106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (
|
|
|
- ありさ さんきち
- 9 years ago
- Views:
Transcription
1 Kinki Wasan Seminar Tatsuo Shimano, Yasukuni Shimoura, Saburo Tamura, Fumitada Hayama A 2 (1574 ( (1622 ( 1 $(1648\text{ }$ - 77 ( 1572? (1 ( ( (1 ( ( (6 $-$.. $\square \square$? $\ovalbox{\tt\small REJECT}$ $\sqrt[\backslash ]{}\backslash$? (2 (2 $$
2 106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (
3 $\mathrm{b}$ $\lceil \mathrm{p}\mathrm{e}\mathrm{n}$ \rfloor 107 (1(2(3 (7 $-$ $-$ ( 4 (1(2(3 (8 ( (No. 19, t ( ( ( (1660 (9 ( 11 (9 - ( ( ( ( ( ( 3 (1575 $\zeta 7$ $\theta$
4 108 (10 ( 16 (1639, $-$ ( 100 (11 ( 17 (1640 (12 ( 19(1642 $-\cdot(13$ = ( (1626 ( ( 2 ( $-$ $\cdot$..: (1639 ( 11. $\cdot$ : \iota
5 $\mathrm{c}$ ( ( ( \lceil? ( ( $( _{\text{ }}$ 2 (1649 (, 4 ( ( (1668 (14 ( 2 (15 ( 37 (16 (, 47 (
6 110 ( ( ( ( ( ( ( ( ( ( ( (28 ( ( ( (17 ( 31 (18 54 (19 ( 17,1999 (19 (17(18 ( ( (17 42 ( 50 ( (19 (14 (19 (29 (
7 $\mathrm{d}$ 111? (28 18 (20 (1710 (21 ( 17 (1732 (14 (19 ( $ $ $ $ $ $ 17 (1732 (22 ( 8 (1771 (23 ( ( 19 ( ( ( (
8 $\mathrm{e}$ 112 (4 ( (24 ( 29 (1896 ( 1960 (25 ( 12 (1937 (24 (26 ( (27 ( 1999 (14(21 (28 (27 ( No213 (28 (? 10 (1670,?
9 113?? 8 ( ( 21 $70$ ? (
10 (29 (29 (20 ( , ( (
11 115 2 ( ( (1668,
42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{
26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}
$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}
Title 狩野本 綴術算経 について ( 数学史の研究 ) Author(s) 小川 束 Citation 数理解析研究所講究録 (2004) 1392: 60-68 Issue Date 2004-09 URL http://hdlhandlenet/2433/25859 Right Type Departmental Bulletin Paper Textversion publisher Kyoto
40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45
ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash
43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd
n 808 3.0 % 86.8 % 8.3 % n 24 4.1 % 54.0 % 37.5 % 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 0% 37.4 % 7.2 % 27.2 % 8.4 % n 648 13.6 % 18.1% 45.4 % 4.1% n 18 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90
$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :
Title 角術への三角法の応用について ( 数学史の研究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2001), 1195: 165-175 Issue Date 2001-04 URL http://hdl.handle.net/2433/64832 Right Type Departmental Bulletin Paper Textversion publisher
: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$
Title 九州大学所蔵 : 中国暦算書について ( 数学史の研究 ) Author(s) 鈴木, 武雄 Citation 数理解析研究所講究録 (2009), 1625: 244-253 Issue Date 2009-01 URL http://hdlhandlenet/2433/140284 Right Type Departmental Bulletin Paper Textversion
(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}
1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$
Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S
Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion
110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2
1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto
90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia
REJECT} \mathrm{b}$ 1209 2001 89-98 89 (Teruaki ONO) 1 $LR$ $LR$ $\mathrm{f}\ovalbox{\tt\small $L$ $L$ $L$ R $LR$ (Sp) (Map) (Acr) $(105\cross 105\cross 2\mathrm{m}\mathrm{m})$ (A1) $1$) ) $2$ 90 2 3)
128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$
1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (
Wolfram Alpha と数学教育 (数式処理と教育)
1735 2011 107-114 107 Wolfram Alpha (Shinya Oohashi) Chiba prefectural Funabashi-Asahi Highschool 2009 Mathematica Wolfram Research Wolfram Alpha Web Wolfram Alpha 1 PC Web Web 2009 Wolfram Alpha 2 Wolfram
作図ツール GC/html5 ビューア版の開発と iPad を使った教育実践 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)
1780 2012 243-254 243 GC/html5 ipad (Yasuyuki Iijima) Department of Mathematics Education, Aichi University of Education 1 1.1 GC Geometric Constructor( GC ) (2010) DOS 1989 Windows 1998 Java 2000 1990
44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle
Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$
$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-
1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional
MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar
1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *[email protected] ( )
$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980
Title 非線形時系列解析によるカオス性検定 ( 非線形解析学と凸解析学の研究 ) Author(s) 宮野, 尚哉 Citation 数理解析研究所講究録 (2000), 1136: 28-36 Issue Date 2000-04 URL http://hdl.handle.net/2433/63786 Right Type Departmental Bulletin Paper Textversion
\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu
\mathrm{m}_{\text{ }}$ 1453 2005 85-100 85 ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu 05\sim 1 $2\sim 4\mu \mathrm{m}$ \nearrow $\mathrm{a}$
27 1: Lewis $Le_{i}$ $\mathrm{c}\mathrm{h}_{4}$ CO $\mathrm{c}\mathrm{o}_{2}$ $\mathrm{h}_{2}$ $\mathrm{h}_{2}\mathrm{o}$ $\mathrm{n}_{2}$ O2 $Le_{i}$
1413 2005 26-35 26 (Naoto YOKOYAMA)1 (Kana SAITO) (Jiro MIZUSHIMA) 1 (Peters 1984) (Kida and Goto 2002) (Donbar et al 2001) ( 2002) Navier-Stokes (Nada et al 2004) Everest et al (1995) Rayleigh - 2 (1998)
a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D
a) \mathrm{e}\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -uac $\mathrm{f}$ 0$ 1373 2004 110-118 110 (Yoshinobu Tamura) Department of Information $\mathrm{y}$ (S geru (Mitsuhiro
離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)
1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$
2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[
L A TEX 22 7 26 1. 1.1 \begin{itemize \end{itemize 1.2 1. 2. 3. \begin{enumerate \end{enumerate 1.3 1 2 3 \begin{description \item[ 1] \item[ 2] \item[ 3] \end{description 2. label \ref \figref \fgref
* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe
1114 1999 211-220 211 * KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1 $\mathrm{n}\mathrm{p}$ (SCP) 1 $[1][5][10]$ [11] [4] Fisher Kedia $m=200$ $n=2000$ [8] Beasley Gomory f- $m=400$ $n=4000$
宋元明代数学書と「阿蘭陀符帳」 : 蘇州号碼の日本伝来 (数学史の研究)
$\backslash 4$ $\grave$ REJECT}$g$\mathscr{X}\mathscr{L}$ 1739 2011 128-137 128 : Chinese Mathematical Arts in the Song, Yuan and Ming Dynasties and thedutch Numerals -The Suzhou Numerals Transmitted into
数学月間活動から見た教育数学
1801 2012 48-64 48 () (Katsuhiko Tani) 1 1.1 1.2 2 2.1 2. 2 MAM $-$ 2. 3 MMP 2. 3. 1 $MMP$ 2. 3. 2 Plus 37 (2005 12 ) 3 3.1 3.2 ( ) 4 1 3 $\sim$ 1 1.1 [1] 5000 $x$ 19 49 100 [2]. : (1676 2 5 ) 1.2 [3]
Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)
1780 2012 119-129 119 Wolfram Alpha CDF (Shinya OHASHI) Chiba prefectural Funabashi-Keimei Highschool 1 RIMS Wolfram Alpha Wolfram Alpha Wolfram Alpha Wolfram Alpha CDF 2 Wolfram Alpha 21 Wolfram Alpha
$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^
$\overle{\circ\lambda_{\vec{a}q}^{\lambda}}f$ $\mathrm{o}$ (Gauge 994 1997 15-31 15 Tetsuo Tsuchida 1 $\text{ }\cdot$ $\Omega\subset \mathrm{r}^{3}$ \Omega Dirac $L_{\vec{a}q}=L_{0}+(-\alpha\vec{a}(X)+q(_{X}))=\alpha
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue
$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA
1120 1999 68-77 68 $\bullet$ A Distributed Sorting Algorithm on a Line Network Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASAKI NTT $=$ 619-0237 2-4 $\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{c}\mathrm{o}$
105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2
1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$
{K\kern-.20em\lower.5ex\hbox{E}\kern-.125em{TCindy}}による3Dモデル教材の作成 (数学ソフトウェアとその効果的教育利用に関する研究)
数理解析研究所講究録第 2022 巻 2017 年 112-117 112 l $\Phi \Gamma$Cindy による 3\mathrm{D} モデル教材の作成 長野高専一般科濱口直樹 (Naoki Hamaguchi) Faculty of General Education National Institute of Technology Nagano College 東邦大学理学部 高遠
