Vol.8 No (Mar. 2015) 1,a) , Anomaly Detection Based on Density Estimation of Normal Data in Cone-restr
|
|
|
- みりあ ごみぶち
- 6 years ago
- Views:
Transcription
1 1,a) , Anomaly Detection Based on Density Estimation of Normal Data in Cone-restricted Subspace Yudai Yamazaki 1,a) Hirokazu Nosato 2 Masaya Iwata 2 Eiichi Takahashi 2 Ayumi Izumori 3 Takuji Iwase 4 Hidenori Sakanashi 2 Received: May 28, 2014, Revised: July 18, 2014, Accepted: September 5, 2014 Abstract: A cone-restricted subspace method can express learning patterns accurately by generating a convex cone for non-negative feature vectors. Classification of conventional method is performed based on the angle between the input vector and the cone. However, recognition performance is reduced if the spread of the convex cone is large, because it is impossible to distinguish between vectors near the surface and those around the center of the cone. This paper proposes an anomaly detection method based on probability density of normal data in cone-restricted subspace. Classification by the proposed method is based on the probability contained in the convex cone. We demonstrate anomaly detection from breast ultrasound images using proposed method, and confirmed effectiveness of the method. Keywords: cone-restricted subspace, density estimation, anomaly detection, pattern recognition 1 Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki , Japan 2 Information Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki , Japan 3 Department of Surgery, Takamatsu Heiwa Hospital, Takamatsu, Kagawa , Japan 4 Breast Oncology Center, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Koto, Tokyo , Japan 1. a) [email protected] c 2015 Information Processing Society of Japan 28
2 [1] [2] [1], [3] HLAC [4] SIFT [5] LBP [6] [2] 2.2 D C N C = {x x = α i ξ i =Ξα,α i 0} (1) i=1 where Ξ = {ξ 1, ξ 2,...,ξ N } α = {α 1,α 2,...,α N } T N ξ i R D α i S N S = {x x = α i ξ i =Ξα} (2) i=1 (1) (2) C S α i 2.3 y C θ θ 1 y C x c 2015 Information Processing Society of Japan 29
3 Fig. 1 1 Angle between the input vector and the cone. θ = arcsin(min y x / y ) x C N / =arcsin min y α i ξ i 2 y (3) α i 0 i=1 (3) min αi 0 y N i=1 α iξ i 2 [7] y C y ξ i (3) y = N i=1 α iξ i θ 0 Algorithm 1 C input :X =[x 1,...,x M ](M ) :θ th ( 0) initialize :t 0 C :C X C N t :N 0 M repeat step1 X X S X S step2 x i X S X S x i C Sī θ i θ i <θ th X X S x i step3 x j X S X S C S θ j θ j <θ th X x j step4 :t t +1 C :C X C N :N t [X ] until (N t = N t 1 ) output :C θ 0 θ π [2] 3 X Algorithm 1 C (3) θ th (3) 2 y 1 y 2 C 0 2 Fig. 2 Feature vectors in cone. 1 [2] (3) 3. c 2015 Information Processing Society of Japan 30
4 3 Fig. 3 Flowchart of proposed method. Fig. 4 4 Space that represents the spread direction of cone N X =[x 1,...,x N ] x i D 1 ˆx i = x i x i (i =1,...,N) ˆX =[ˆx 1,...,ˆx N ] R ˆX R ˆX = ˆX ˆX T R ˆX R ˆXU = UΛ U = {u 1,...,u D } u i Λ =diag λ 1,...,λ D λ i 1 u 1 2 U E U E = {u 2,...,u M+1 } (1 M D 1) U E M M 4 3 D =3 2 M = [8] ˆx i x E i x E i = UE T ˆx i (i =1,...N) p(t) c 2015 Information Processing Society of Japan 31
5 p(t) = 1 N N i=1 where k(x) = 1 h M k( t xe i h ) (4) 1 (2π) M/2 exp( 1 2 xt x) t M h k(x) k(x) h M M h M h (4) y y E y E = UE T ŷ where ŷ = y y y E p(y E ) p th 4. 2 (1) 3 2 (2) 4.1 ROC Receiver Operating CharacteristicROC False Positive Rate True Positive Rate ROC 100% 0% ROC AUC Area Under the Curve AUC ROC (a) 1 (x, y, z) =(1, 1, 1), (2, 1, 2) μ =(0, 0) σ 2 =0.5 5(b) 6 (a) 2 1 6(b) ROC 7 (a) 7(b) 1 M =2 h = M =2 h =0.2 M =2 h AUC AUC c 2015 Information Processing Society of Japan 32
6 情報処理学会論文誌 数理モデル化と応用 Vol.8 No (Mar. 2015) 図 5 人工データ 1 凸形状の錐 Fig. 5 Synthetic dataset1: Convex cone. 図 6 人工データ 2 非凸形状の錐 Fig. 6 Synthetic dataset2: None convex cone. 図 7 人工データに対する ROC 曲線 Fig. 7 ROC curve of synthetic dataset. 錐制約部分空間法では 錐の中に含まれる特徴ベクトルと 次に 人工データ 2 を用いたときの結果について述べる 錐とのなす角度がすべて 0 となり 錐の中にある異常デー 比較手法 1 と 2 では真陽性率が 1 に達することはなく 異 タをすべて正常として判定し 異常を見落としてしまった 常の見落としが発生している 両手法ともに錐の表面付近 ことが原因である と中心付近を区別できなかったためであると推察される c 2015 Information Processing Society of Japan 33
7 3 1 2 AUC AUC AUC 1 2 AUC Fig. 8 8 Example of the breast ultrasound image [9], [10] [11], [12] ROC fps 8 7 A G Fig. 9 Examples of experiment data. 1 Table 1 Number of samples in each patients. A B C D E F G (a) 9(b) 1 Higher-order Local Autocorrelation; HLAC [4] HLAC HLAC c 2015 Information Processing Society of Japan 34
8 M =1 h =0.25 M 1 34 h AUC (a) 2 11 (b) 11 (b) 11 (a) 2 11 (b) AUC AUC 2 AUC 1 2 AUC Fig ROC ROC curves of achieved by the proposal method and comparison methods. 11 Fig. 11 Examples of tumor images. 2 Table 2 AUC AUC values in each patients A B C D E F G c 2015 Information Processing Society of Japan 35
9 12 Fig. 12 Tumor images of different patients. AUC A E AUC 12 (a) 12 (b) A E HLAC E 5. 2 local autocorrelation feature extraction for classification of histopathological images, IPSJ Trans. CVA, Vol.3, pp (2011). [4] Otsu, N. and Kurita, T.: A new scheme for practical flexible and intelligent vision systems, pp (1988). [5] Lowe, D.: Object recognition from local scale-invariant features, Proc. 7th IEEE International Conference on Computer Vision, Vol.2 (1999). [6] Ojala, T., Pietikäinen, M. and Harwood, D.: A comparative study of texture measures with classification based on featured distributions, Pattern recognition, Vol.29, pp (1996). [7] Bro, R. and De Jong, S.: A fast non-negativityconstrained least squares algorithm, Journal of chemometrics, Vol.11, No.5, pp (1997). [8] Silverman, B.W.: Density estimation for statistics and data analysis, Vol.26, CRC press (1986). [9] statistics.html. [10] statistics/statistics.html. [11] Journal of N.D.I Vol.60, No.12, pp (2011). [12] CAD JABTS Journal of breast and thyroid sonology Vol.2, No.3, pp (2013) [1] Nanri, T. and Otsu, N.: Unsupervised abnormality detection in video surveillance, MVA, pp (2005). [2] D Vol.92, No.1, pp (2009). [3] Nosato, H., Kurihara, T., Sakanashi, H., Murakawa, M., Kobayashi, T., Furuya, T., Higuchi, T., Otsu, N., Terai, K. and Hiruta, N.: An extended method of higher-order c 2015 Information Processing Society of Japan 36
10 IEEE Best English Paper of the Year c 2015 Information Processing Society of Japan 37
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
(MIRU2008) HOG Histograms of Oriented Gradients (HOG)
(MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human
LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R
DEIM Forum 24 F5-4 Local Binary Pattern 6 84 E-mail: {tera,kida}@ist.hokudai.ac.jp Local Binary Pattern (LBP) LBP 3 3 LBP 5 5 5 LBP improved LBP uniform LBP.. Local Binary Pattern, Gradient Local Auto-Correlations,,,,
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server
a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,
Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).
Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation
Unknown
Journal of Breast and Thyroid Sonology Journal of Breast and Thyroid Sonology Vol.2, No.3 July 2013 Report The 30 th Meeting of Japan Association of Breast and Thyroid Sonology... 1 Department of Organ
Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information
Vol.54 No.7 1937 1950 (July 2013) 1,a) 2012 11 1, 2013 4 5 1 Similar Sounds Sentences Generator Based on Morphological Analysis Manner and Low Class Words Masaaki Kanakubo 1,a) Received: November 1, 2012,
1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: [email protected], {ide,murase,hirayama}@is.nagoya-u.ac.jp,
,,.,.,,.,.,.,.,,.,..,,,, i
22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of
(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s
1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf
1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi
[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing
1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット
Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
Unknown
Journal of Breast and Thyroid Sonology Journal of Breast and Thyroid Sonology Vol.3, No.3 July 2014 Original Article Clinical significance of classification of mixed-pattern tumor by breast ultrasound...
17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System
1. (1) ( MMI ) 2. 3. MMI Personal Computer(PC) MMI PC 1 1 2 (%) (%) 100.0 95.2 100.0 80.1 2 % 31.3% 2 PC (3 ) (2) MMI 2 ( ),,,, 49,,p531-532,2005 ( ),,,,,2005,p66-p67,2005 17 Proposal of an Algorithm of
( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst
情報処理学会インタラクション 2015 IPSJ Interaction 2015 15INT014 2015/3/7 1,a) 1,b) 1,c) Design and Implementation of a Piano Learning Support System Considering Motivation Fukuya Yuto 1,a) Takegawa Yoshinari 1,b) Yanagi
HOG HOG LBP LBP 4) LBP LBP Wang LBP HOG LBP 5) LBP LBP 1 r n 1 n, 1
1 1 1 Shwartz Histgrams of Oriented Gradients HOG PLS PLS KPLS INRIA PLS KPLS KPLS PLS Pedestrian Detection Using Kernel Partial Least Squares Analysis Takashi Abe, 1 Takayuki Okatani 1 and Kouichiro Deguchi
IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple
1 2 3 4 5 e β /α α β β / α A judgment method of difficulty of task for a learner using simple electroencephalograph Katsuyuki Umezawa 1 Takashi Ishida 2 Tomohiko Saito 3 Makoto Nakazawa 4 Shigeichi Hirasawa
(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,
[II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]
Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,
Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Bunka Women's University, Shibuya-ku, Tokyo 151-8523
xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL
PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP
3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)
(MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost
(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc
1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since
DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)
1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology
Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution
Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
IPSJ SIG Technical Report Vol.2014-IOT-27 No.14 Vol.2014-SPT-11 No /10/10 1,a) 2 zabbix Consideration of a system to support understanding of f
1,a) 2 zabbix Consideration of a system to support understanding of fault occurrences based on the similarity of the time series Miyaza Nao 1,a) Masuda Hideo 2 Abstract: With the development of network
IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came
3DCG 1,a) 2 2 2 2 3 On rigid body animation taking into account the 3D computer graphics camera viewpoint Abstract: In using computer graphics for making games or motion pictures, physics simulation is
0801297,繊維学会ファイバ11月号/報文-01-青山
Faculty of Life Environment, Kinjogakuin University, Moriyama-ku, Nagoya 463-8521, Japan Faculty of Home Economics, Japan Women s University, Bunkyo-ku, Tokyo 112-8681, Japan AStudy on Easing by a Variable
1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing
1,a) 2,b) 3 Modeling of Agitation Method in Automatic Mahjong Table using Multi-Agent Simulation Hiroyasu Ide 1,a) Takashi Okuda 2,b) Abstract: Automatic mahjong table refers to mahjong table which automatically
IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki
Pitman-Yor Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Akira Shirai and Tadahiro Taniguchi Although a lot of melody generation method has been
2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC
H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI
Microsoft PowerPoint - SSII_harada pptx
The state of the world The gathered data The processed data w d r I( W; D) I( W; R) The data processing theorem states that data processing can only destroy information. David J.C. MacKay. Information
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe
IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and
MIDI 1 2 3 2 1 Modeling Performance Indeterminacies for Polyphonic Midi Score Following and Its Application to Automatic Accompaniment Nakamura Eita 1 Yamamoto Ryuichi 2 Saito Yasuyuki 3 Sako Shinji 2
IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe
1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,
Journal of Breast and Thyroid Sonology Journal of Breast and Thyroid Sonology Vol.2, No.1 January 2013 Overview History of JABTSJapan Association of Breast and Thyroid Sonology : Dawn of a JABTS Age; The
23_02.dvi
Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested
Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth
Journal of Geography 116 (6) 749-758 2007 Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth Data: A Case Study of a Snow Survey in Chuetsu District,
The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website
The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website by the author(s) under the agreement with the IPSJ.
X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP
X X a a b b c Characterization of dislocation evolution during work hardening of stainless steels by using XRD line-profile analysis Tomoaki KATO a, Shigeo SATO a, Yoichi SAITO b, Hidekazu TODOROKI b and
28 TCG SURF Card recognition using SURF in TCG play video
28 TCG SURF Card recognition using SURF in TCG play video 1170374 2017 3 2 TCG SURF TCG TCG OCG SURF Bof 20 20 30 10 1 SURF Bag of features i Abstract Card recognition using SURF in TCG play video Haruka
ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR
Vol. 51 No. 11 2081 2088 (Nov. 2010) 2 1 1 1 which appended specific characters to the information such as identification to avoid parity check errors, before QR Code encoding with the structured append
DOI: /jjmu. JJMU.R.130 REVIEW ARTICLE( 第 16 回教育セッション )( 乳腺 ) 抄録,, 1 surrounding stroma 2 edematous stroma 2., TDLU,,.,.,,.,.,,.,.,,,,,. Ultraso
DOI: 10.3179/jjmu. JJMU.R.130 REVIEW ARTICLE( 第 16 回教育セッション )( 乳腺 ) 抄録, 1 surrounding stroma 2 edematous stroma 2, TDLU,,,.,,,,,, Ultrasound understanding and observation method of normal mammary gland
kut-paper-template.dvi
26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo
: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs
15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: [email protected], 2-11-16 E-mail: [email protected], 4-6-1 E-mail: [email protected],
日本感性工学会論文誌
pp.343-351 2013 Changes in Three Attributes of Color by Reproduction of Memorized Colors Hiroaki MIYAKE, Takeshi KINOSHITA and Atsushi OSA Graduate School of Science and Engineering, Yamaguchi University,
B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int
SOA 1 1 1 1 (HNS) HNS SOA SOA 3 3 A Service-Oriented Platform for Feature Interaction Detection and Resolution in Home Network System Yuhei Yoshimura, 1 Takuya Inada Hiroshi Igaki 1, 1 and Masahide Nakamura
IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa
3,a) 3 3 ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransac. DB [] [2] 3 DB Web Web DB Web NTT NTT Media Intelligence Laboratories, - Hikarinooka Yokosuka-Shi, Kanagawa 239-0847 Japan a) [email protected]
