CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

Size: px
Start display at page:

Download "CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,."

Transcription

1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) ( ) 2002 ( ) Capelli ($\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\dot{\mathrm{a}}\mathrm{c}\mathrm{a}\mathrm{l}$ groups)

2 2 1: Capelli $\mathfrak{g}$ Lie $U(\mathfrak{g})$ (A) (B) (C) ( ) ( ) Capelli (A) (C) (B) (A) (B) (C) (1) $-(3)$ (1) \searrow (2) (3) Capelli - [1] [3] [1] ( ) : ( ) $-$ ( ) U( ) ( ) ( fusion process) Harish-Chandra Schur unique (Gelfand ) [2] ( = ): (1) fusion process Capelli (l) :

3 3 - ( ) [3] ( ) : Capelli $\rho$-shift Okounkov higher Capelli Young contents Howe-Umeda Appendix anisotropic Lie ( ) Lie $\rho-$ -shift $R$- Itoh-Umeda Lie \epsilon 2 dual $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}$ 2: Capelli $U(\mathfrak{g}\mathfrak{l}_{n})$ Capelli Howe-Umeda CapeUi Capelli $U(\mathfrak{g}\mathfrak{l}_{n})$ $GL_{n}$ ( 1 ) $(\pi V_{\pi})$ $GL_{n}$ $\pi_{\mu\nu}(g)\#\mathrm{h}g$ $g_{ij}$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ : $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(m\cross n))$ $t_{ij}$ $\frac{\partial}{\partial t_{1\mathrm{j}}}$ $\mathfrak{g}\mathfrak{l}_{n}$ Lie ( )

4 $\mathfrak{g}\mathfrak{l}_{m}$ 4 ( ) $\rho(e_{ij})=\sum_{a=1}^{m}t_{ai}\partial_{aj}$ $\lambda(e_{ij}^{\mathrm{o}})=\sum_{b=1}^{n}t_{jb}\partial_{ib}$ Lie $T=(t_{ij})_{1\leq i\leq m1\leq j\leq n}$ $D=(\partial_{ij})_{1\leq i\leq m1\leq j\leq n}$ $\Pi=(\rho(E_{ij}))_{1\leq ij\leq n}$ $\Pi^{0}=(\lambda(\mathrm{E}_{ij}^{\mathrm{o}}))_{1\leq ij\leq m}$ $\Pi={}^{t}TD$ $t_{\pi^{\mathrm{o}}=t{}^{t}d}$ $t$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ $\pi$ $\mathrm{r}(\pi(^{t}t)\pi(d))=\sum_{\mu\nu}\pi_{\nu\mu}(^{t}t)\pi_{\mu\nu}(d)$ $GL_{n}$ $\Pi={}^{t}TD$ $\pi$ ( ) $\pi$ $U(\mathfrak{g}\mathfrak{l}_{n})$ $C_{\pi}= \mathrm{h}(\pi^{\mathfrak{y}}(\mathrm{e}))=\sum_{\mu}\pi_{\mu\mu}^{\mathfrak{h}}(\mathrm{e})$ $\pi\#$ $C_{\pi}$ $\pi_{\mu\mu}^{\mathfrak{h}}$ \urcorner \beta A Okounkov (1996) [HU] higher order Capelli $C_{\pi}$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ $\pi$ Capelli ( multiplicity-foee

5 5 action ) $C_{\pi}$ $\pi$ ( $P(\mathrm{M}\mathrm{a}\mathrm{t}(n))$ (Lie ) (?) vanishing property Capelli ) 3: Capelli (column determinant) $\det(\phi)=\sum_{\sigma\in \mathfrak{s}_{n}}$ sign(a) $\Phi_{\sigma(1)1}\Phi_{\sigma(2)2}\cdots\Phi_{\sigma(n)n}$ (row determinant) Capelli ( highest weight ) Capelli (double deterninant; symmetrized determinant) (permanent) (Pfaffian) (Hafnian) Lie Lie Lie j(n

6 $\mathfrak{g}$ 6 ( ) $U(\mathfrak{g})$ Lie $\mathfrak{g}$ $=\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}$ ( typical invariant) U( ) $\mathfrak{g}$ Okounkov (?) Capelli $(\mathrm{a})-(\mathrm{c})$ 1 Lie $\mathfrak{g}\mathfrak{l}_{n}$ multiplicity-free action Capelli split Lie dual pair Capelli Wronski $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{n}$

7 $\mathfrak{g}$ 7 Lie anisotropic $R$ ( ) 4: Lie (B) Harish-Chandra ZU $(\mathfrak{g})\simeq U(\mathfrak{h})^{W}=S(\mathfrak{h})^{W}$ h Cartan W Weyl $\mathfrak{h}$ $\mathfrak{s}_{n}$ Weyl $\{\pm 1\}^{n}$ $\{\pm 1\}^{n-1}$ $S(\mathfrak{h})^{W}$ modify Schur Schur-Weyl duality Weyl Han $\mathrm{s}\mathrm{h}$-chandra ( ) (Schur ) as $\text{ }$ $\Sigma \mathrm{j}$ Hanish-Chandra IEI ZU $(\mathfrak{g})arrow S(\mathfrak{h})^{W}$

8 8 $(\mathfrak{g})$ (1) ZU (2) Harish-Chandra (1) (2) Hari $\mathrm{s}\mathrm{h}$-chandra Harish-Chandra Hari $\mathrm{s}\mathrm{h}$-chandra 5: $\mathfrak{g}\mathrm{t}_{n}$ $\mathfrak{g}\mathfrak{l}_{n}$ ( ) 2 1 ( Lie ) ( ;Lie ) $GL$ ( ) oscillator spin dual pair ( ) \sim [2 Lie $0_{n}$ s[2

9 $i$ 9 - fcapelli Lie Howe-Umeda multiplicity-free actions Capelli 6: (1) [Capelli ] Capelli Capelli $-$ typical $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\bm{\mathrm{r}}\mathrm{t}\mathrm{s}$ - Capeui ( ) ( ) (doubling the variables) R Howe dual pair (dual) Capelli dual $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}$ dual \searrow Ge and ( ) Newton Koszul cyclic cohomology

10 10 (2) [ ] R Lie $\mathrm{a}\mathrm{d}\mathrm{j}(\dot{\mathrm{n}}\mathrm{n}\mathrm{t}$ Capelli pshift $\rho-$-shift - Capelli ( ) $\mathrm{a}\mathrm{d}\mathrm{j}\dot{\alpha}\mathrm{n}\mathrm{t}$ - Euler Lie Capelli [1] 100 Capelli Identity Identities a century after in Selected Papers on Harmonic Analysi $\mathrm{s}$ $46(1994)$ ( : The Capelli Groups and Invariants (Ed by K Nomizu) AMS Translations Series 2 vol 183 (1998) pp [2] R Howe and T Umeda The Capelli identity the double commutant theorem and multiplicity-free actions Math Ann 290 (1991) [3] T Umeda Newton s $fo$ rmula for $\mathfrak{g}\mathfrak{l}_{n}$ Proc Amer Math Soc 126 (1998) [4] T Umeda On the proofs of the Capdli identities preprint 1997 [5] T Umeda On TUmbull identity for $skew- s\psi nmet\dot{n}c$ matrices Proc Edinburgh Math Soc 43 (2000) [6] T Umeda Application of Koszul complex to Wronski relations for $U(\mathfrak{g}\mathfrak{l}_{n})$ Commentanii Math Helv 78 (2003) [7] M Itoh and T Umeda On central elements in the universal enveloping algebras of

11 11 the orthogonal Lie algebras Compositio Math 127(2001) [8] Capelli No 429 ( ) [2] M Noumi T Umeda and M Wakayama A quantum analogue fo the Capelli identity and an elementary differential calculus on $GL_{q}(n)$ Duke Math J 76(1994) [3] M Noumi T Umeda and M Wakayama Dual pairs spherical harmonics and a Capelli identity in quantum group theory Compositio Math 104(1996) [5] M Itoh: Capelli identities for the dual pair $(O_{M} Sp_{N})$ Math Zeit 246(2004) [6] A Wachi: Central elements in the universal enveloping algebras for the split realization of the orthogonal Lie algebras to appear in Lett Math Phys

可約概均質ベクトル空間の$b$-関数と一般Verma加群

可約概均質ベクトル空間の$b$-関数と一般Verma加群 1825 2013 35-55 35 $b$- Verma (Akihito Wachi) Faculty of Education, Hokkaido University of Education Capelli Capelli 6 1 2009 6 [4] $(1\leq i,j\leq n)$ $\det(a)= A =\sum_{\sigma}$ sgn $(\sigma)a_{\sigma(1)1}\cdots

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: [email protected] 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r 1960 70 Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta theta ( ) Λ ( ) August 9, 2000 Theta lifting of representations

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) [email protected]

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

untitled

untitled P04 P23 P21 01 CONTENTS P0305 P28 30 P28 1 2 3 4 5 P07 P09 P13 P15 P19 P30 6 P21 7 8 P22 P25 02 03 04 05 P04 P07P28 P29 06 1 2 3 4 1 07 5-1 -2 6 7-1 -2 8 08 1 2 3 4 2 1 09 5-1 -2 6 7-1 -2 8 10 1 2 3 4

More information

CONTENTS 2012 2 Vol.65 No.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

CONTENTS 2012 2 Vol.65 No.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 2 2012 CONTENTS 2012 2 Vol.65 No.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

More information

01.indd

01.indd 2 Vol. 27 1 1 2 2 4 Vol. 27 Contents 3 Vol. 27 2 01 02 03 04 14 24 28 37 38 4 Vol. 27.01 5 Vol. 27.01 6 Vol. 27 7 Vol. 27.01 8 Vol. 27.02 9 Vol. 27.02 10 Vol. 27 11 Vol. 27.02 12 Vol. 27 13 Vol. 27.02

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *[email protected] ( )

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

P24-25.eps

P24-25.eps Contents 1 24 26 32 44 23 24 25 2-1 1 2 3 1: 2: 3: 26 27 28 29 Action A Thinking T Team Work W A Action W T Thinking Team Work 30 31 3-1 3-2 32 33 b. c. 1 d. e. 1 a. 2 2 34 35 3 4 36 37 38 39 3-3 3-4 1

More information

数理解析研究所講究録 第1977巻

数理解析研究所講究録 第1977巻 1977 2015 33-44 33 Ding-Iohara-Miki modular double Yosuke Saito Osaka City University Advanced Mathematical Institute 2015 9 30 Ding-Iohara-Miki Ruijsenaars Ding-Iohara-Miki Ding-Iohara-Miki modular double

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

Bruhat

Bruhat SGC - 77 Bruhat ([22]) 3 3.11 2010 4 ii 1 1 1.1... 1 1.2... 5 1.3... 8 1.4 1... 11 1.5 2... 14 2 18 2.1... 18 2.2... 25 2.3... 30 3 36 3.1... 36 3.2... 42 3.3... 49 3.3.1... 49 3.3.2... 50 3.3.3... 52

More information

198 Column 1 201512/1-20164/30 Column 1 199 201512/1-20164/30 12/1-4/30 Coupon 2015 2016 1 12 2 3 4

198 Column 1 201512/1-20164/30 Column 1 199 201512/1-20164/30 12/1-4/30 Coupon 2015 2016 1 12 2 3 4 198 Column 1 201512/1-20164/30 Column 1 199 201512/1-20164/30 12/1-4/30 Coupon 2015 2016 1 12 2 3 4 201512/1-20164/30 201512/1-20164/30 12 1 2 3 4 12 1 2 3 4, 201 200 202 201512/1-20164/30, 1 12 2 3 4

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: [email protected] Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information