可約概均質ベクトル空間の$b$-関数と一般Verma加群

Size: px
Start display at page:

Download "可約概均質ベクトル空間の$b$-関数と一般Verma加群"

Transcription

1 $b$- Verma (Akihito Wachi) Faculty of Education, Hokkaido University of Education Capelli Capelli [4] $(1\leq i,j\leq n)$ $\det(a)= A =\sum_{\sigma}$ sgn $(\sigma)a_{\sigma(1)1}\cdots A_{\sigma(n)n}$ Capelli Capelli $\det(tt)\det(\frac{\partial}{\partial T})=\det(tT\frac{\partial}{\partial T}+[Matrix])$ (1) $T$ $\partial/\partial T$ $n$ $T=(T_{ij})_{1\leq i,j\leq n}, \frac{\partial}{\partial T}=(\frac{\partial}{\partial T_{ij}})_{1\leq i,j\leq n}$ Capelli (1) $ZU(\mathfrak{g}\mathfrak{l}_{n})$ Capelli $ \frac{\partial}{\partial T}(u_{1}) ^{t}t \frac{\partial}{\partial T}(u_{2}) ^{t}t \cdots tt \frac{\partial}{\partial T}(u_{l}) = \frac{\partial}{\partialt}(u_{1})^{t}t\frac{\partial}{\partial T}(u_{2})^{t}T\cdots tt\frac{\partial}{\partial T}(u_{l}) $ (2)

2 36 [4] $u_{i}$ $(\partial/\partial T)(u)$ $n$ $\frac{\partial}{\partial T}(u);=\frac{\partial}{\partial T}+u^{t}T^{-1}=\frac{\partial}{\partial T}+u\frac{\partial g}{\partial T}$ $=( \frac{\partial}{\partial T_{ij}}+u\frac{\partial g}{\partial T_{ij}})_{1\leqi,j\leq n}=(f^{-u}\frac{\partial}{\partial T_{ij}}f^{u})_{1\leq i,j\leq n}$ $(f=\det(tt), g=\log f)$. 1 2 $\partial g/\partial T=tT^{-1}$ $\mathbb{c}[t_{ij}, \partial/\partial T_{ij}, f^{-1}]$ (2) 2 Capelli Capelli (1) Capelli (2) [4] $b$- $\det(t)$ $\det(x^{(1)}x^{(2)}\cdots X^{(l)})$ [4] $ZU(\mathfrak{g}\mathfrak{l}_{n})$ $($ $5$ $)$ Howe-Umeda [1] ( 2 ) $\det(x^{(1)}x^{(2)}\cdots X^{(l)})$ $b$- Capelli $ \frac{\partial}{\partial T} (f^{s+1})=(s+1)(s+2)\cdots(s+n)f^{s}$ $b(s)=(s+1)(s+2)\cdots(s+n)$ $(f^{s+1})$ $f^{8+1}$ $ \frac{\partial}{\partial T}(u) (f^{s+1})= f^{-u}\frac{\partial}{\partial T}f^{u} (f^{s+1})=(f^{-u} \frac{\partial}{\partial T} f^{u})(f^{s+1})$ $=f^{-u} \frac{\partial}{\partial T} (f^{s+u+1})=(s+u+1)(s+u+2)\cdots(s+u+n)f^{s}.$ $b(s)$ $s$ 2 Capelli 3 4 $k$ $b$-

3 $\frac{\overline{\partial}}{\overline{\partial}s}(u):=\frac{\overline{\partial}}{\overline{\partial}s}+u^{t}s^{-1}=\frac{\overline{\partial}}{\overline{\partial}s}+u\frac{\overline{\partial}g}{\overline{\partial}s}$ 37 $\backslash Sato$-Sugiyama [2] [2] 5 Capelli Capelli Capelli (1) $ZU(\mathfrak{g}\mathfrak{l}_{n})$ Capelli 2 CapeIli Capelli (2) $T$ $S_{ij}(1\leq i,j\leq n)$ $S_{ij}=S_{ji}$ Capelli $\det(ts)\det(\frac{\overline{\partial}}{\overline{\partial}s})=\det(ts\frac{\overline{\partial}}{\overline{\partial}s}+(\begin{array}{llll}(n-1)/2 O (n-2)/2 \ddots O 0\end{array}))$ (3) $\overline{\partial}/\overline{\partial}s$ (Tumbull [3]) $S$ $n$ $S=(S_{ij})_{1\leq i,j\leq n}, \frac{\overline{\partial}}{\overline{\partial}s}=(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial S_{ij}})_{1\leq i,j\leq n}$ Capelli Capelli (2) Capelli Capelli 1 ( ). $f=\det(ts)$ $\mathbb{c}[s_{ij}, \frac{\partial}{\partial S_{ij}}, f^{-1}]$ $ \frac{\overline{\partial}}{\overline{\partial}s}(u_{1}) ts \frac{\overline{\partial}}{\overline{\partial}s}(u_{2})_{1} ts \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(u_{l}) $ $= \frac{\overline{\partial}}{\overline{\partial}s}(u_{1})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(u_{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u_{l}) $. (4) $(\overline{\partial}/\overline{\partial}s)(u)$ $n$ $=( \frac{\overline{\partial}}{\overline{\partial}s_{ij}}+u\frac{\overline{\partial}g}{\overline{\partial}s_{ij}})_{1\leq i,j\leq n}=(f^{-u}\frac{\overline{\partial}}{\overline{\partial}s_{ij}}$ $)$ $(f=\det(ts), g=\log f)$. $1\leq i,j\leq n$

4 $\frac{\overline{\partial}g}{\overline{\partial}s}=ts^{-1}.$ Proof. $\frac{\overline{\partial}}{\overline{\partial}s_{ij}}=\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial S_{ij}}$ $\partial $\overline{\partial}/\overline{\partial}s_{ij}$ $\partial$/ S$ $S_{ii}$ 1 $S_{ij}(i\neq j)$ $f=\det(ts)$ 1 $S_{ii}$ $S_{ij}(i\neq j)$ $i$ 1 1/2 ) $S$ 1/2 ( $\det(ts)$ $S_{ii}$ $S$ $i$ $i$ $S_{ii}$ $i$ $i$ 1 $i\neq j$ $S$ $i$ ( $j$ ) ( $i$ $i$ ) 2 $0$ $\sum_{a=1}^{n}s_{ai}\frac{\overline{\partial}f}{\overline{\partial}s_{aj}}=\delta_{ij}f$ $f$ $\sum_{a=1}^{n}s_{ai}\frac{\overline{\partial}g}{\overline{\partial}s_{aj}}=\delta_{ij}$ $\overline{\partial}g/\overline{\partial}s$ $ts$ Capelli (4) 3. $\mathcal{w}=\mathbb{c}[s_{ij}, \frac{\partial}{\partial S_{ij}}, f^{-1}]$ $(\mathcal{w}$ $\mathcal{r}$ 3 ) $\underline{u}=(u_{1}, u_{2}, \ldots, u_{l})$ $v\in \mathbb{c}$ $A^{(l)}(\underline{u}),$ $n$ $B(v)\in Mat(n;\mathcal{W})$ $A^{(l)}( \underline{u})=\frac{\overline{\partial}}{\overline{\partial}s}(u_{1})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(u_{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u_{l}), B(v)=tS\frac{\overline{\partial}}{\overline{\partial}S}(v)$

5 $S_{bs} \frac{\overline{\partial}}{\overline{\partial}s_{bt}}]$ $\mathbb{c}$ $\underline{u}$ 39 $A^{(l)}(\underline{u})$ Capelli (4) $B(v)=B+v1_{n}$ $1_{n}$ ( $n$ $0$ ) $B(0)=B$ $\mathbb{c}^{n}$ $\wedge(\mathbb{c}^{n})$ $\mathcal{w}$ $\mathcal{r}=\wedge(\mathbb{c}^{n})\otimes_{\mathbb{c}}\mathcal{w}$ $\eta j(\underline{u}),$ $\zeta_{j}(\underline{u}, v)\in \mathcal{r}$ $\eta_{j}(\underline{u})=\sum_{i=1}^{n}e_{i}a_{ij}^{(l)}(\underline{u})$, $\zeta_{k}(\underline{u}, v)=\sum_{i=1}^{n}e_{i}a_{ik}^{(l+1)}(\underline{u}, v)=\sum_{j=1}^{n}\eta_{j}(\underline{u})b_{jk}(v)$ $e_{1},$ $e_{2},$ $\ldots,$ $e_{n}$ $\mathbb{c}^{n}$ $(\underline{u}, v)$ $\underline{u}$ $v$ $l+1$ $\eta j(\underline{u}),$ $\zeta_{k}(\underline{u}, v)$ 7 ). $A^{(l)}(\underline{u})$ 4( Proof. $u,$ $v\in \mathbb{c}$ $\frac{\overline{\partial}}{\overline{\partial}s}(u)^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(v)=(\frac{\overline{\partial}}{\overline{\partial}s}+u^{t}s^{-1})ts(\frac{\overline{\partial}}{\overline{\partial}s}+v^{t}s^{-1})$ $= \frac{\overline{\partial}}{\overline{\partial}s}ts\frac{\overline{\partial}}{\overline{\partial}s}+(u+v)\frac{\overline{\partial}}{\overline{\partial}s}+uv^{t}s^{-1}$ 5. $[x, y]=xy-yx$ $[B_{ij}, B_{st}]= \frac{1}{2}(\delta_{js}b_{it}-\delta_{ti}b_{sj})$. $A^{(l)}(\underline{u})$ $\underline{u}$ Proof. (LHS) $= \sum_{a,b=1}^{n}[s_{ai}\frac{\overline{\partial}}{\overline{\partial}s_{aj}},$ $= \sum_{a,b}s_{ai}\cdot\frac{\delta_{ab}\delta_{js}+\delta_{as}\delta_{jb}}{2}\cdot\frac{\overline{\partial}}{\overline{\partial}s_{bt}}+\sum_{a,b}s_{bs}\cdot\frac{-\delta_{ab}\delta_{it}-\delta_{at}\delta_{ib}}{2}\cdot\frac{\overline{\partial}}{\overline{\partial}s_{aj}}$ $= \frac{1}{2}(\sum_{a}s_{ai}\frac{\overline{\partial}}{\overline{\partial}s_{at}}\delta_{js}+s_{si}\frac{\overline{\partial}}{\overline{\partial}s_{jt}}-\sum_{a}s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{aj}}\delta_{it}-s_{is}\frac{\overline{\partial}}{\overline{\partial}s_{tj}})$ $= \frac{1}{2}(\delta_{js}b_{it}-\delta_{it}b_{sj})$ $=$ (RHS).

6 (3) 40 6( Capelli ). (1) $[A_{ij}^{(l)}( \underline{u}), B_{8}t(v)]=\frac{1}{2}(\delta_{j_{s}}A_{it}^{(l)}(\underline{u})+\delta_{i\epsilon}A_{tj}^{(l)}(\underline{u}))$ (2) $A^{(l)}(\underline{u})$ (3) $A^{(l)}(\underline{u})$ $l$ Proof. (1), (2), (3) $((1),$ (2) $,$ ) $B$ $v=0$ $l=1$ (2) (3) (1) $t(v)=b_{st}+v1_{n}$ $A^{(1)}(u_{1})= \frac{\overline{\partial}}{\overline{\partial}s}(u_{1})=f^{-u_{1}}\frac{\overline{\partial}}{\overline{\partial}s}f^{u_{1}}$ $l=1$ (1) $\underline{u}=(u)$ ((1) LHS) $=[ \frac{\overline{\partial}}{\overline{\partial}s_{ij}}(u),$ $\sum_{a}s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{at}}]$ $= \sum_{a}\frac{1}{2}(\delta_{ia}\delta_{js}+\delta_{is}\delta_{ja})\frac{\overline{\partial}}{\overline{\partial}s_{at}}+\sum_{a}[u\frac{\overline{\partial}g}{\overline{\partial}s_{ij}}, S_{as}\frac{\overline{\partial}}{\overline{\partial}S_{at}}]$ $= \frac{1}{2}(\delta_{js}\frac{\overline{\partial}}{\overline{\partial}s_{it}}+\delta_{is}\frac{\overline{\partial}}{\overline{\partial}s_{jt}})-\sum_{a}(s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{ij}}\frac{\overline{\partial}}{\overline{\partial}s_{at}})(ug)$ (5) $(ug)$ $ug$ $\sum_{a}(s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{ij}}\frac{\overline{\partial}}{\overline{\partial}s_{at}})(ug)=\sum_{a}((\frac{\overline{\partial}}{\overline{\partial}s_{ij}}s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{at}})(ug)-\frac{1}{2}(\delta_{ai}\delta_{sj}+\delta_{aj}\delta_{si})\frac{\overline{\partial}}{\overline{\partial}s_{at}}(ug))$ $= \frac{\overline{\partial}}{\overline{\partial}s_{ij}}(\sum_{a}s_{as}u\frac{\overline{\partial}g}{\overline{\partial}s_{at}})-\frac{1}{2}(\delta_{sj}u\frac{\overline{\partial}g}{\overline{\partial}s_{it}}+\delta_{si}u\frac{\overline{\partial}g}{\overline{\partial}s_{jt}})$ $u\delta_{st}$ (5) $\frac{1}{2}(\delta_{js}\frac{\overline{\partial}}{\overline{\partial}s_{it}}(u)+\delta_{is}\frac{\overline{\partial}}{\overline{\partial}s_{jt}}(u))=$ ( (1) RHS) $l=1$ (1)

7 41 $l$ (1), (2), (3) $l+1$ (1), (2), (3) (1) $[A_{ij}^{(\iota+1)}(\underline{u}, v), B_{st}]$ $= \sum_{a}[a_{ia}^{(l)}(\underline{u})b_{aj}(v), B_{st}]$ $= \sum_{a}\frac{1}{2}(\delta_{as}a_{it}^{(l)}(\underline{u})+\delta_{is}a_{ta}^{(l)}(\underline{u}))b_{aj}(v)+\sum_{a}a_{ia}^{(l)}(\underline{u})\cdot\frac{1}{2}(\delta_{js}b_{at}-\delta_{ta}b_{sj})$. 1 (1) 2 5 $= \frac{1}{2}(a_{it}^{(l)}(\underline{u})b_{sj}(v)+\delta_{is}a_{tj}^{(\iota+1)}(\underline{u}, v)+\delta_{js}a_{it}^{(\iota+1)}(\underline{u}, 0)-A_{it}^{(l)}(\underline{u})B_{sj})$ $= \frac{1}{2}(a_{it}^{(l)}(\underline{u})\cdot v\delta_{sj}+\delta_{is}a_{tj}^{(l+1)}(\underline{u}, v)+\delta_{js}a_{it}^{(l+1)}(\underline{u}, 0))$ $= \frac{1}{2}(\delta_{js}a_{it}^{(l+1)}(\underline{u}, v)+\delta_{is}a_{tj}^{(l+1)}(\underline{u}, v))$ (1) $l+1$ (2) $A_{ij}^{(l+1)}( \underline{u}, v)=\sum_{a=1}^{n}a_{ia}^{(l)}(\underline{u})b_{aj}(v)$ $= \sum_{a}(b_{aj}(v)a_{ia}^{(l)}(\underline{u})+\frac{1}{2}\delta_{aa}a_{ij}^{(l)}(\underline{u})+\frac{1}{2}\delta_{ia}a_{ja}^{(l)}(\underline{u}))$. (1) (2) 2 $= \sum_{a}b_{aj}(v)a_{ia}^{(l)}(\underline{u})+\frac{1}{2}(n+1)a_{ij}^{(l)}(\underline{u})$ (6) $B_{aj}(v)= \sum_{b=1}^{n}s_{ba}\frac{\overline{\partial}}{\overline{\partial}s_{bj}}(v)$ $= \sum_{b}(\frac{\overline{\partial}}{\overline{\partial}s_{bj}}(v)s_{ba}-\frac{1}{2}\delta_{aj}-\frac{1}{2}\delta_{bj}\delta_{ab})$ $= \sum_{b}\frac{\overline{\partial}}{\overline{\partial}s_{bj}}(v)s_{ba}-\frac{1}{2}(n+1)\delta_{a}$

8 42 (6) ( (6) ) $= \sum_{a}(\sum_{b}\frac{\overline{\partial}}{\overline{\partial}s_{bj}}(v)s_{ba}-\frac{n+1}{2}\delta_{aj})a_{ia}^{(l)}($ $)+ \frac{n+1}{2}a_{ij}^{(\iota)}(\underline{u})$ $= \sum_{a,b}\frac{\overline{\partial}}{\overline{\partial}s_{jb}}(v)s_{ab}a_{ai}^{(l)}(\underline{u})$. (2) $=A_{ji}^{(l+1)}(v,\underline{u})=A_{ji}^{(\iota+1)}(\underline{u}, v)$ (2) ( 4) $l+1$ (3) $A^{(\iota)}(\underline{u})$ $[A_{ij}^{(\iota+1)}(\underline{u}, v), A_{st}^{(l+1)}(\underline{u}, v)]$ $= \sum_{a,b=1}^{n}[a_{ia}^{(l)}(\underline{u})b_{aj(v),a_{sb}^{(l)}(\underline{u})b_{bt}(v)]}$ $\alpha\not\in$ (3) $\sum_{a,b}(a_{ia}^{(l)}(\underline{u})[b_{aj}(v), A_{sb}^{(l)}(\underline{u})]B_{bt}(v)$ $+A_{sb}^{(l)}(\underline{u})[A_{ia}^{(l)}(\underline{u}),$ $B_{bt}(v)]B_{aj}(v)+A_{sb}^{(l)}(\underline{u})A_{ia}^{(l)}$ $($ $)$ $[B_{aj}(v),$ $B_{bt}(v)])$ $= \frac{1}{2}\sum_{a,b}(-a_{ia}^{(l)}(\underline{u})(\delta_{ba}a_{sj}^{(l)}(\underline{u})+\delta_{sa}a_{jb}^{(l)}(\underline{u}))b_{bt}(v)$ $+A_{sb}^{(l)}(\underline{u})(\delta_{ab}A_{it}^{(l)}(\underline{u})+\delta_{ib}A_{ta}^{(l)}(\underline{u}))B_{aj(v)}+A_{sb}^{(l)}(\underline{u})A_{ia}^{(l)}(\underline{u})(\delta_{jb}B_{at}(v)-\delta_{ta}B_{bj(v)))}.$ (3) $= \frac{1}{2}()(\underline{u}, v)+a_{it}^{(l)}(\underline{u})a_{sj}^{(l+1)}(\underline{u}, v)$ $+A_{si}^{(l)}(\underline{u})A_{tj}^{(l+1)}(\underline{u}, v)+a_{sj}^{(l)}(\underline{u})a_{it}^{(l+1)}(\underline{u}, v)-a_{it}^{(l)}(\underline{u})a_{sj}^{(l+1)}(\underline{u}, v))$ $=0.$ 2 4 ( ) (2) $l+1$ (3) 7( $\eta$ $\zeta$ ). $\eta_{j}(\underline{u})\zeta_{k}(\underline{u}, v)=-\zeta_{k}(\underline{u}, v-\frac{1}{2})\eta_{j}(\underline{u})$

9 43 Proof. (LHS) $= \sum_{i=1}^{n}e_{i}a_{ij}^{(l)}(\underline{u})\sum_{a,b=1}^{n}e_{a}a_{ab}^{(l)}(\underline{u})b_{bk}(v)$ $= \sum_{i,a,b}e_{i}e_{a}a_{ab}^{(l)}(\underline{u})(b_{bk}(v)a_{ij}^{(l)}(\underline{u})+\frac{\delta_{jb}}{2}a_{ik}^{(l)}(\underline{u})+\frac{\delta_{ib}}{2}a_{kj}^{(l)}(\underline{u}))$ $=- \zeta_{k}(\underline{u}, v)\eta_{j}(\underline{u})+\frac{1}{2}(\sum_{i,a}e_{i}e_{a}a_{aj}^{(l)}(\underline{u})a_{ik}^{(l)}(\underline{u})+\sum_{i,a}e_{i}e_{a}a_{ai}^{(l)}(\underline{u})a_{kj}^{(l)}(\underline{u}))$ $( 2 e_{i}e_{a} i, a A_{ai}^{(l)}(\underline{u})A_{kj}^{(l)}(\underline{u})$ $i,$ $a$ 0 ) $=- \zeta_{k}(\underline{u}, v)\eta_{j}(\underline{u})+\frac{1}{2}\eta_{k}(\underline{u})\eta_{j}(\underline{u})$ $=- \zeta_{k}(\underline{u}, v-\frac{1}{2})\eta_{j}(\underline{u})$ $=$ (RHS). 8. $ A^{(l+1)}( \underline{u}, v) = A^{(l)}(\underline{u}) ts \frac{\overline{\partial}}{\overline{\partial}s}(v).$ Proof. $\zeta_{1}(\underline{u}, v)\cdots\zeta_{n}(\underline{u}, v)=(\sum_{i=1}^{n}e_{i}a_{i1}^{(\iota+1)}(\underline{u}, v))\cdots(\sum_{i=1}^{n}e_{i}a_{in}^{(l+1)}(\underline{u}, v))$ $=e_{1}\cdots e_{n}\det(a^{(l+1)}(\underline{u}, v))$ $\zeta_{1}(\underline{u}, v)\cdots\zeta_{n}(\underline{u}, v)=\zeta_{1}(\underline{u}, v)\cdots\zeta_{n-1}(\underline{u}, v)\sum_{j_{n}=1}^{n}\eta_{j_{n}}(\underline{u})b_{j_{n},n}(v)$ $g=7(-1)^{n-1}\sum\eta_{j_{n}}(\underline{u})\cdot\zeta_{1}(\underline{u}, v+\frac{1}{2})\cdots\zeta_{n-1}(\underline{u}, v+\frac{1}{2})\cdot B_{j_{n},n}(v)$ $j_{n}$

10 44 $=(-1)^{n(n-1)} \sum_{j_{1},\ldots,j_{n}}\eta_{j_{1}}(\underline{u})\eta_{j_{2}}(\underline{u})\cdots\eta_{j_{n}}(\underline{u})$ $\cross B_{j_{1},1}(v+\frac{n-1}{2})B_{j_{2},2}(v+\frac{n-2}{2})\cdots B_{j_{n},n}(v+\frac{n-n}{2})$ $=e_{1}\cdots e_{n}\det(a^{(l)}(\underline{u}))\det(b+(\begin{array}{llll}v+(n-1)/2 v+(n-2)/2 \ddots v\end{array}))$ Capelli (3) $f^{-v}$ $v$ $=e_{1} \cdots e_{n}\det(a^{(l)}(\underline{u}))\det(ts)\det(\frac{\overline{\partial}}{\overline{\partial}s}(v))$ 8 $ \frac{\overline{\partial}}{\overline{\partial}s}(u_{1}) ts \frac{\overline{\partial}}{\overline{\partial}s}(u_{2}) ts \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(u_{l}) $ $= \frac{\overline{\partial}}{\overline{\partial}s}(u_{1})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(u_{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u_{l}) $ Capelli (4) 3 $\det((x^{(1)}x^{(2)}\cdots X^{(l)})t(X^{(1)}X^{(2)}\cdots X^{(l)}))$ $b$ Capelli (4) 2 b- 1 - Sato-Sugiyama [2] $b$ $\mathbb{c}$ $m_{1},$ $m_{2},$ $\ldots$, $(G, V)$ $G=GL(m_{0})\cross GL(m_{1})\cross\cdots\cross GL(m_{l-1})\cross SO(m_{l})$, $V=$ Mat $(m_{0}, m_{1})\oplus$ Mat $(m_{1}, m_{2})\oplus\cdots\oplus$ Mat $(m_{l-1}, m\iota)$, $(g_{0}, \ldots, g_{l}).(x^{(1)}, \ldots, X^{(l)})=(g_{0}X^{(1)}g_{1}^{-1}, \ldots, g_{l-1}x^{(l)}g_{l}^{-1})$. $i$ $m_{0}\leq m_{i}$ $f=\det((x^{(1)}x^{(2)}\cdots X^{(l)})t(X^{(1)}X^{(2)}\cdots X^{(l)}))$ $(G, V)$ $f$ b. $b_{f}(s)$ $f$ $f(\partial)$ $f(\partial)(f^{s+1})=b_{f}(s)f^{s}$

11 45 ( monic $b_{f}(s)$ ) $b_{f}(s)= \prod_{r=1}^{\iota}(s+m_{r}/2)^{((m_{0}))}\prod_{r=0}^{l-1}(s+(m_{r}+1)/2)^{((m_{0}))},$ $a^{((k))}=a(a-1/2)\cdots(a-(k-1)/2)$ Sato-Sugiyama [2, Proposition 4. 1] Capelli (4) $b$- 3.1 $m_{0},$ $m_{1},$ $\ldots$, $X^{(i)}$ $m_{l}$ $i$ $m_{i-1}\cross m_{i}$ $x^{(i,j)}=x^{(i)x(i+1)\ldots X^{(j)}}$ $m_{0}$ $S$ $m_{i}\geq m_{0}$ $(1\leq i\leq l)$ $i\leq i$ $S:=X^{(1)}X^{(2)}\cdots X^{(l)}t(X^{(1)}X^{(2)}\cdots X^{(l)})=X^{(1,l)}tX^{(1,l)}$ $\frac{\partial}{\partial X(r)}=(\frac{\partial}{\partial X_{ij}^{(r)}})_{1\leqi\leq m_{r-1},1\leq j\leq m_{r}} (1\leq r\leq l)$ $\frac{\overline{\partial}}{\overline{\partial}s}=(\frac{\overline{\partial}}{\overline{\partial}s_{ij}})_{1\leq i,j\leq m_{0}}=(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial S_{ij}})_{1\leq i,j\leq m_{0}}$ $f=\det(ts)$, $g=$ log det $(ts)$ $\frac{\overline{\partial}}{\partial}s^{=ts^{-1}}a$ 2 $\frac{\overline{\partial}}{\overline{\partial}s}(u)=\frac{\overline{\partial}}{\overline{\partial}s}+u^{t}s^{-1}=\frac{\overline{\partial}}{\overline{\partial}s}+u\frac{\overline{\partial}g}{\overline{\partial}s}=f^{-u}\frac{\overline{\partial}}{\overline{\partial}s}f^{u}$ $\frac{\partial}{\partial X(r)}(u):=\frac{\partial}{\partial X(r)}+u\frac{\partial g}{\partial X(r)}=f^{-u}\frac{\partial}{\partial X(r)}f^{u} (1\leq r\leq l)$ $X^{(r)}$ $T$ $S$

12 $\frac{\partial\phi}{\partial Y_{ij}}=\sum_{a\leq b}\frac{\partial\phi}{\partial S_{ab}}\frac{\partial S_{ab}}{\partial Y_{ij}}=\sum_{a,b=1}^{n}\frac{\overline{\partial}\phi}{\overline{\partial}S_{ab}}\frac{\partial S_{ab}}{\partial Y_{ij}}$ ( ). $\phi=\phi(s)=\phi(s_{11}, \ldots, S_{m_{0},m_{0}})$ $1\leq r\leq l$ (1) $\frac{\partial\phi}{\partial X(r)}(u)=2\cdot tx^{(1,r-1)}\frac{\overline{\partial}\phi}{\overline{\partial}s}(u)t(x^{(r+1,l)}tx^{(1,l)})$ (2) $t( \frac{\partial\phi}{\partial X(r)}(u))=2\cdott(X^{(1,l)}tX^{(r+1,l)})\frac{\overline{\partial}\phi}{\overline{\partial}S}(u)tX^{(1,r-1)}$ Proof. (2) (1) (1) $X=X^{(1,r-1)}, Y=X^{(r)}, Z=X^{(r+1,l)}tX^{(r+1,l)}$ $S=XYZ^{t}Y^{t}X$ $Z$ $S_{ab}= \sum_{p,q,s,t}x_{ap}y_{pq}z_{q }Y_{s}X_{bt}$ $= \sum \frac{\overline{\partial}\phi}{\overline{\partial}s_{ab}}(x_{ap}\delta_{ip}\delta_{jq}z_{qs}y_{ts}x_{bt}+x_{ap}y_{pq}z_{qs}\delta_{it}\delta_{js}x_{bt})$ $a,b,p,q,s,t$ $=(tx \frac{\overline{\partial}\phi}{\overline{\partial}s}xytz)(i,j)$ $+(tx^{t}( \frac{\overline{\partial}\phi}{\overline{\partial}s})xyz)(i,j)$ $S$ $Z$ $\frac{\partial\phi}{\partial Y}=2^{t}X\frac{\overline{\partial}\phi}{\overline{\partial}S}XYZ$ (1) $u=0$ $u$ $\phi=ug$ 10. (1) $\frac{\partial}{\partial X(r)}(u-\frac{m_{r}}{2})tX^{(1,r)}=2\cdot tx^{(1,r-1)}\frac{\overline{\partial}}{\overline{\partial}s}(u-\frac{m_{0}+1}{2})ts$ (2) $t( \frac{\partial}{\partial X(r)}(u-\frac{m_{r-1}}{2}))X^{(r,l)}tX^{(1,l)}=2\cdott(X^{(1,l)}tX^{(r+1,\iota)})\frac{\overline{\partial}}{\overline{\partial}S}(u-\frac{m_{0}}{2})^{t}S$ (3) $t( \frac{\partial}{\partial X(1)}(u))=2\cdott(X^{(1,l)}tX^{(2,l)})\frac{\overline{\partial}}{\overline{\partial}S}(u)$

13 47 Proof. (2) (3) (1) (1) 9 $\frac{\partial\phi}{\partial X(r)}=2tX^{(1,r-1)}\frac{\overline{\partial}\phi}{\overline{\partial}S}t(X^{(r+1,l)}tX^{(1,l)})$ $\phi$ $tx^{(1,r)}$ $\frac{\partial\phi}{\partial X(r)}tX^{(1,r)}=2tX^{(1,r-1)}\frac{\overline{\partial}\phi}{\overline{\partial}S}tS,$ $t(x^{(r)^{t}}( \frac{\partial\phi}{\partial X(r)}))tX^{(1,r-1)}=2tX^{(1,r-1)^{t}}(S^{t}(\frac{\overline{\partial}\phi}{\overline{\partial}S}))$ (7) $\phi$ $t(x^{(r)^{t}}( \frac{\partial}{\partial X(r)}))=\frac{\partial}{\partial X(r)}tX^{(r)}-m_{r}1_{m_{r-1}},$ $t(s^{t}( \frac{\overline{\partial}}{\overline{\partial}s}))=\frac{\overline{\partial}}{\overline{\partial}s}ts-\frac{m_{0}+1}{2}1_{m_{0}}$ ( ) (7) $1_{m_{r-1}}$ $\phi$ $\frac{\partial}{\partial X(r)}tX^{(1,r)}=2tX^{(1,r-1)}\frac{\overline{\partial}}{\overline{\partial}S}(\frac{m_{r}-m_{0}-1}{2})^{t}S.$ $f^{-u+m_{r}/2}$ 11 ( ). $u_{i},$ $v_{i}\in \mathbb{c}$ $2^{2l} \cdot\frac{\overline{\partial}}{\overline{\partial}s}(u_{1}-\frac{m_{0}}{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u_{l}-\frac{m_{0}}{2})\cdot ts\cdot\frac{\overline{\partial}}{\overline{\partial}s}(v_{l}-\frac{m_{0}}{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(v_{1}-\frac{m_{0}}{2})$ $= \frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdots\frac{\partial}{\partial X(l)}(u_{l}-\frac{m_{l}-1}{2})$ $\cross t(\frac{\partial}{\partial X(\iota)}(v_{l}-\frac{m_{l-1}}{2}))\cdots t(\frac{\partial}{\partial X(1)}(v_{1}-\frac{m_{0}}{2}))$. Proof. 10 (1) $r=1$ $2^{2l-1} \cdot\frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})tX^{(1)}\cdot\frac{\overline{\partial}}{\overline{\partial}S}(u_{2}-\frac{m_{0}}{2})ts\cdots\cdot$ 10 (1) $r=2$ $2^{2l-2} \cdot\frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdot\frac{\partial}{\partial X(2)}(u_{2}-\frac{m_{2}-1}{2})tX^{(1,2)}\cdot\frac{\overline{\partial}}{\overline{\partial}S}(u_{3}-\frac{m_{0}}{2})^{t}S\cdots\cdot$ $2^{l} \cdot\frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdots\frac{\partial}{\partial X(\iota)}(u_{l}-\frac{m_{l}-1}{2})$ $\cross tx^{(1,l)}\cdot\frac{\overline{\partial}}{\overline{\partial}s}(v_{l}-\frac{m_{0}}{2})^{tt}t\cdot-\cdot\cdot\frac{\overline{\partial}}{\overline{\partial}s}(v_{1}-\frac{m_{0}}{2})$

14 (2) $\frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdots\frac{\partial}{\partial X(\iota)}(u_{l}-\frac{m_{l}-1}{2})\cdot\frac{\partial}{\partial X(\iota)}(v_{l}-\frac{m_{l-1}}{2})\cdots\frac{\partial}{\partial X(1)}(v_{1}-\frac{m_{0}}{2})$ 3.3 $b$- $f= (X^{(1)}X^{(2)}\cdots X^{(l)})t(X^{(1)}X^{(2)}\cdots X^{(l)}) $ - $b$ $( S ^{s+1} )$ $ S ^{s+1}$ $ \frac{\partial}{\partial X(1)}\cdots\frac{\partial}{\partial X(\iota)}.$ $t( \frac{\partial}{\partial X(\iota)})\ldots t(\frac{\partial}{\partial X(1)}) ( S ^{s+1})$ $11_{2^{2lm_{0}}} \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{1}-m_{0}-1}{2})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{2}-m_{0}-1}{2})\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}-1}{2})$. $ts \cdot\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-1}-m_{0}}{2})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-2}-m_{0}}{2})\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{0}-m_{0}}{2})( S ^{s+1})$ $1 2^{2lm_{0}} \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{1}-m_{0}-1}{2}) ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{2}-m_{0}-1}{2}) \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}-1}{2}) $. $ ts \cdot \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-1}-m_{0}}{2}) ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-2}-m_{0}}{2}) \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{0}-m_{0}}{2}) ( S ^{s+1})$ $ S ^{s+1}$ Capelli (3) $2^{2lm_{0}} \cdot b(s+\frac{m_{1}-m_{0}-1}{2})b(s+\frac{m_{2}-m_{0}-1}{2})\cdots b(s+\frac{m_{l}-m_{0}-1}{2})$. $b(s+ \frac{m\iota-1^{-m_{0}}}{2})\cdots b(s+\frac{m_{1}-m_{0}}{2})\cdot b(s+\frac{m_{0}-m_{0}}{2}) S ^{S}$ $b(s)$ $b$- $b(s)=(s+1)(s+ \frac{3}{2})\cdots(s+\frac{m_{0}+1}{2})=(s+\frac{m_{0}+1}{2})^{((m_{0}))}$ (8)

15 49 $a^{((n))}=a(a-1/2)\cdots(a-(n-1)/2)$ 1/2 $f$ - $b$ $b_{f}(s)=(s+ \frac{m_{1}}{2})^{((m_{0}))}(s+\frac{m_{2}}{2})^{((m_{0}))}\cdots(s+\frac{m_{l}}{2})^{((m_{0}))}$ $\cross(s+\frac{m_{l-1}+1}{2})^{((m_{0}))}(s+\frac{m_{l-2}+1}{2})^{((m_{0}))}\cdots(s+\frac{m_{0}+1}{2})^{((m_{0}))}$ 4 $\det((x^{(1)}x^{(2)} \cdot X^{(l)})Yt(X^{(1)}X^{(2)} \cdot X^{(l)}))$ $b$ - $b$ Capelli (4) Sato-Sugiyama [2] [2] $m_{1},$ $m_{2},$ $m_{l}$ $\ldots,$ $(G, V)$ $G=GL(m_{0})\cross GL(m_{1})\cross\cdots\cross GL(m_{l})$, $V=$ Mat $(m_{0}, m_{1})\oplus\cdots\oplus$ Mat $(m_{l-1}, m_{l})\oplus$ Sym $(m\iota)$, $(go, \ldots, g\iota).(x^{(1)}, \ldots, X^{(l)}, Y)=(g_{0}X^{(1)}g_{1}^{-1}, \ldots, g_{l-1}x^{(l)}g_{l}^{-1}, g_{l}ytg_{l})$ $i$ $m_{0}\leq m_{i}$ $f=\det((x^{(1)}x^{(2)}\cdots X^{(l)})Yt(X^{(1)}X^{(2)}\cdots X^{(l)}))$ $(G, V)$ $b_{f}(s)$ $b_{f}(s)= \prod_{r=1}^{\iota}(s+m_{r}/2)^{((m_{0}))}\prod_{r=0}^{\iota}(\mathcal{s}+(m_{r}+1)/2)^{((m_{0}))}$ Capelli (4) 4.1 $i$ $m_{0},$ $m_{1},$ $\ldots$, $m_{l}$ $X^{(i)}$ $m_{i-1}\cross m_{i}$ $m_{l}$ $i\leq j$ $m_{0}$ $S$ $m_{i}\geq m_{0}$ $(1\leq i\leq l)$ $Y$ $Y_{j}=Y_{ji}$ $X^{(i,j)}=X^{(i)}X^{(i+1)}\cdots X$ ( $S:=X^{(1)}X^{(2)}\cdots X^{(l)}Yt(X^{(1)}X^{(2)}\cdots X^{(l)})=X^{(1,l)}YtX^{(1,l)}$

16 $\frac{\overline{\partial}}{\overline{\partial}s}(u)=\frac{\overline{\partial}}{\overline{\partial}s}+u\frac{\overline{\partial}g}{\overline{\partial}s}=f^{-u}\frac{\overline{\partial}}{\overline{\partial}s}f^{u},$ $\frac{\overline{\partial}}{\overline{\partial}y}(u)=\frac{\overline{\partial}}{\overline{\partial}y}+u\frac{\overline{\partial}g}{\overline{\partial}y}=f^{-u}\frac{\overline{\partial}}{\overline{\partial}y}f^{u}$ 50 $\frac{\partial}{\partial X(r)}=(\frac{\partial}{\partial X_{ij}^{(r)}})_{1\leqi\leq m_{r-1},1\leq J\leq m_{r}}$ $\frac{\overline{\partial}}{\overline{\partial}s}=(\frac{\overline{\partial}}{\overline{\partial}s_{ij}})_{1\leq i,j\leq m_{0}}=(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial S_{ij}})_{1\leq i,j\leq m_{0}}$ $\frac{\overline{\partial}}{\overline{\partial}y}=(\frac{\overline{\partial}}{\overline{\partial}y_{ij}})_{1\leq i,j\leq m_{l}}=(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial Y_{ij}})_{1\leq i,j\leq m_{l}}$ $f=\det(ts)$, $g=$ log det $(ts)$ $\frac{\partial}{\partial X^{(r)}}(u)=\frac{\partial}{\partial X(r)}+\cdot u\frac{\partial g}{\partial X(r)}=f^{-u}\frac{\partial}{\partial X(r)}f^{u},$ ( ). $\phi=\phi(s)=\phi(s_{11}, \ldots, S_{m_{O},m_{O}})$ $1\leq r\leq l$ (1) $\frac{\partial\phi}{\partial X(r)}(u)=2\cdot tx^{(1,r-1)}\frac{\overline{\partial}\phi}{\overline{\partial}s}(u)t(x^{(r+1,l)}y^{t}x^{(1,l)})$ (2) $\frac{\overline{\partial}\phi}{\overline{\partial}y}(u)=tx^{(1,l)}\frac{\overline{\partial}\phi}{\overline{\partial}s}(u)x^{(1.l)}$ (3) $t( \frac{\partial\phi}{\partial X(r)}(u))=2\cdott(X^{(1,l)}YtX^{(r+1,l)})\frac{\overline{\partial}\phi}{\overline{\partial}S}(u)tX^{(1,r-1)}$ Proof (1) $\frac{\partial}{\partial X^{(r)}}(u-\frac{m_{r}}{2})tX^{(1,r)}=2\cdot tx^{(1,r-1)}\frac{\overline{\partial}}{\overline{\partial}s}(u-\frac{m_{0}+1}{2})^{t}s$

17 51 (2) $\frac{\overline{\partial}}{\overline{\partial}y}(u-\frac{m_{l}}{2})t(x^{(1.l)}y)=tx^{(1,l)}\frac{\overline{\partial}}{\overline{\partial}s}(u-\frac{m_{0}}{2})^{t}s$ (3) $t( \frac{\partial}{\partial X(r)}(u-\frac{m_{r-1}}{2}))t(X^{(1,l)}Y^{t}X^{(r,l)})=2\cdott(X^{(1,\iota)}Y^{t}X^{(r+1,l)})\frac{\overline{\partial}}{\overline{\partial}S}(u-\frac{m_{0}}{2})tS$ Proof ( ). $2^{2l} \cdot\frac{\overline{\partial}}{\overline{\partial}s}(u_{1}-\frac{m_{0}}{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u\iota-\frac{m_{0}}{2})\cdot ts\frac{\overline{\partial}}{\overline{\partial}s}(v)ts\cdot\frac{\overline{\partial}}{\overline{\partial}s}(w_{l}-\frac{m_{0}}{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(w_{1}-\frac{m_{0}}{2})$ $= \frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdots\frac{\partial}{\partial X(l)}(u_{l}-\frac{m_{l}-1}{2})\cdot\frac{\overline{\partial}}{\overline{\partial}Y}(v-\frac{m_{l}}{2})$ $\cross t(\frac{\partial}{\partial X(\iota)}(w_{l}-\frac{m_{l-1}}{2}))\cdots t(\frac{\partial}{\partial X(1)}(w_{1}-\frac{m_{0}}{2}))$ Proof $f= (X^{(1)}X^{(2)}\cdots X^{(l)})Yt(X^{(1)}X^{(2)}\cdots X^{(l)}) $ $( S ^{s+1} )$ $ S ^{s+1}$ $ \frac{\partial}{\partial X(1)}\cdots\frac{\partial}{\partial X(l)}\cdot\frac{\overline{\partial}}{\overline{\partial}Y}.$ $tt ( S ^{s+1})$ $14_{2^{2lm_{0}}} \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{1}-m_{0}-1}{2})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{2}-m_{0}-1}{2})\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}-1}{2})$. $ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}}{2})^{t}s$. $\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-1}-m_{0}}{2})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-2}-m_{0}}{2})\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{0}-m_{0}}{2})( S ^{s+1})$ $1_{2^{2lm_{0}}} \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{1}-m_{0}-1}{2}) ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{2}-m_{0}-1}{2}) \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}-1}{2}) $. $ ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}}{2}) ts $. $ \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-1}-m_{0}}{2}) ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-2}-m_{0}}{2}) \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{0}-m_{0}}{2}) ( S ^{s+1})$

18 $\mathfrak{g}$ $\lambda$ : 52 $ S ^{s+1}$ $2^{2lm_{0}} \cdot b(s+\frac{m_{1}-m_{0}-1}{2})b(s+\frac{m_{2}-m_{0}-1}{2})\cdots b(s+\frac{m_{l}-m_{0}-1}{2\prime})$. $b(s+ \frac{m_{l}-m_{0}}{2})\cdot b(s+\frac{m_{l-1}-m_{0}}{2})\cdots b(s+\frac{m_{1}-m_{0}}{2})\cdot b(s+\frac{m_{0}-m_{0}}{2}) S ^{s}$ $b(s)$ (8) $f$ $k$ $b_{f}(s)=(s+ \frac{m_{1}}{2})^{((m_{0}))}(s+\frac{m_{2}}{2})^{((m_{0}))}\cdots(s+\frac{m_{l}}{2})^{((m_{0}))}$ $\cross(s+\frac{m_{l}+1}{2})^{((mo))}(s+\frac{m_{l-1}+1}{2})^{((m_{0}))}\cdots(s+\frac{m_{0}+1}{2})^{((m_{o}))}$ 5 $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{2n}$ $\mathfrak{g}=\mathfrak{s}\mathfrak{p}_{2n}$ $\mathfrak{g}=\mathfrak{k}\oplus(\mathfrak{n}^{+}+\mathfrak{n}^{-})$ $\mathfrak{p}arrow $\mathfrak{p}=\mathfrak{k}\oplus \mathfrak{n}^{+}$ \mathbb{c}$ $\mathfrak{g}$ $\mathfrak{p}$ 1 $\lambda$ $M(\lambda):=U(\mathfrak{g})\otimes_{U(\mathfrak{p})}\mathbb{C}_{\lambda}$ $\mathbb{c}_{\lambda}$ $\lambda$ $M(\lambda)\simeq U(\mathfrak{n}^{-})\simeq$ $\mathbb{c}[\mathfrak{n}^{+}]$ $U(\mathfrak{g})arrow \mathbb{c}[\mathfrak{n}^{+}]\pi_{\lambda}$ 5.1 Capelli $)$ Capelli (2) $\mathfrak{g}=\mathfrak{g}$ 12n $(\mathbb{c}$ $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{2n},$ $\mathfrak{k}=\{(\begin{array}{ll}a 00 D\end{array}) A,$ $D\in$ Mat $(n)\}\simeq \mathfrak{g}\mathfrak{l}_{n}\oplus \mathfrak{g}\mathfrak{l}_{n},$ $\mathfrak{n}^{+}=\{(\begin{array}{ll}0 B0 0\end{array}) B\in$ Mat $(n)\},$ $\mathfrak{p}=\{(\begin{array}{ll}a B0 D\end{array}) A,$ $B,$ $D\in$ Mat $(n)\}=\mathfrak{k}\oplus \mathfrak{n}^{+},$ $\mathfrak{n}^{-}=\{(\begin{array}{ll}0 0C 0\end{array}) C\in$ Mat $(n)\}.$ $e_{ij}\in \mathfrak{g} _{}2n$ $\{e_{ii}\}$ $\mathfrak{g}b_{n}$ $\mathbb{c}e_{11}+\mathbb{c}e_{22}+\cdots+\mathbb{c}e_{2n,2n}$ $\{\epsilon_{i}\}$ $\mathfrak{p}$ 1 $\lambda_{1},$ $\lambda_{2}\in \mathbb{c}$ $\lambda=\lambda_{1}(\epsilon_{1}+\cdots+\epsilon_{n})+\lambda_{2}(\epsilon_{n+1}+\cdots+\epsilon_{2n})$

19 $(\mathfrak{g}\mathfrak{l}_{2n}, \mathfrak{g}\mathfrak{l}_{n}\oplus \mathfrak{g}\mathfrak{l}_{n})$ $\mathfrak{n}^{+}$ 53 $\mathfrak{g}\mathfrak{l}_{2n}$ $\mathbb{c}[\mathfrak{n}^{+}]$ $\pi_{\lambda}(e_{ij})$ 15. $T_{ij}(1\leq i,j\leq n)$ $\mathfrak{n}^{+}$ $\pi_{\lambda}(e_{ij})=-\sum_{k=1}^{n}t_{jk}\frac{\partial}{\partial T_{ik}}+\lambda_{1}\delta_{ij},$ $\pi_{\lambda}(e_{n+i,n+j})=\sum_{k=1}^{n}t_{ki}\frac{\partial}{\partial T_{kj}}+\lambda_{2}\delta_{ij},$ $\pi_{\lambda}(e_{n+j,i})=t_{ij},$ $\pi_{\lambda}(e_{i,n+j})=-\sum_{k,l=1}^{n}t_{lk}\frac{\partial}{\partial T_{ik}}\frac{\partial}{\partial T_{lj}}+(\lambda_{1}-\lambda_{2})\frac{\partial}{\partial T_{ij}}$ $=-( \frac{\partial}{\partial T}(\lambda_{2}-\lambda_{1}-h)^{t}T\frac{\partial}{\partial T})_{(i,j)}$ 15 $\pi_{\lambda}(\det(e_{i,n+j}))=\det(\pi_{\lambda}(e_{i,n+j})))$ $= - \frac{\partial}{\partial T}(\lambda_{2}-\lambda_{1}-n)^{t}T\frac{\partial}{\partial T} = -\frac{\partial}{\partial T}(\lambda_{2}-\lambda_{1}-n) tt \frac{\partial}{\partial T} $ $[\pi_{\lambda}(\det(e_{i,n+j}))](\det(t)^{s+1})=(-1)^{n}b(s+\lambda_{2}-\lambda_{1}-n)b(s)\det(t)^{s}$ $(\det(t)^{s+1})$ $\det(t)^{s+1}$ $b(s)=(s+1)(s+2)\cdots(s+n)$ $M(\lambda)$ ( $7])$ $b(s+\lambda_{2}-\lambda_{1}-n)$ $[$5, 6, Capelli (2) $l=2$ ( )

20 $\mathfrak{s}\mathfrak{p}_{2n}$ $\pi_{\lambda}$ Capelli $\mathfrak{g}=\mathfrak{s}\mathfrak{p}_{2n}(\mathbb{c})$ Capelli (4) $\mathfrak{g}=\{(\begin{array}{ll}a BC -ta\end{array}) A\in$ Mat $(n),$ $B,$ $C\in$ Sym $(n)\}=\mathfrak{s}\mathfrak{p}_{2n},$ $\mathfrak{k}=\{(\begin{array}{ll}a 00 -ta\end{array}) A\in$ Mat $(n)\}\simeq \mathfrak{g}\mathfrak{l}_{n},$ $\mathfrak{n}^{+}=\{(\begin{array}{ll}0 B0 0\end{array}) B\in Sym(n)\},$ $\mathfrak{n}^{-}=\{(\begin{array}{ll}0 0C 0\end{array}) C\in$ Sym $(n)\},$ $\mathfrak{p}=\{(\begin{array}{ll}a B0 -ta\end{array}) A\in$ Mat $(n),$ $B\in$ Sym $(n)\}=\mathfrak{k}\oplus \mathfrak{n}^{+}.$ $e_{ij}\in \mathfrak{g}\mathfrak{l}_{2n}$ $\mathfrak{s}\mathfrak{p}_{2n}$ $\mathbb{c}(e_{11}-e_{n+1,n+1})+\mathbb{c}(e_{22}-$ $e_{n+2,n+2})+\cdots+\mathbb{c}(e_{nn}-e_{2n,2n})$ $\lambda_{0}\in \mathbb{c}$ 1 $\{\epsilon_{i}\}$ $\{e_{ii}-e_{n+i,n+i}\}$ $\mathfrak{p}$ $\lambda=\lambda_{0}(\epsilon_{1}+\cdots+\epsilon_{n})$ $\mathfrak{s}\mathfrak{p}_{2n}$ $\mathbb{c}[\mathfrak{n}^{+}]$ $n^{+}$ 16. $S_{ij}(1\leq i\leq j\leq n)$ $\mathfrak{n}^{+}$ $S_{ji}=S_{ij}$ $\pi_{\lambda}(e_{ij}-e_{n+j,n+i})=-2\sum_{k=1}^{n}s_{jk}\frac{\overline{\partial}}{\overline{\partial}s_{ik}}+\lambda_{0}\delta_{ij},$ $\pi_{\lambda}(e_{n+i,j}+e_{n+j,i})=s_{ij},$ $\pi_{\lambda}(e_{i,n+j}+e_{j,n+i})=-4\sum_{k,l=1}^{n}s_{kl}\frac{\overline{\partial}}{\overline{\partial}s_{il}}\frac{\overline{\partial}}{\overline{\partial}s_{jk}}+4\lambda_{0}\frac{\overline{\partial}}{\overline{\partial}s_{ij}}$ $=-4( \frac{\overline{\partial}}{\overline{\partial}s}(-\lambda_{0}-\frac{n+1}{2})^{t}s\frac{\partial}{\partial S})_{(i,j)}$ $\Re$ 16 $\pi_{\lambda}(\det(e_{i,n+j}+e_{j,n+i}))=\det(\pi_{\lambda}(e_{i,n+j}+e_{j,n+i})))$ $= -4 \frac{\overline{\partial}}{\overline{\partial}s}(-\lambda_{0}-\frac{n+1}{2})^{t}s\frac{\partial}{\partial S} = -4\frac{\overline{\partial}}{\overline{\partial}S}(-\lambda_{0}-\frac{n+1}{2}) ts \frac{\partial}{\partials} $ $\det(ts)^{8+1}$ $[ \pi_{\lambda}(\det(e_{i,n+j}+e_{j,n+i}))](\det(ts)^{s+1})=(-4)^{n}b(s-\lambda_{0}-\frac{n+1}{2})b(s)\det(ts)^{s}$

21 55 $b(s)=(s+1)(s+3/2)\cdots(s+(n-1)/2)$ (8) $b(s- \lambda_{0}-\frac{n+1}{2})$ ( [5,6,7]) $M(\lambda)$ Capelli (4) $l=2$ ( ) $(\mathfrak{s}\mathfrak{p}_{2n}, \mathfrak{g}\mathfrak{l}_{n})$ [1] Roger Howe and Toru Umeda. The Capelli identity, the double commutant theorem, and multiplicity-free actions. Math. Ann., $290(3): $, [2] Fumihiro Sato and Kazunari Sugiyama. Multiplicity one property and the decomposition of -functions. Internat. J. Math., $17(2): $, [3] H. W. Turnbull. Symmetric determinants and the Cayley and Capelli operators. Proc. Edinburgh Math. Soc. (2), 8:76-86, [4] Akihito Wachi. Logarithmic derivative and Capelli identities. [5] Akihito Wachi. Contravariant forms on generalized Verma modules and $b$-functions. Hiroshima Math. $J$., $29(1): $, [6] Akihito Wachi. Capelli type identities on certain scalar generalized Verma modules. J. Math. Kyoto Univ., $40(4): $, [7] Akihito Wachi. Capelli type identities on certain scalar generalized Verma modules. II. J. Math. Soc. Japan, $56(2): $, 2004.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて) 1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$

More information

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA 1120 1999 68-77 68 $\bullet$ A Distributed Sorting Algorithm on a Line Network Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASAKI NTT $=$ 619-0237 2-4 $\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{c}\mathrm{o}$

More information

○広島大学船員就業規則

○広島大学船員就業規則 1 (14 2 1 (58 2 (9 3 (10 4 (1112 5 (1316 6 (1720 7 (2123 8 (2425 3 (26 4 (27 37 5 (38 6 (3959 7 (60 8 (6166 9 (67 78 10 (79 11 (80 12(81 13 (82 14 (83 15 (84 1641 79 1 ( 1 ( 1641 121 2 ( ( ( 2 ( 22 100

More information

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ 1505 2006 1-13 1 / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / 6 1 2 3 4 5 Kronecker 6 2 21 $\mathrm{p}$

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

<966B91E58C6F8DCF8A77959493AF918B89EF89EF95F18E8F5F8DC58F495F8B5E8E9790462E696E6464>

<966B91E58C6F8DCF8A77959493AF918B89EF89EF95F18E8F5F8DC58F495F8B5E8E9790462E696E6464> 1 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 2 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 3 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

More information

\S 1. $g$ $n$ $\{0\}=$ $\subset\alpha\subset\cdots\subset r_{n-1}\subset$ $=r,$ $\dim_{c}r_{j}=j(0\leq j\leq n)$ $A_{j+1}/A_{j}(0\leq j\leq n-1)$ $\la

\S 1. $g$ $n$ $\{0\}=$ $\subset\alpha\subset\cdots\subset r_{n-1}\subset$ $=r,$ $\dim_{c}r_{j}=j(0\leq j\leq n)$ $A_{j+1}/A_{j}(0\leq j\leq n-1)$ $\la , 2000 pp.19-32 1950 Mackey Dixmier = 50 Pukanzsky, Duflo, Pedersen $\text{}$ 60 Kirillov Dixmier = Mackey 62 Kirillov Auslander-Kostant 1 Pukanzsky 1 70 $ $) $-$ = = Corwin, Pedersen - $-$ 19 \S 1. $g$

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y 09 II 09/12/21 1 1 7 1.1 I 2D II 3D f() = 3 6 2 + 9 2 f(, y) = 2 2 + 2y + y 2 6 4y f(1) = 1 3 6 1 2 9 1 2 = 2 y = f() f(3, 2) = 2 3 2 + 2 3 2 + 2 2 6 3 4 2 = 8 z = f(, y) y 2 1 z 8 3 2 y 1 ( y ) 1 (0,

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N} 745 1991 220-231 220 - - (Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 34 ) $O(1)$ $O(1)$ 5 6 7 $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}$ ( $N$ ) ( Reynolds $Re$ ) Knudsen (1) ( Stokes ) ;(2)

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

:,, : - 7 -

:,, : - 7 - 31 ~ ~ - 6 - :,, : - 7 - (),,,,,,; ~ ~ *1 *2 6,,,~,,~ - 8-32 ,, ( );( ),,,,,, ~ ~ ~,,,, (),,,,, - 9 - 33 ~*~ ~~ ~, ~ ~ ~ ~ ~, ~~,,,, - 10 - BCG () g ) BCG BCG,, 34 ,,,, (),,,,,,,,,,,,,, () ( 3 90 [7 6

More information

橡6 中表紙(教育施設).PDF

橡6 中表紙(教育施設).PDF 10 i ii 14 1 2 52 53 55 56 57 63 2 3 5 6 13 13 14 14 15 1 3 10 3 4 50 11 7 6 1 45,813.68 19,120.95 3 17,979.75 63,793.43 2,501.74 1,458.27 23 4,226.95 76 2,277.28 17 1,264.41 5 1,768.60 26 2,378.96 9 2,126.92

More information

数理解析研究所講究録 第1921巻

数理解析研究所講究録 第1921巻 1921 2014 108-121 108 Local state, sector theory and measurement in AQFT 1 1 () $($local state) (quantum operation) ( RIMS ) () [25] ( [22] ) [5, 35, 36] 2 : $c*$ - $E_{\mathcal{X}}$ $\omega(a^{*}a)\geq

More information

1 発病のとき

1 発病のとき A A 1944 19 60 A 1 A 20 40 2 A 4 A A 23 6 A A 13 10 100 2 2 360 A 19 2 5 A A A A A TS TS A A A 194823 6 A A 23 A 361 A 3 2 4 2 16 9 A 7 18 A A 16 4 16 3 362 A A 6 A 6 4 A A 363 A 1 A A 1 A A 364 A 1 A

More information

単純パラエルミート対称空間の等長変換群について (新しい変換群論とその周辺)

単純パラエルミート対称空間の等長変換群について (新しい変換群論とその周辺) 数理解析研究所講究録第 2016 巻 2017 年 142-147 142 単純パラエルミート対称空間の等長変換群について 東京理科大学大学院理学研究科 Dl 下川拓哉 Takuya Shimokawa Graduate School of Science Mathematics Tokyo University of Science 1 初めに 本稿の内容は杉本恭司氏 ( 東京理科大学大学院理学研究科

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^ $\overle{\circ\lambda_{\vec{a}q}^{\lambda}}f$ $\mathrm{o}$ (Gauge 994 1997 15-31 15 Tetsuo Tsuchida 1 $\text{ }\cdot$ $\Omega\subset \mathrm{r}^{3}$ \Omega Dirac $L_{\vec{a}q}=L_{0}+(-\alpha\vec{a}(X)+q(_{X}))=\alpha

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

20169 3 4 5003 n=3,000 61.8% 38.2% n=3,000 20 7.3% 30 21.3% 40 34.8% 50 36.6% n=3,000 3.0% 2.0% 1.5% 12.1% 14.0% 41.4% 25.9% n=3,000 37.7% % 24.8% 28.8% 1.9% 3.1% 0.2% n=3,000 500 64.0% 500 1,000 31.3%

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

1 z q w e r t y x c q w 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 R R 32 33 34 35 36 MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

$\omega_{j}$ ( ) ( ) 1. TOEFL ( [2],[3]) (Item Response Theory, IRT) TOFLE 2 2 1,0 $U$ $N\cross n$ $N$ $n$ $ $ $s_{i}$ $u_

$\omega_{j}$ ( ) ( ) 1. TOEFL ( [2],[3]) (Item Response Theory, IRT) TOFLE 2 2 1,0 $U$ $N\cross n$ $N$ $n$ $ $ $s_{i}$ $u_ Title 項目反応理論を用いたプロ野球選手の評価について ( 統計的モデルの新たな展望とそれに関連する話題 ) Author(s) 時光, 順平 ; 鳥越, 規央 Citation 数理解析研究所講究録 (2012), 1804: 21-29 Issue Date 2012-08 URL http://hdl.handle.net/2433/194387 Right Type Departmental

More information