\leq n$ $r-1$ $r-1$ $P_{i+1}$ $x$ $P_{i+1}$ $\forall y\in B_{i}^{r }\backslash v_{k}^{i}$ $r \leq r$ $x$ 2 $r\geq n-i$ $1<i $\forall z\in S_{i+r}^{+}(r)\backslash S_{i+r+1}^{-}(r)$ $x\leq z$ $x\leq \mathrm{x}\mathrm{l}\mathrm{i}\mathrm{n}\{s(i+1 i+r 0)\cup+S_{i}^{+}(r)\}\backslash S_{i+1}^{-}(r)$ $=$ $\min\{s(i i 0)\cup+S_{i-1}^{+} (r)$ $\cup+s(i+1 i+r0)\}\backslash S_{i}^{-} (r)$ $=$ $\min$ { $S(i$ $i+r$ $0)$ $S_{i-1}^{+}(r)$ } $\backslash S_{i}^{-}(r)$ 3 4 \underline{<}\lfloor\frac{n}{2}\rfloor$ -1 \acute -\sim Pi-l ( ) $r\geq n-i$ $S(- i i+r 0)=$ $w_{k(i-1)}$ $S(i n 0)$ $x\in M(S(i n 0) 1 k(i-1))$ Pi-l $\{S(i i+r 0)\cup+S_{\dot{\mathrm{t}}-1}^{+}(r)\}\backslash S_{i}^{-}(r)=S(i n r)$ $n-2(i-1)$ $k(i-1)$ $\max_{\mathrm{r}}\{ S_{i}^{-}(r)\backslash S_{i-1}^{+}(r) \}$ $ S(1 i-10) $ $r<n-i$ $r<n-i$ $P_{n}$ $k(i-1)$ $P_{n-i+2}$ $P_{n-i+3}$ $\ldots$
6 $\not\in$ $S(i 73 $\forall x\in M(S(i n 0) 1 k(i-1))$ -1 $n-2(i-1)+k(i-1)=n+(k-2)(i-1)$ $n+(k-2)(i-1)$ $n-2i+1$ $M(S(i n 0) 1 k(i-1))$ $n-2(i-\rceil\perp)-1$ $x\in M(S(i n 0) 1 k(i-1))$ $n+(k-2)(i-$ $n+(k-2)(i-$ 61 $<$ $i$ $\leq$ $1 \frac{n}{2}$ $w_{k(i-1)+1}$ $B_{i}^{n+(k-2)(i-1\rangle-1}$ $n+i(k-2)$ ( ) $n_{s}= \{w_{h} h\leq k(i-1) w_{h}\in S(i n 0)\} $ $n_{s}<k(i-1)$ $M(S(i n 0) k(i-1)+1 ki)$ $x\in M(S(i n 0) 1 n_{s})$ -1 $P_{i-1}$ $=$ $n-(i-1)-\mathrm{r}^{\underline{n}_{\overline{k}^{\iota}}}\rceil$ $M(S(i n 0) 1 k(i-1))$ $r=n-(i-1)-\lceil_{k}^{\underline{n}_{\mathrm{a}}}\rceil\geq i-1$ $n-$ 4 $2(i-1)$ $P_{i-1}$ $S(1 i-1 r )$ $r \geq i-1$ $n-2(i-1)-1$ $e_{k(i-1\rangle+1}(s(i n 0))$ $r=n-(i-1)-$ $1)-1$ $\lceil_{k}^{\underline{n}_{\mathrm{a}}}\rceil<i-1$ $1)$ $e_{k(i-1)+1}(s(i?\mathrm{t} 0))$ $S(1 i-10)$ $n+(k-2)(i-1)$ $k(i-1)-n_{s}$ $i-1$ $S(1 i-2 r)$ $e_{k(i-1)+1}(s(i n 0))$ $P_{i-1}$ $P_{i-1}$ $e_{k(i-1)+1}(s(i n 0))$ $n+(k-$ $(k-1)(i-1)-n_{s}$ $2)(i-1)-1$ $\{n-(i-1)-\lceil\frac{n}{k}\mathrm{l}\rceil\}+\{(k-1)(i-1)-n_{s}\}=$ $k-1$ $\forall x\in$ $n+(k-2)(i-1)-n_{s}-\mathrm{r}_{\frac{n}{k}\mathrm{t}}\rceil$ $\forall w_{j}j\leq k(i-1)$ $M(S(i n 0) k(i-1)+1 ki)$ $P_{i-1}$ $n+(k-2)(i-$ $w_{j}j\leq k(i-1)$ $1)-n_{s}- \lceil\frac{n}{k}\mathrm{l}\rceil<n+(k-2)(i-1)-1$ $w_{j}\in S(i n 0)$ $P_{i-1}$ 5 $w_{k(i-1)}$ $i$ 51 $<$ $\leq$ $\mathrm{l}\frac{n}{2}$ $\forall w_{j}j$ $\leq$ 1 $\in$ $k(i-1)$ $w_{j}$ $S(i n 0)$ $\in$ $k\geq 2$ $w_{k_{\mathrm{e}}(i-1)+1}$ $B_{i}^{n+(k-2)(i-1)-1}$ $n+i(k-2)$ $DBS$ $w_{j}$ n 0)$ % 1 $\frac{nk}{2}$ 1 $n$ $\leq$ $j$ $\leq$ $k(i-1)$ 2 $n$ $\lfloor\frac{\rho_{\vee}}{2}\rfloor k+1$ $P_{i-1}$ $P_{l}$ $w_{k(i-1)}$ ( ) $P_{1}$ $P_{n}$ $r\iota-\perp!$ $P_{i-1}$ $w_{k(i-1)}$ $k-1$ $n+k-2$ -1 6 $i=1$ 6 5 $n+i(k-2)$ $1<i \leq 1\frac{n}{2}$ $P_{1}$ $P_{\lfloor\frac{n}{2}\rfloor}$ $\in$
7 $\frac{nk}{2}$ $\sum_{\dot{\mathrm{l}}^{-}}^{n_{\overline{2}}}\underline{k_{i}}$ 74 $\max\{n+i(k-2) 1\leq i\leq\lfloor\frac{n}{2}\rfloor\}$ 2 $=$ $n+ \lfloor\frac{n}{2}\rfloor(k-2)$ n $=$ $\{$ $\lfloor\frac{n}{2}\rfloor k+1$ n $n$ $n$ $O(n)$ $i \geq \mathrm{r}\frac{n}{2}\rceil+1$ $n$ $n$ 2 $P_{1}$ $P_{\lfloor\frac{-n}{2}\rfloor}$ $P_{\lceil\frac{n}{2}\rceil+1}$ $O(1)$ P = $2(n-1)$ $\square$ 1 $m<4(n-1)$ $n$ $\lfloor\frac{n}{2}\rfloor k+1=\frac{n-1}{2}k+1$ $k\geq 2$ $\frac{n-1}{2}k+1$ 2 $\leq\frac{nk}{2}$ 2 1 $k\geq 2$ $DBS$ 5 $\frac{nk}{2}$ 51 $\forall i$ 2 $k_{i}=k$ $k_{i}\geq 2$ $DBS$ $\frac{m-d}{2}+f$ $k_{i}=1$ $k_{i}\geq 2$ $f=\{$ 1 $\exists $m= \sum_{i=1}^{n}k_{i}$ $k_{i}=1$ 3 $k_{i}=1$ $d= \min_{1\leq i<n}\{ \sum_{i=1}^{j}k_{i}-\sum_{i=j+1}^{n}k_{i} \}$ a$ $\exists b>a$ $st$ $d=$ i$ $\forall $k_{i}=k$ $ \sum_{i=1}^{a}k_{i}-\sum_{i=a+1}^{n}k_{i} = \sum_{i=1}^{b}k_{i}-$ $\sum_{i=b+1}^{n}k_{i} \square$ $k_{i}=1$ $0$ otherwise $\forall\dot{j}$ 2 $k_{i}\geq 2$ $k_{i}\geq 2$ $DBS$ $k_{i}=1$
8 75 $\forall i$ $k_{i}=k$ $k=1$ $k\geq 2$ $c<0$ 1 $B_{i}^{T} - c <k_{i}$ $k_{i}- B_{i}^{T} + c $ rig $\mathrm{m}_{2}nk+k_{--}1$ \ddagger $c>0$ $c+ B_{i}^{T} >k_{i}$ $c+ B_{i}^{T} -k_{i}$ $\exists i$ $1$ $k_{i}=$ $\exists ij$ $k_{i}\neq k_{j}$ rig $c$ le DBS $T$ $k_{i}=1$ $c>0$ $c+ B_{i}^{T} <k_{i}$ $k_{i}-c-$ $ B_{i}^{T} $ $c$ le $c>0$ $c+ B_{i}^{T} =k_{i}$ $c$ lefl $C$ $ \{v v\in C v\in B_{j}^{T} 1\leq j<i\} = \{P_{j} k_{j}=$ $ c $ right 1 1 $\leq j<$ le ht $ c $ le rig $n-1$ $ c =n-1$ le $P_{n}$ $n-1$ $\forall i$ $1\leq i<n$ $k_{i}=1$ $k_{n}\geq 2(n-1)$ $\forall x\in S(1 n-10)$ $x\in B_{n}^{T}$ $0$ $c$ lefl $c=c+1$ le $c=c-1$ $ \{P_{j} k_{j}=11\leq$ DBS $j<i\} $ $ \{v v\in C v\in B_{j}^{T} 1\leq j<i\} $ $ \{P_{j} k_{j}=1 i\leq j\leq n\} $ $ \{v v\in C$ $v\in B_{j}^{T}$ $i\leq$ $j\leq n\} $ $B_{i}^{T}$ 52 $c=0$ $ B_{i}^{T} =k_{i}$ $\forall i$ $=k$ $1$ $k=$ $k$ $>$ 2 $\mathrm{m}_{2}nk+k--1$ $ B_{i}^{T} >k_{i}$ $k_{i}=1$ $ B_{i}^{T} =2$ le send lefl $\dot{}\frac{\sum_{=1}^{n}(k;+[k=1])}{2}+n-1$ ht $c=0$ $ B_{i}^{T} =k_{i}$ $\sum_{i=1}^{n-1}i=\frac{n^{2}-n}{2}$ $(n-1) \sum_{i=1}^{n}(k_{i}+[k_{i}=1])+\frac{n^{2}-n}{2}$ $c=0$ $ B_{i}^{T} <k_{i}$ $k_{i}- B_{i}^{T} $ right $m= \sum_{i=1}^{n}k_{i}$ $c=0$ $ B_{i}^{T} =k_{i}+1=2$ $m\geq n$ right $O(m+n)=O(m)$ $O(nm+n^{2})=O(nm)$ $c<0$ $ B_{i}^{T} - c =k_{i}$ I $=1$ 3 le [1] $\text{ ^{ }}$ $\mathrm{t}_{[x]}$ $X$ 1 $0$
9 $\mathrm{l}^{-}\lrcorner[31$ Nancy $\mathrm{m}\mathrm{c}_{\backslash }\mathrm{g}\mathrm{a}_{--\eta_{-}}$ Kaufmann 76 6 [2] H Peter Hofstee Alain J Martin and Jan LA Van De Snepscheut Distributed Sorting Science of Computer $Prog^{\eta}$ amming Vol [2] (DBS 15 No 2-3 pp ) [1] Publishers 1996 [4] 1994 [5] F Thomson Leighton Introduction to Parallel Algorithms and Architectures $Arra\wedge ys$ $\frac{nk}{2}$ DBS [2] Toees Hypercubes Morgan Kaufmann Publishers 1992 $nk$ [6] 1999 $\mathrm{p}\mathrm{p}\cdot 188--$ DBS DBS A Lynch Distributed Algorithms DBS $T$ [1] DBS $\frac{1}{n}$ null left null rece left) $=$ $\mathrm{i}ve((k_{l} v_{l})$ $k_{l}$ $\iota \mathrm{j}v_{l}\wedge$ $=$ $=$ $-\infty$ $\exists i$ $k_{i}=1$ right $=null$ receive right) $((k_{r} v_{r})$ $k_{r}=0$ $v_{r}=\infty$ receive $(x P)$ $P$ $x$ uid true 1 $k_{i}+[k_{i}=1]$ $t$ ( ) $-1$ [1] Shmuel Zaks Optimal Distributed Algorithms for Sorting and Ranking IEFE $T$DBS Transactions on Computers Vol C-34 No $\infty$ 4 pp $T= \lfloor\frac{\sum_{i=1}^{n}(k_{i}+[k_{i}=1])}{2}\rfloor$ $k_{sum}$
10 $v_{\mathit{2}}$ 77 $V_{1}$ if $v_{1}$ is marked with copy then $\ldots$ $c=c-1$ $v_{k_{i}}$ if $v_{l}$ is marked with copy then $\forall j$ $1\leq j<$ $c=c+1$ $k_{iv_{j}}\leq v_{j+1}$ $v_{2}$ $k_{i}=1$ $v_{2}=v_{1}$ copy $v_{2}$ $v_{1}=v_{l}$ if $v_{k_{i}}>v_{r}$ $v_{k_{i}}=v_{r}$ $Bk_{i}=1$ sort $(B)$ $v_{1}$ $v_{2}$ send right) $((k_{l} v_{k_{i}})$ send $v_{1}$ $v_{2}$ $\ldots$ le $ft$) $((k_{r} v_{1})$ $v_{k_{i}}$ $B$ null if $t=t$ then $ B $ receive le $ft$) $((d_{l} v_{l})$ receive $c$ $0$ right) if $v_{1}<v_{l}$ then $e_{l}$ $e_{r}$ ( ) if $v_{1}$ is marked with copy then $0$ $c=c-1$ $u_{l}$ $u_{r}b$ null ( ) if $v_{l}$ 2 (for ) $t=t+1$ if $t=0$ then if $left=null$ then $e_{l}=0$ then is marked with copy then $c=c+1$ $v_{1}=v_{l}$ if $v_{k_{i}}>v_{r}$ $v_{k_{i}}=v_{r}$ then delete elements marked with copy in $B$ sort $(B)$ send( $(k_{i}+[k_{i}=1]$ $v_{k_{i}})$ right) if $t>t$ then if right $=null$ then if receive($v_{l}$ left) $=true$ then $e_{r}=0$ append $v_{l}$ to the left-end in send( $B$ $(k_{i}+[k_{i}=1]$ $v_{1})$ right) $c=c-1$ if le $fb\neq null$ and right $\neq null$ then if receive( $v_{r}$ right) $=true$ then $((\mathrm{o} v_{k})$ send right) append $v_{r}$ to the right-end in send $B$ $((0 v_{1})$ le $ft$ ) if $t\geq T$ then if $1\leq t<t$ then if $c=0$ $ B =k_{\dot{\mathrm{t}}}$ and then receive $((k_{lv_{l}})$ le $ft$) sleep receive $((k_{r} v_{r})$ right) if $c=0$ and then if $ B >\kappa_{i} $ $k_{l}>0$ then send( $u_{r}$ right) $e_{l}=k_{l}$ delete $u_{r}$ from $B$ $k_{sum}=k_{sum}+k_{l}$ if $c<0$ then $k_{l}=k_{l}+k_{i}+[k_{i}=1]$ send ( $u_{l}$ le $ft$) if $k_{r}>0$ then delete $u_{l}$ from $B$ $e_{r}=k_{r}$ $k_{s^{j}um}=k_{sum}+k_{r}$ $k_{r}=k_{r}+k_{i}+[k_{i}=1]$ $c=c+1$ if $c>0$ and $c+ B -k_{i}>0$ then send($u_{r}$ right) if $e_{l}>0$ $e_{r}>0$ and $T=\infty$ then delete $u_{r}$ from $B$ $T=\lfloor^{k}[] 34\mathrm{n}\rfloor 2$ if $v_{1}<v_{l}$ then
Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S
Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
Mathematica を活用する数学教材とその検証 (数式処理と教育)
$\bullet$ $\bullet$ 1735 2011 115-126 115 Mathematica (Shuichi Yamamoto) College of Science and Technology, Nihon University 1 21 ( ) 1 3 (1) ( ) (2 ) ( ) 10 Mathematica ( ) 21 22 2 Mathematica $?$ 10
1 P2 P P3P4 P5P8 P9P10 P11 P12
1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520
44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle
Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$
: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$
Title 九州大学所蔵 : 中国暦算書について ( 数学史の研究 ) Author(s) 鈴木, 武雄 Citation 数理解析研究所講究録 (2009), 1625: 244-253 Issue Date 2009-01 URL http://hdlhandlenet/2433/140284 Right Type Departmental Bulletin Paper Textversion
$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}
Title 狩野本 綴術算経 について ( 数学史の研究 ) Author(s) 小川 束 Citation 数理解析研究所講究録 (2004) 1392: 60-68 Issue Date 2004-09 URL http://hdlhandlenet/2433/25859 Right Type Departmental Bulletin Paper Textversion publisher Kyoto
110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2
1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :
Title 角術への三角法の応用について ( 数学史の研究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2001), 1195: 165-175 Issue Date 2001-04 URL http://hdl.handle.net/2433/64832 Right Type Departmental Bulletin Paper Textversion publisher
SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{
1114 1999 149-159 149 SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ $\mathrm{m}\mathrm{a}\mathrm{s}^{\urcorner}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{z}\mathrm{l}\mathrm{l}$
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe
1114 1999 211-220 211 * KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1 $\mathrm{n}\mathrm{p}$ (SCP) 1 $[1][5][10]$ [11] [4] Fisher Kedia $m=200$ $n=2000$ [8] Beasley Gomory f- $m=400$ $n=4000$
CRA3689A
AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF
可約概均質ベクトル空間の$b$-関数と一般Verma加群
1825 2013 35-55 35 $b$- Verma (Akihito Wachi) Faculty of Education, Hokkaido University of Education Capelli Capelli 6 1 2009 6 [4] $(1\leq i,j\leq n)$ $\det(a)= A =\sum_{\sigma}$ sgn $(\sigma)a_{\sigma(1)1}\cdots
106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (
1195 2001 105-115 105 Kinki Wasan Seminar Tatsuo Shimano, Yasukuni Shimoura, Saburo Tamura, Fumitada Hayama A 2 (1574 ( 8 7 17 8 (1622 ( 1 $(1648\text{ }$ - 77 ( 1572? (1 ( ( (1 ( (1680 1746 (6 $-$.. $\square
リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)
1768 2011 150-162 150 : Recurrence plots: Beyond visualization of time series Yoshito Hirata Institute of Industrial Science, The University of Tokyo voshito@sat. t.u\cdot tokvo.ac.ip 1 1. 1987 (Eckmann
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
web04.dvi
4 MATLAB 1 visualization MATLAB 2 Octave gnuplot Octave copyright c 2004 Tatsuya Kitamura / All rights reserved. 35 4 4.1 1 1 y =2x x 5 5 x y plot 4.1 Figure No. 1 figure window >> x=-5:5;ψ >> y=2*x;ψ
Wolfram Alpha と数学教育 (数式処理と教育)
1735 2011 107-114 107 Wolfram Alpha (Shinya Oohashi) Chiba prefectural Funabashi-Asahi Highschool 2009 Mathematica Wolfram Research Wolfram Alpha Web Wolfram Alpha 1 PC Web Web 2009 Wolfram Alpha 2 Wolfram
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45
ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash
: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =
1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij
_;-TIL._ I J --' ) /'. (t -/. a rlr. l 111!' Ir': i " b "It'_1_; -1r-_.-- I'!f' I :;(: 1 '1' 1 ' 't'l] S I) I "' :h "'t t-1-i ' J ilt'tt't 1 Jf(i - 7J_.1 _ f F FT'II 1 ' ft - JI '- ll i" ': "'1l li l!
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
PowerPoint プレゼンテーション
0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)
43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd
n 808 3.0 % 86.8 % 8.3 % n 24 4.1 % 54.0 % 37.5 % 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 0% 37.4 % 7.2 % 27.2 % 8.4 % n 648 13.6 % 18.1% 45.4 % 4.1% n 18 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90
,..,,.,,.,.,..,,.,,..,,,. 2
A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,
(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri
1441 25 187-197 187 (PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1 $\mathrm{d}\mathrm{t}\mathrm{n}$ Dirichlet Neumann Neumann Neumann (-1) ([6] [12] ) $\llcorner$ $\langle$
89 91 93 95 97 99 101 103 105 107 109 111 113 115 H 117 119 l l 121 l l 123 125 127 129 l l l l 131 kl kl kl kl 133 135 137 139 141 143 145 147 149 151 153 155 157 159
株式会社日清製粉グループ本社 第158期中間事業報告書
C O N T E N T S...1...3...5...7...9...11...12...13...14 1 2 3 4 3.7% 5.8% 8.5% 70,100kL 81.2% 0.8% 25 20 15 10 5 0 9.18 9.54 9.74 9.62 9.65 9.71 21.04 21.97 22.44 22.23 8.54 22.31 22.45 20.41 15 12 9 6
2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1
1 1 [1] 1.1 1.1. TS 9 1/3 RDA 1/4 RDA 1 1/2 1/4 50 65 3 2 1/15 RDA 2/15 RDA 1/6 RDA 1 1/6 1 1960 2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x 1 + 2 1/4 RDA 1 6 x 1 1 4 1 1/6 1 x 1 3
42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{
26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}
数理解析研究所講究録 第1955巻
1955 2015 158-167 158 Miller-Rabin IZUMI MIYAMOTO $*$ 1 Miller-Rabin base base base 2 2 $arrow$ $arrow$ $arrow$ R $SA$ $n$ [email protected] $\mathbb{z}$ : ECPP( ) AKS 159 Adleman-(Pomerance)-Rumely
