Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta

Size: px
Start display at page:

Download "Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta"

Transcription

1 Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta theta ( ) Λ ( ) August 9, 2000 Theta lifting of representations and geometry of nilpotent orbits". 1 1

2 Bernstein ( ( ) ( ) Chen-bo Zhu (NUS) ) 1 G ( ) G = SL n ;SO n ;Sp n ( ) G g G y g ffn g = fx 2 g j ad x g x 2 g ad x g N g N g (a) N g P(g) PN g (b) J = C [g] G C [g] G J + augmentation ideal ( ) I(N g )=J + C [g] g==g = SpecC [g] G μ : g! g == Ad G N g = μ 1 (0) (c) G N g N g G #N g = Ad G<1. (d) PN g Weyl #W h intersect.#(n g ; h) PN g Q 1»i»l P Ng (t) = (1 tm i+1 ) (1 t) dim g fm 1 ;m 2 ;::: ;m l g (l = dim h = rank g) g ( W ) 2 2 C [g] G Q fm i +1g l i=1 g cohomology l Poincaré (1 + i=1 t2mi+1 ) 2

3 (e) g f(x) f(@) h 2 C [g] G f(x) 2 J + f(@)h =0 h G H C [g] 'HΩJ (J = C [g] G ) h Ω f h f G C[N g ] 'H C [N g ] 'H' M 2Q + m fi( ) (m = dim fi( ) T ) T Q Q + 2 Q + fi( ) G m =dimfi( ) T [12] Example 1.1 G = SL n (C ) () Jordan () n () n Young Young ( ) Young f0g : (). 9 >= >; n Ad G C A 3 () z } n

4 f1; ;n 1g P Ng (t) = Q n k=1 (1 tk ) (1 t) n2 deg N g = n! =#S n Weyl SL n (C ) Weyl n Young Springer Weyl G R ( ) K R G R G R K R gr; kr g; k G R G C k K C kr gr # # ±1 gr = kr Φ pr g = k Φ p N g R = N g gr G R G R N p = N g p (G C ;K C ) ([27] ) N p K C K C Example 2.1 G R SU(p; q);so(p; q);sp(p; q) (1) G R = U(p; q) 3 U(p; q) U(p) glp M K R = ; g = k Φ p = Φ p;q U(q) gl q M q;p M p;q = M p;q (C ) p q K C = GL p (C ) GL q (C ) p = M p;q Φ M q;p ' M p;q Φ M Λ p;q N p = f(x; Y ) 2 M p;q Φ M q;p j (XY ) k =0 (9k 2 N)g 3 U(p; q) SU(p; q) 4

5 (2) G R = O(p; q) 4 O(p; q) ρ O(p) sop X K R = ; g = k Φ p = Φ O(q) so t q X fi X 2 M p;qff K C = O p (C ) O q (C ) p ' M p;q (C ) X 2 M p;q (C ) p p X t X N p = fx 2 M p;q (C ) j (X t X) k =0 (9k 2 N)g (3) G R = Sp(n;R) G R = Sp(n;C ) U(n; n) 5 ρ g K R = t g ρ 1 A g = k Φ p = fi g 2 U(n) ff t A ' U(n); fi A 2 gl nff Φ Sym n Sym n Sym n (C ) n n K C ' GL n (C ) p ' Sym n (C ) Φ Sym n (C ) Λ N p = f(x; Y ) 2 Sym n (C ) Φ Sym n (C ) j (XY ) k =0 (9k 2 N)g (G C ;G R ) 6 ([27]) Kostant- Kostant- N g R N p (a) #N g R = Ad G R < 1; #N p = Ad K C < 1 (b) K # G C ( ) K # K C N p 7 K # C[p] K # + C [N p ] K # p K # C [N p ] ' X Φ fl m fl fl (m fl =dimfl M # ) 4 5 (GC ;KC) 6 gr igr 7 K # 2 4 ([26]) 5

6 3 3 fl K # pr ( ) ar M # = Z K# (ar) (ar K # ) fl M # fl M # ( ) (G C ;K C ) N p Kostant-Rallis [13] (c) Kostant- ([27]) N g R = Ad G R N p = Ad K C N g R = Ad G R bijective ψ! N p = Ad K C O R ψ! O # O R O # O C O C =AdG C (O R )=AdG C (O # ) O R O C ( dim R O R =dim C O C ) O C gr O # O C (2 dim C O # =dim C O C ) O C p (d) Kostant- KS- Kronheimer [14], Vergne [29] O R ψ! O # K R 8 Schmid-Vilonen [24] core K R C(O R ) ρo R C(O # ) ρo # (1) K R C(O R ) ' C(O # ) ; (2) O R ' T C(O R)O R ( ) O # ' T C(O# )O # 3 N g R N p 8 KR GR KC 6

7 G R ( ) K R Verma Borel-Weil Schur G R (ß; H) G R K R H K H K G R gr (K R ; g) g! g ( ) g U(g) (ß; H K ) U(g) ß : G R (1 ) =) (ß; H K ):(g;k R ) =) U(g) ß ß ß H K H Harish-Chandra Vogan, Schmid, Wallach g " g U(g) Definition 3.1 ( ) U(g) I (primitive ideal) U(g) M I = Ann M = fx 2 U(g) j Xm = 0 (8m 2 M)g G R ( ) ß K R U(g) H K I ß 9 Barbasch ([1]) 7

8 U(g) X 2 U(g) ( ) g G R S(g) ' C [g Λ ] I ß S(g) gr I ß gr I ß Theorem 3.2 I ß gr I ß G C V(gr I ß )=O C ß (9O C ß 2N g = Ad G) V(J) J Z(g) gr I ß S(g) G C + N g V(gr I ß ) I ß G C Borho-Brylinski, Joseph ([3], [4], [9]) 1980 G R g U(g) ß K C gr ß gr ß gr U(g) = S(g) Ann (gr ß) S(g) Definition 3.3 ( ) (ß; H) G R Ann (gr ß) K C AV (ß) = V(Ann (gr ß)) ß (associated variety) 10 gr Ann O C ß Theorem 3.4 G R (ß; H) N p K C O i (1» i» r) O i AV (ß) = r[ i=1 O i 10 V(gr I ß )=V(gr (Ann ß)) I ß U(g)=I ß 8

9 O i O i Ad G C (O i )=O C ß (8i) Vogan ([30], [31]) G R ( ) N p K C K C ( ) Definition 3.5 ( ) (ß; H) (g;k R ) M =grh A = S(g) AV (ß) = supp M = V(Ann M) = [ r i=1o i supp M O i P i M Pi P i M Pi A Pi m i AC (ß) = rx i=1 ß (associated cycle) m i [O i ] (m i = length APi M Pi ) Remark 3.6 2O i K C (K C ) m i (K C ) ( ) PM =0(P = P 1 ) m =dim C M =m( )M ( M 2O= O 1 m( ) ) (K C ) M =m( )M Example 3.7 (1) ß G R ß O C ß = f0g AV (ß) =f0g AC (ß) =dimß [f0g] (2) Q R ff ß =Ind G R QR ff O C ß =Ad(G C )n; AV (ß) =N p AC (ß) =dimff N p = 9 n =(q ) X O:max.dim dim ff [O]

10 (3) (G R ;K R ) Hermite K C p = p + Φp pr G R =K R p G R =K R G R ß G R =K R L 2 G R K R fi ß K 3.2 O C ß =Ad(G C )p + =Ad(G C )p AV (ß) =p + AC (ß) =dimfi [p + ] G R ß ß G R ( ) G R Harish-Chandra G R ß (wave front set) ß T Λ G R ß ß g Λ R Ad G R ( ) Ad Λ G R ß N g R ([7], [22]) WF (ß) Barbasch-Vogan ([2]) Fourier Fourier Fourier (asymptotic support) 11 AS (ß) AS (ß) = supp (Fourier-transf.( ß )) = Ad G C (O R i )=O C ß (8i) ([22]) r[ i=1 O R i (O R i 2N g R = Ad G R) Theorem 3.8 (Rossmann) G R WF (ß) =AS (ß) ß 11 Fourier (Rossmann [22]) 10

11 Kostant- Schmid-Vilonen [25] Theorem 3.9 (Schmid-Vilonen) ß G R AV (ß) AS (ß) Kostant- Fourier Schmid-Vilonen AC (ß) k P i m i[o i ] Kostant- ψ! ψ! Asympt.Cycle (ß) k P m i i[o R i ] 4 theta G R = Sp N (R) G R (G R ;G 0 R ) dual pair G R 12 G R ;G 0 R Lie G R G R = Sp N (R) [ [ G 0 R (G R ;G 0 R) : dual pair Example 4.1 dual pair G 0 R Hermite G R G R G 0 R Sp (p+q)n (R) Sp (p+q)(r+s) (R) Sp (p+q)2n (R) O(p; q) Sp n (R) U(p; q) U(r;s) Sp(p; q) O Λ (2n) G R = Sp N (R) Weil ( metaplectic Segal-Shale-Weil ) Ω 12 G R dual pair [23] 11

12 N p ( ) Ω=Ω + Φ Ω : ; O C Ω ± = O C min; AV (Ω ± )=O min Weil 13 (5.1) Weil [32], [10], [8], [21] [34] Definition 4.2 ß 2 c GR ;ß 0 2 c G 0 R theta Ω ß Ω ß 0 G R G 0 R ß theta corr. ψ! ß 0 () 9G R G 0 R-morphism : Ω ß Ω ß 0 ß = G 0 R!G R (ß0 )= (ß 0 ) ß ß 0 theta well-defined ß 0 ß theta Howe [8] p theta Howe duality correspondence, dual pair correspondence Example 4.3 (1) G 0 R G R G R Hermite ß 0 G 0 R ß = (ß0 ) (2) dual pair (G R ;G 0 R )=(Sp n(r);o(p)) ß = (ß 0 ) 2n <p ß n>2p ß theta? ß; ß 0 AC (ß 0 )= X i AC (ß) = X j m 0 i[o 0 i ] m j [O j ] O0 i 2N p 0=K 0 C O j 2N p =K C 13 Weil 12

13 Problem 4.4 ß; ß 0 theta ( ) 9 : O 0 i ψ! O i fm j g fm 0 ig? Przebinda, Trapa theta ([28], [6]) ß 0 (G 0 R ) theta 5 theta W = C n Hermite ( ; ) W R 2n W R W R W ( ; ) W R hu; vi =Im(u; v) (u; v 2 W R ) G R = Sp N (R) = Sp(W R ) G R Lie G Cartan G = K Φ P; P = P + Φ P ( 2.1 ) G R Cartan g = k Φ p (G 0 R ) p Φ p 0 ρ P Cartan p; p 0,! P P Λ! p Λ ; p 0Λ G AdG C P Λ ' P Weil : AV (Ω) = O min ρ P Λ. W=f±1g ' O min O min ρ Sym N (C ) ' P + ( 2.1 (3) ) O min = fx 2 Sym N (C ) j rank X =1gρP; O min = O min f0g (5.1) W O min W 3 w 7! w tw 2 O min ρ Sym N (C ) (w ) '; ψ 13

14 W A '? AA ψ O A min ff AU p p 0 O min! p P! p O min W = C N G R K R = U(N) K R K 0 R ρ K R K C K 0 C ρ GL N(C ) = K C W Lemma 5.1 ([18], [19]) '; ψ K C ;K 0 C ' : W! '(W ) ρ p K 0 C ψ : W! ψ(w ) ρ p0 K C Im ' ' W==K 0 C ; Im ψ ' W==K C Example 5.2 O(p; q) Sp n (R) ρ Sp (p+q)n (R) W = M p;n (C ) Φ M q;n (C ); p = M p;q (C ); p 0 =Sym n (C ) Φ Sym n (C ) W = M p;n (C ) Φ M q;n (C ) 3 (A; B) '(A; B) =A t B; ψ(a; B) =( t AA; t BB) W = M p;n Φ M q;n 3 (A; B) ' Ψ A t B 2 p = M Sym n Φ Sym n = p 0 3 ( t AA; t BB) dual pair (G R ;G 0 R) G 0 R Hermite (G R ;G 0 R ) stable range stable range stable range Hermite 3 14

15 G 0 R 3 G R G R G 0 R stable range Sp (p+q)n (R) O(p; q) Sp n (R) 2n <min(p; q) Sp (p+q)(r+s) (R) U(p; q) U(r;s) r + s<min(p; q) Sp (p+q)2n (R) Sp(p; q) O Λ (2n) n<min(p; q) Definition 5.3 ( theta ) O 0 N p 0 K 0 C N p K C ' ffi ψ 1 (O 0 )=O O ρ p O 0 ρ p 0 theta O = (O 0 ) ' ffi ψ 1 (O 0 ) = O O dual pair K C O ( ) ± = ψ 1 (O 0 ) ρ W K C KC 0 ' : W! '(W ) ( ) '(±) ' ±==KC 0 K C p K C O O'±==K 0 C ; C [O] =C [±] K0 C ; ±=ψ 1 (O 0 ) Example 5.4 U(2; 3)! U(5; 5) theta U(p; q) Young ( [5] ) Jordan ( Hermite (p; q) ) O(p; q) Sp(p; q) U(p; q) p + q + p q Young ± theta U(r;s)! U(p; q) (r;s) Young ( 0 ) (p + q) (r + s) 15

16 + +! theta x4 x5 G 0 R G R theta Theorem 6.1 ([16], [33], [17]) dual pair (G R ;G 0 R ) G R Hermite (G R ;G 0 R) stable range G 0 R ß 0 theta ß = (ß 0 ) theta O 1 = (f0g) AC (ß 0 ) = dim ß 0 [f0g]; AC (ß) =dimß 0 [O 1 ] Dim ß = dim O 1 ; Deg ß =dimß 0 deg O 1 Dim ß Gelfand-Kirillov Deg ß Bernstein Remark 6.2 G 0 R p ( ) G 0 R [16] [33] G 0 R ß0 ( ) ([17]) ß 0 stable range stable range stable range theta ([15] ) stable range dual pair (G R ;G 0 R) p theta Theorem 6.3 ([17], [20]) dual pair (G R ;G 0 R) p stable range G 0 R Hermite ß0 fi 0 ß 0 K 0 R ß = (ß0 ) theta O 0 ρ p

17 p 0+ = AV (ß 0 ) K 0 C Ohol = (O 0 ) theta AC (ß 0 ) = dim fi 0 [p 0+ ]; AC (ß) =dimfi 0 [O hol ] Dim ß = dim O hol ; Deg ß =dimfi 0 deg O hol Conjecture 6.4 dual pair (G R ;G 0 R ) stable range G0 R ß 0 O 0 AC (ß 0 )=m 0 [O 0 ] ß = (ß 0 ) AC ( (ß 0 )) = m 0 [ (O 0 )] Remark 6.5 U(p; q) U(r;s) ß = (ß 0 ) ([28]) theta open 7 G R 7.1 theta N p 0 KC 0 f0g theta (stable range ) theta O 1 2-step G 0 R stable range 2-step 15 (O(p; q);sp n (R)) C [O 1 ] [17], [18], [19], [20] Example 7.1 (G R ;G 0 R) = (O(p; q);sp n (R)) (2n < p; q) p = M p;q K C = O(p;C ) O(q;C ) O(p;C ) O(q;C ) ( 2.1 ) 15 17

18 O 1 = G 0!G (f0g) ρn p theta O 1 = fx 2 M p;q j rank X = n; X t X =0; t XX =0g; O 1 = fx 2 M p;q j rank X» n; X t X =0; t XX =0g dterminantal variety K C = O(p;C ) O(q;C ) C [O 1 ] ' X Φ 2P n ff p ( ) ff q ( ) P n = f =( 1 ;::: ; n ) j 1 n 0g n ff p ( ) O(p;C ) O 1 K C 7.2 theta O 0 ρ p 0 + ( ) theta ([17], [18]) p 0 + K0 C O0 O hol = (O 0 ) ρ p theta 3-step Example 7.2 (continued) p 0 + = Sym n (C ) K 0 C = GL n(c ) O 0 ρ Sym n (C ) O 0 = fx 2 Sym n (C ) j rank X = ng theta O hol ρ p = M p;q (C ) O hol = G 0!G (O 0 )=fx 2 M p;q j rank X = n; rank X t X = n; t XX =0g O hol = fx 2 M p;q j rank X» n; t XX =0g O hol K C = O(p;C ) O(q;C ) O hol O(p;C ) GL(q;C ) O hol ([20]) C [O hol ] ' X Φ 2P n ff p ( ) fi q ( ) fi q ( ) GL q (C ) O(p;C ) GL(q;C ) O hol K C [O hol ] 18

19 ([11], [20] ) Example 7.3 (continued) p dego hol = 1 V V = n! Y Z 0»i<j<n jd (x)d (x)j(x p+q 3n Dn An 1 1 x n ) dx; Ω n (j 2 i 2 )(j i) x =(x 1 ;::: ;x n ) D An 1 (x) = Y D Dn (x) = Ω n = fx j Y X Y 0»i<n»j<p=2 1»i<j»n 1»i<j»n 1»i»n (x i x j ); (j 2 i 2 ) (x i x j )(x i + x j ); x i» 1;x i 0(8i)g Y 0»i<n»j»q (j i) References [1] D. Barbasch, The unitary dual for complex classical Lie groups. Invent. Math. 96(1989), [2] D. Barbasch and D. A. Vogan, Jr., The local structure of characters. J. Funct. Anal. 37(1980), no. 1, [3] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules, Invent. Math. 69 (1982), no. 3, [4] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. III. Characteristic varieties of Harish-Chandra modules and of primitive ideals, Invent. Math. 80 (1985), no. 1, [5] David H. Collingwood and William M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold [6] A. Daszkiewicz, W. Kraśkiewicz and T. Przebinda, Nilpotent orbits and complex dual pairs. J. Algebra 190(1997), [7] R. Howe, Wave front sets of representations of Lie groups. In Automorphic forms, representation theory and arithmetic (Bombay, 1979), , Tata Inst. Fundamental Res., Bombay, Bombay,

20 [8] R. Howe, Transcending classical invariant theory. J. Amer. Math. Soc. 2(1989), no. 3, [9] A. Joseph, On the associated variety of a primitive ideal. J. Algebra 93(1985), [10] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, [11] Shohei Kato and Hiroyuki Ochiai, The degrees of orbits of the multiplicity-free actions. To appear in Astérisque. [12] B. Kostant, Lie group representations on polynomial rings. Amer. J. Math., 86(1963), [13] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces. Amer. J. Math., 93(1971), [14] P. B. Kronheimer, Instantons and the geometry of the nilpotent variety. J. Differential Geom. 32(1990), [15] J.-S. Li, Singular unitary representations of classical groups, Invent. Math., 97 (1989), [16] Kyo Nishiyama, Hiroyuki Ochiai and Kenji Taniguchi, Bernstein degree and associated cycles of Harish-Chandra modules Hermitian symmetric case. Kyushu University Preprint Series in Mathematics, To appear in Astérisque. [17] Kyo Nishiyama and Chen-bo Zhu, Theta lifting of holomorphic discrete series. The case of U(p; q) U(n; n). (submitted for publication). [18] Kyo Nishiyama, Theta lifting of two-step nilpotent orbits for the pair O(p; q) Sp(2n; R). In H. Heyer, T. Hirai and N. Obata (eds.), Infinite Dimensional Harmonic Analysis", Transactions of a Japanese-German Symposium held from September 20th to 24th, 1999 at Kyoto University, pp , Kyoto [19] Kyo Nishiyama, Multiplicity-free actions and the geometry of nilpotent orbits. To appear in Math. Ann. [20] Kyo Nishiyama, Theta lifting of holomorphic discrete series II. In preparation. [21] R. Ranga Rao, On some explicit formulas in the theory of Weil representation. Pacific J. Math. 157(1993), [22] W. Rossmann, Picard-Lefschetz theory and characters of a semisimple Lie group. Invent. Math. 121(1995), [23] H. Rubenthaler, Les paires duales dans les algébres de Lie réductives. Astérisque No. 219, (1994), 121 pp. [24] W. Schmid and K. Vilonen, On the geometry of nilpotent orbits. Asian J. Math. 3(1999),

21 [25] W. Schmid and K. Vilonen, Characteristic cycles and wave front cycles of representations of reductive Lie groups. Ann. of Math. (2) 151(2000), [26] Jiro Sekiguchi, The nilpotent subvariety of the vector space associated to a symmetric pair. Publ. Res. Inst. Math. Sci. 20(1984), [27] Jiro Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair. J. Math. Soc. Japan, 39(1987), [28] P. Trapa, Annihilators, associated varieties, and the theta correspondence, preprint, November [29] M. Vergne, Instantons et correspondance de Kostant-Sekiguchi. C. R. Acad. Sci. Paris Sér. I Math. 320(1995), [30] D. A. Vogan, Jr., Associated varieties and unipotent representations, in Harmonic analysis on reductive groups (Brunswick, ME, 1989), , Progr. Math. 101, Birkhäuser, Boston, Boston, MA, [31] David A. Vogan, Jr. The method of coadjoint orbits for real reductive groups. In Representation theory of Lie groups" (Park City, UT, 1998), , IAS/Park City Math. Ser., 8, Amer. Math. Soc., Providence, RI, [32] A. Weil, Sur certains groupes d'opérateurs unitaires. Acta Math. 111(1964), [33] Hiroshi Yamashita, Cayley transform and generalized Whittaker models for irreducible highest weight modules. To appear in Astérisque. [34] 4 Weil,

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Reductive Dual Pair Weil compact Weil Howe duality non-compact pair Sp(2n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kas

Reductive Dual Pair Weil compact Weil Howe duality non-compact pair Sp(2n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kas Reductive Dual Pair Weil compact (kyo@math.h.kyoto-u.ac.jp) Weil Howe duality non-compact pair Sp(n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kashiwara-Vergne] [Howe4, Howe6] 3 (?) x7 Gelfand-Kirillov

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad 1. GL(n GL(n Lie GL(n, C Lie 1 Lie G = GL(n, R GL(n, C G G X M(n, C ϕ(x d dt ϕ(xetx t=0 = d dt ϕ(x + txx t=0 M(n, C C (i, j 1 0 E ij ( n ν, µ=1 x νµe νµ E ij = n ν=1 x νie νj (1.1 E ij = Lie n x νi x ν=1

More information

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) 20 10 29 Recently, there are several successful attempts on the classification of

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

Bruhat

Bruhat SGC - 77 Bruhat ([22]) 3 3.11 2010 4 ii 1 1 1.1... 1 1.2... 5 1.3... 8 1.4 1... 11 1.5 2... 14 2 18 2.1... 18 2.2... 25 2.3... 30 3 36 3.1... 36 3.2... 42 3.3... 49 3.3.1... 49 3.3.2... 50 3.3.3... 52

More information

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α 2018 : 2018 21 msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald 1.1. Weyl Demazure. g, h Cartan, Q := i I Zα i h root lattice, Q + := i I Z 0α i Q, P := i I Zϖ i h g weight lattice ;, ϖ i h, i I,

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

四変数基本対称式の解放

四変数基本対称式の解放 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

取扱説明書

取扱説明書 TK-110 c OP 168 PGM OP PGM 019^. É E y x u - v m r R t Å P # o d i c k +}*? CASIO TK-110!23$56'890 1234%678 y r 100V 31 1 2 ) 3 ) +- 1 2 3 4+- 5 ) ) 1 2 3 4 5 6 7 ) 1i 7 8 9!P o o!q ) ) ) ) ) ) ) @

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P 15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard

More information

C TK-2500

C TK-2500 C TK-2500 n n n n n n n n n n n n n n n n n m OP PGM r N j j L J j R j n j j d j A j m j t j j y j Å j j j x w j j 1 9 0^. E j e j o j É j T j r j $ $ j $ $ j K j j j c j k j g j j j j j l 1 2 1 2

More information

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹ (kaji@math.sci.fukuoka-u.ac.jp) 2009 8 10 R 3 R 3 ( wikipedia ) (Schubert, 19 ) (= )(Ehresmann, 20 ) (Chevalley, 20 ) G/P: ( : ) W : ( : ) X w : W X w W G: B G: Borel P B: G/P: 1 C n ( ) Fl n := {0 V

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. ( ) ( ) 2012/07/14 1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. 1.2 ( ) ( ): M,. : (Part II). 1 (Part III). : :,, austere,. :, Einstein, Ricci soliton,. 1.3 : (S,

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

取扱説明書

取扱説明書 C TE-5000/TK-5000 n n 14-0% n n n n n n n n n n n m OP M PGM L J w x F f - r p P m t Å v u M 1 9 0 ^. R " d E ß Í ß Í i c L J r t R E Å x u v m É 1 9 0 ^. d i c w l r n n n n n n n n 1 2 m n n m n

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7.,. 1 1 3 1 3 5 6 3 5 7 6 5 1 1 3 1 1: RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,.. . (, )., i f i ( ). f 0 ( ),

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

, 0 = U 1 (g) U 0 (g) U 1 (g)..., U(g) = p U p (g) U p (g)u q (g) U p+q (g), [U p (g), U q (g)] U p+q 1 (g). U(g) PBW,. Associated graded algebra gr U

, 0 = U 1 (g) U 0 (g) U 1 (g)..., U(g) = p U p (g) U p (g)u q (g) U p+q (g), [U p (g), U q (g)] U p+q 1 (g). U(g) PBW,. Associated graded algebra gr U W ( ) 1. ( )W Kac-Moody Virasoro,,,,, 4, Langlands.,, W., W, W ([A1, A2, A3, A7]). Premet[Pre] W ( )W, Kostant[Kos]. W Slodowy, primitive ideal. Premet Losev[Los2]. primitive ideal. W. ( )W Losev. Kac-Moody

More information

untitled

untitled 18 18 8 17 18 8 19 3. II 3-8 18 9:00~10:30? 3 30 3 a b a x n nx n-1 x n n+1 x / n+1 log log = logos + arithmos n+1 x / n+1 incompleteness theorem log b = = rosário Euclid Maya-glyph quipe 9 number digits

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

R Φ : R G,G A G Φ Φ R Φ 1 (A) G A Φ 1 (A) R R Φ 1 (A) Φ 1 (A) (R, Φ, G) R G R R R R G σ R σ (R 1, Φ 1, G 1 ) D 1 (R 2, Φ 2, G 2 ) D 2 φ D 2 f f φ Φ σ

R Φ : R G,G A G Φ Φ R Φ 1 (A) G A Φ 1 (A) R R Φ 1 (A) Φ 1 (A) (R, Φ, G) R G R R R R G σ R σ (R 1, Φ 1, G 1 ) D 1 (R 2, Φ 2, G 2 ) D 2 φ D 2 f f φ Φ σ [ 2016.11.11,12,16,17,18] [2016.11.3,4,5,6,7,8,9,10] K K K P 2 Winkelmann P 2 D D D C2 X X U p V p ϕ p U p U q ϕ q ϕ 1 p : ϕ p (U p U q ) ϕ q (U p U q ) X 1 R Φ : R G,G A G Φ Φ R Φ 1 (A) G A Φ 1 (A) R

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec l Wel (Yoch Meda) Graduate School of Mathematcal Scences, The Unversty of Tokyo 0 Galos ([M1], [M2]) Galos Langlands ([Ca]) K F F q l q K, F K, F Fr q Gal(F /F ) F Frobenus q Fr q Fr q Gal(F /F ) φ: Gal(K/K)

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0)D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C Thomas [22] Bridgeland K3 2 Harder- Narasimhan 2.1 2.1.

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

取扱説明書

取扱説明書 TK-200 c OP PGM OP PGM y x f u - v m r R t Å 19 0^. o d i c k w P E 1234%678 1234%678 y r 100V 31 1 2 ) ) 1 2 3 4 5 6 7 5 6 7 8 J J 9 1 2 3 4 ) ) ) ) ) ) @ 1 2 3 1 1 1 y 0 y 2 0 y 0 3 2 y 0 e08 @

More information