. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2
|
|
|
- ゆりな たにしき
- 7 years ago
- Views:
Transcription
1 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) [email protected] 1
2 . Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2
3 1 1.1 k (U k ) k U k ( k ), k k k k. (a b) c a (b c) 1 a a a 1 k (category) (monoidal category) C (tensor product) : C C C (unit object) 1 C (1.1) ( ) Z ( Z), 1 1 (,, Z C) ( ) Z ( Z) (1.1) (1.2) a,,z : ( ) Z ( Z), l : 1, r : 1. (,, Z) ( ) Z (,, Z) ( Z) C C C C a,,z,, Z l r (1.2) 1,..., n ( 1 (( 2 1) 3 )) (((1 4 ) 5 ) ) 1,..., n 1 n 5 (1.3) A ( 1 2 ) ( 3 ( 4 5 )), B ( 1 (( 2 3 ) 4 )) 5 3
4 ((12)(34))5 1((23)(45)) 1 a 2,34,5 a 12,34,5 1 a 2,3,45 1(2((34)5)) a 1,2,(34)5 1 (2 a 3,4,5 ) (12)((34)5) 1(2(3(45))) (1 2) a 3,4,5 a 1,2,3(45) (12)(3(45)) a 12,34,5 1 a 2,3,45 ((12)(34))5 a 12,3,45 1((23)(45)) a 12,3,4 5 ((12)3)(45) a 1,2,3 (4 5) a 1,23,45 a (12)3,4,5 (((12)3)4)5 (1(23))(45) (a 1,2,3 4) 5 a 1(23),4,5 ((1(23))4)5 a 12,3,4 5 a 1,23,45 ((12)(34))5 a 1,23,4 5 1((23)(45)) a 1,2,34 5 (1((23)4))5 (1 a 2,3,4) 5 a 1,(23)4,5 1 a 23,4,5 (1(2(34)))5 1(((23)4)5) a 1,2(34),5 1 (a 2,3,4 5) 1((2(34))5) a 1,2, a 23,4,5 ((12)(34))5 1((23)(45)) (( 1 2 ) ( 3 4 )) 5 ((12)(34))5 i i
5 (1.2) A B (1.2). (1.2) (1.3) (coherence theorem) 1.1 (). (1),,, Z C (( ) ) Z a,, id Z a,,z ( ( )) Z ( ) ( Z) a,,z (( ) Z) id a,,z a,, Z ( ( Z)) (2), C a,1, ( 1) (1 ) r id id l 1.2. : C C C, 1 C a,,z : ( ) Z ( Z), l : 1, r : 1. C 1 [ML98, II.2] k ec k k (tensor category) 5
6 1.4. Set { } 1.5. ( ) Z ( Z) 1 1 a, l, r (strict monoidal category) Set ec C C End(C) C C End(C) id C : C C 1.2. C D C D (monoidal functor) φ, : F () F ( ) F ( ) φ 0 : 1 F (1) F : C D (1),, Z C (F () F ( )) F (Z) a F (),F ( ),F (Z) F () (F ( ) F (Z)) φ, id F (Z) F ( ) F (Z) id F () φ,z F () F ( Z) φ,z F (( ) Z) F (a,,z ) φ, Z F ( ( Z)) (2) C 2 1 F () l F () F () F () 1 r F () F () φ 0 id F () F (l ) id F () φ 0 F (r ) F (1) F () φ 1, F (1 ) F () F (1) φ,1 F ( 1) lax monoidal functor φ φ 0 F (strong monoidal functor) ψ : F ( ) F () F ( ) (, C) ψ 0 : F (1) 1 comonoidal functor colax monodal functor φ φ 0 (monoidal natural transformation) 6
7 F : C D (monoidal equivalence) G F id C, F G id D (as monoidal functors) G : D C C D F F 1.7 ().. C C str C str C 0 S C str F (S) C F (( 1,..., n )) F (( 1,..., n 1 )) n (n 2), F (( 1 )) 1, F ( ) 1. Hom C str(s, S ) : Hom C (F (S), F (S )) C C str C str S, S C str S S S, S C str φ S,S : F (S) F (S ) F (S S ) C str f : S T g : S T f g φ T,T (f g) φ 1 S,S f g Hom C str(s S, T T ) ( Hom C (F (S S ), F (T T ))) C str C str C S F (S) F : C C str φ φ 0 id 1 : 1 F ( ) C C str [Kas95, I] φ S,S C str C 1.8. C C 0 C 0 C C C 0 C 0 C ( ) Z ( Z) 1 1,, Z C 0 7
8 C 0 a, l, r Isbell C Set [ML98, II.1] 1.9. (C,, 1, a, l, r) [Sch01b, Definition 4.1] : C C C (C,, 1, a, l, r) (C,, 1, id, id, id) [Sch01b, Theorem 4.3] C C C f : 2 f : g : 3 f id f id f 4, C 5 C f : g : C C C (2.1) (g 1 f 1 ) (g 2 f 2 ) (g 1 g 2 ) (f 1 f 2 ) 8 7 well-defined 5 5 id id id C p q C p id id q p p 1 p q 8
9 f g f f g id f f f id 2 f : 3 4 f id f id f f g f g f 1 g 1 f 2 g f g : 7 (1) f 1 f 2 g 1 f 1 g 1 g 2 g 2 f 2 p q 8 (2) p id id q C e : 1 c : 1 C (2.2) (id e) (c id ) id, (e id ) (id c) id (, e, c) (left dual object) (, e, c) (right dual object) C C (left rigid) C 2.2 9
10 ( i, e i, c i ) (i 1, 2) C e 2 e 1 (ϕ 1 id ) c 2 (id ϕ) c 1 ϕ : 1 2 [BK01, 2.1] C C (, ev, coev ) ev : 1 coev : 1 ev coev id (2.2) (2.3) C f : f : (2.4) f : f ( ) : C C (f g) g f 2.2 (). (2.2) Bakalov-Kirillov [BK01] right dual object Kassel [Kas95] left duality Kerler-Lyubashenko [KL01] dual object Majid [Maj95] left dual duality functor Kassel [Kas95] 2.3 (). C (2.2) (id e) (c id ) id 1 c id ( ), ( ) id e 1 a, l, r 10
11 (2.2) r (id e) a,, (c id ) l 1 id, l (e id ) a 1,, (id c) r 1 id 2.4. R R M R M R M R R- M : Hom(M R, R R ) (a f b)(m) : f(b m a) (f M, a, b R, m M) R- M m 1,..., m r M f 1,..., f r M m M m 1 f 1 (m) + + m r f r (m) m ev : M R M R coev : R M R M ev(f m) f(m), coev(a) a m i f i (f M, m M, a R) (M, ev, coev) M M M R C End(C) ε : F G id C η : id C G F End(C) (2.2) counit-unit identity End(C) S 1 R 3 (link) (oriented link) 1 (knot) Reidemeister I Reidemeister II Reidemeister III 11
12 (3.1) C C id, id, coev, ev C C (3.1) C (). C (braiding),, Z C σ, : (, C) (3.2) σ,z (σ,z id ) (id σ,z ), σ, Z (id σ Z, ) (σ, id Z ) (braided monoidal category) (braided category) C σ σ, σ 1, σ, σ 1, (3.2) Z Z Z Z (3.3) Z Z Z Z 12
13 II III II σ 1, σ, id III f : g : σ, (f g) (g f) σ, (3.4) f g g f f g III Z Z Z Z (3.3) σ, (3.4) σ, (3.3) C σ, σ, σ, C (twist) θ : (3.5) θ σ, σ, (θ θ ), (θ ) θ (, C) (ribbon category) (3.5) A : S 1 [0, 1] R 3 13
14 S 1 {1/2} A (blackboard framing) (3.6) II III I Reidemeister I : I, II, III C C ev ev σ, (θ id ), coev (id θ ) σ, coev ev coev (3.7) θ θ 1 14
15 1 (3.7) (3.6) (3.5) 3.4 C C L D D (3.1) L D C 1 1 F (D) End C (1) F ( ) coev coev id σ, id σ 1, id id id σ, id ev ev (ev ev ) (id σ, id ) (σ 1, id id ) (id σ, id ) (coev coev ). F (D) D II III (3.7) I L : F (D) 3.3. L L *1 *1 L : F (D) L (3.1) F (D) Turaev [Tur94] C C-colored ribbon graph I, II, III 15
16 C C L F (D) C k (linear category) Hom C (, ) k k- C (3.8) θ λ id ( λ k) C k L D F (D) End C (1) D II III I w(d) ( D ) () D D F (D ) λ F (D), w(d ) w(d) + 1 F (D) w(d) I 3.4. C L D P (L) : λ w(d) F (D) End C (1) L k H k : H H H ε : H k (h) h (1) h (2) (Sweedler notation) H- h (v w) h (1) v h (2) w (h H, v, w ) 16
17 H- k ε H- h H (h (1) ) h (2) h (1) (h (2) ), ε(h (1) )h (2) h ε(h (2) )h (1) H (H,, ε) (bialgebra) H H- H M k H S : H H h H S(h (1) )h (2) ε(h)1 H h (1) S(h (2) ) H (Hopf algebra) H H- H M fd H M fd : Hom k (, k) (h f)(v) f(s(h)v) (h H, f, v ) H- H R a i b i H H H- (4.1) σ, :, σ, (v w) b i w a i v (v, w ) σ {σ, } H M R (h (1) h (2) ) R 1 h (2) h (1) ( h H), ( id)(r) R 13 R 23, (id )(R) R 13 R 12 R 12 a i b i 1, R 13 a i 1 b i, R 23 1 a i b i R R- (universal R-matrix) (ribbon Hopf algebra) R- R a i b i H θ H (4.2) S(θ) θ, (θ) R 21 R(θ θ) (R 21 b i a i ). H- H M fd (4.1) (4.3) θ (v) θ v (v H M fd ) (4.2) (4.3) (3.5) H 4.1. q U q (sl 2 ) K, K 1, E, F KK 1 1 K 1 K, KEK 1 q 2 E, KF K 1 q 2 F, EF F E (q q 1 ) 1 (K K 1 ) C(q) (E) E K + 1 E, (F ) F 1 + K 1 F, (K) K K, ε(e) ε(f ) 0, ε(k) 1 U q (sl 2 ) q e h/2 h R- well-defined U q (sl 2 )
18 4.2. Lie gl(1 1) U q (gl(1 1)) 3 U q (gl(1 1)) U q (gl(1 1)) [Sar14] self-contained C C Z(C) C e : ( C) (, e) e( ) (id e ) (e id ) (, C) (cf. (3.2)) Z(C) f : (, e) (, e ) C f : e e C (, e) (, e ) : (, ẽ), ẽ() (id e ) (e id ) ( C) C Z(C) σ (,e),(,e ) e k- R R- ec (Schauenburg [Sch01a]) Drifeld double. C H Drinfeld double D(H) H H D(H) R- H M D(H) M D(H) q q C \ {0, ±1} U q (sl 2 ) q C 1 N N > 1 U q (sl 2 ) U q : U q (sl 2 )/(K N 1, E N, F N ) (K N 1, E N, F N ) U q U q (sl 2 ) K E U q A U q D(A) D(A) U q U q R- [Kas95] I.6 I.6 18
19 4.4. k 0 H Drinfeld double D(H) D(H) [S13] D(H) [Maj95, 9.3] (3.8) P ( ) dim k (H) (H ) [AFS09] N. Andruskiewitsch and. Ferrer Santos. The beginnings of the theory of Hopf algebras. Acta Appl. Math., 108(1):3 17, [BK01] B. Bakalov and A. Kirillov, Jr. Lectures on tensor categories and modular functors, volume 21 of University Lecture Series. American Mathematical Society, Providence, RI, [Kas95] C. Kassel. Quantum groups, volume 155 of Graduate Texts in Mathematics. Springer-erlag, New ork, [KL01] T. Kerler and.. Lyubashenko. Non-semisimple topological quantum field theories for 3- manifolds with corners, volume 1765 of Lecture Notes in Mathematics. Springer-erlag, Berlin, [Maj95] S. Majid. Foundations of quantum group theory. Cambridge University Press, Cambridge, [ML98] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-erlag, New ork, second edition, [Sar14] A. Sartori. The Alexander polynomial as quantum invariant of links. Arkiv för Matematik, [Sch01a] P. Schauenburg. The monoidal center construction and bimodules. J. Pure Appl. Algebra, 158(2-3): , [Sch01b] P. Schauenburg. Turning monoidal categories into strict ones. New ork J. Math., 7: (electronic), [S13] K. Shimizu and M. akui. Schrödinger representations from the viewpoint of monoidal categories. ariv:1312:5037. [Tur94]. G. Turaev. Quantum invariants of knots and 3-manifolds, volume 18 of de Gruyter Studies in Mathematics. alter de Gruyter & Co., Berlin,
2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c
GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,
Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q
Chern-Simons E-mail: [email protected] Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0
2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12
Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ
Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R
等質空間の幾何学入門
2006/12/04 08 [email protected] i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................
0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t
e-mail: [email protected] 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl
平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (
1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i
Dynkin Serre Weyl
Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................
k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+
1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)
Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x
7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)
四変数基本対称式の解放
Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)
(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)
,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)
1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,
2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)
Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona
Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,
Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),
1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0
Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo
Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,
Date Wed, 20 Jun (JST) From Kuroki Gen Message-Id Subject Part 4
Part 4 2001 6 20 1 2 2 generator 3 3 L 7 4 Manin triple 8 5 KP Hamiltonian 10 6 n-component KP 12 7 nonlinear Schrödinger Hamiltonian 13 http//wwwmathtohokuacjp/ kuroki/hyogen/soliton-4txt TEX 2002 1 17
sakigake1.dvi
(Zin ARAI) [email protected] http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (
CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.
1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann
* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *
* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m
, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n
( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally
I II
I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log
V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H
199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)
(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like
() 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)
category.dvi
1 2 2 3 3 6 4 13 5 15 6 16 7 19 8 24 9 28 1 1 (1.1). [Ka76] [Mac98] (1.2). (1.3). EilenbergMac Lane K K V V = Hom(V K)V VV V V = Hom(Hom(V K) K) η : V V ; x (ϕ x : p p(x)) η : V V V : V W F() : V W ; ϕ
SUSY DWs
@ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding
第5章 偏微分方程式の境界値問題
October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
2006年3月8日
18 21 1990 2004 2 2005 14 15 2004 1990 2005 2003 300 7 2 1 2005 1972 100 40 6 1972 2004 197 6,500 2004 21 59 100 65 2007 5 2005 30 1.8 535.89 348.33 187.56 2006 2006 5 1 30 1 30 46 46 1 46 1000kl 4 1 100kl
磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論
email: [email protected] May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear
I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;
21 1 http://www.ozawa.phys.waseda.ac.jp/index2.html ( ) 1. I = [a, b] R γ : I C γ γ(i) z 0 C \ γ(i) (1) ε > 0 φ : I B(z 0 ; ε) C (i) B(z 0 ; ε) γ(i) = (ii) (t, z) I B(z 0 ; ε) exp(φ(t, z)) = γ(t) z (2)
非可換Lubin-Tate理論の一般化に向けて
Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012
Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu
rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz
1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25
.. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t
Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,
,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)
A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B
9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
Kullback-Leibler
Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4
- 2 -
- 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -
2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1
1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4
1 (1) (2)
1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)
4/15 No.
4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem
compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1
014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β
Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x
Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x
