1 1 ( ) ( % mm % A B A B A 1

Size: px
Start display at page:

Download "1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1"

Transcription

1 [email protected]

2 1 1 ( ) ( % mm % A B A B A 1

3 B boy W ID DI DII DIII OL OL

4

5 Excel 3 Excel 3.1 sum,mean,max,min,round,if... Σ [ ] 4

6 SUM =sum( =sum(a1:a5) AVERAGE sum MAX MIN 1 ROUND =round( ) =round( ,2) =round(b1,3) 1 5

7 IF =if( =if(a1>2,1,0) =if(a1=1,, ) 3.2 > > > > > > > 2 DATA01 2 = ( 2 /10000) 22 x ( 5 <= x <= 5 abs(x) <= 5) (x < 5 x > 5) 3 Word 2 3 6

8 3.3 DATA02 > > ( D)=Sheet1!A1:E7 =a1:e7) > > > 7

9 ( D)=Sheet1!A1:E7 =a1:e7) 8

10 専 攻 人 数 クラス1 クラス2 クラス3 クラス 中 国 語 韓 国 語 英 語 フランス 語 ドイツ 語 イタリア 語 言 語 3 4 DATA DATA01 9

11 階 級 度 数 累 積 度 数 相 対 度 数 累 積 相 対 度 数 % 18% % 38% % 66% % 90% % 94% % 100% 5 / 6 / 25 ヒストグラム 20 度 数 階 級 の 下 限 7 DATA

12 5 8 ( ) 9 () 10 () x = 1 n n x i = x 1 + x x n n n (x i x) = x 3 3. {x 1, x 2,, x t } t t 11

13 3 4 x t = x t 1 + x t + x t 3 x t = x t 1 + x t + x t+1 + x t+2 4 { x 2, x 3,, x n 1 } { x 3, x 4,, x n 2 } TOPIX 4 日 付 終 値 3 項 移 動 平 均 5 項 移 動 平 均 7 項 移 動 平 均 18/04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /04/ /03/ /03/ /03/ TOPIX 4 Yahoo Japan Finance TOPIX 12

14 1, , , 終 値 3 項 移 動 平 均 半 月 移 動 平 均 一 ヶ 月 移 動 平 均 1, , , /2/7 06/2/22 06/3/9 06/3/24 06/4/8 TOPIX 4. x = n x 1 x 2 x n 1 x n 3 r 1 = 23%, r 2 = 27%, r 3 = 28% 10 R = (1 + r 1 )(1 + r 2 )(1 + r 3 ) 1 1 r = 3 (1 + r 1 )(1 + r 2 )(1 + r 3 ) 1 26% 13

15 % 10 r r = R 1 = % 25% r 3 (1 + r) 3 = (1 + 26%) (1 + 26%) (1 + 26%) DATA

16 Excel median 11 15

17 12 7 X = {4, 7, 2, 30, 9, 7, 1} X = {1, 2, 4, 7, 7, 9, 30} , 90, 10, 110, mode X = {2, 3, 2, 4, 6, 4, 6, 6, 7} range 16 R = max(x) min(x) 17 X = {2, 3, 2, 4, 6, 4, 6, 6, 7} X 2 7 = 7 2 = 5 16

18 7.4 mean deviation 18 X = {x 1, x 2,, x n } d = n x i x n = x 1 x + x 2 x + + x n x n x 19 X = {x 1, x 2,, x 10 } = {2, 3, 2, 4, 6, 4, 6, 6, 3, 4} x = = d = 10 = = x 7/5 7.5 Excel max( -min( 20 max(a1:a10)-min(a1:a10) MEDIAN( ) 21 =MEDIAN(a1:a10) MODE( ) 22 =MODE(a1:a10) 17

19 8 8.1 Variance) 23 S 2 = = n (x i x) 2 n n x2 i n x 2 = (x 1 x) 2 + (x 2 x) (x n x) 2 n x P n x2 i n x 2 s 2 = n (x i x) 2 n 1 n 8.2 Standard Deviation 24 S = S 2 = n (x i x) 2 n S = s 2 = n (x i x) 2 n 1 18

20 8.3 5 Yahoo! , ), (0.003, ) (-0.003, ) 株 価 の 収 益 率 の 例 収 益 率 収 益 率 トヨダ 自 動 車 収 益 率 日 産 自 動 車 収 益 率 新 日 本 製 鐵 T 8.4 C.V. = S x 5 19

21 z i = x i S x S x x T i = zi 8.6 Excel S 2 =VARP( ) s 2 =VAR( ) S =STDEVP( ) s: =STDEV( ) 26 Yahoo

22 X Y Z S 2 = = n (x i x) 2 n n x2 i n x 2 = (x 1 x) 2 + (x 2 x) (x n x) 2 n x = = 3 3 n Sx 2 = (x i x) 2 n = ( 2) S 2 x = n x2 i n S 2 y = S 2 z = = (1 3)2 + (5 3) 2 + (3 3) 2 3 = = 2.67 x 2 = = 2.67 ( ) = ( ) = S 2 z > S 2 y > S 2 x. Z X 1, 5, 3 Z 15, 50,

23 X Y Z 28 X = {x 1, x 2,, x 100 }, Y = {y 1, y 2,, y 100 }, Z{y 1, y 2,, y 100 } 0 1, 3, DATA

24 9.1 DATA01 体 重 図 1 身 長 と 体 重 の 散 布 図 身 長 GDP( GDP cm cm 175cm 50kg kg

25 図 2 一 人 当 たりGDPと 乳 児 死 亡 率 乳 児 死 亡 率 一 人 当 たりGDP 1: GDP SNA 9.3 X Y S xy X Y ρ xy X Y S xy = 1 n = 1 n n (x i x) (y i ȳ) n x i y i xȳ 30 24

26 ρ xy = S xy S x S y = 1 n n 1 n n (x i x) (y i ȳ) n (x i x) 2 1 n (y i ȳ) 2 n (x i x) (y i ȳ) (x i x) 2 n (y i ȳ) 2 n 1 ρ

27 ρ xy = ρ xy = ρ xy = ρ xy = ID a b c d e f g h i j (g) (kg)

28 (kg) (g) 5 ρ xy = x = {4, 3, 5, 1, 5}, y = {1, 3, 3, 0, 1} x y Excel 1. =COVAR( 1 2 ) 2. =CORREL( 1 2 ) DATA

29 10.1 x, y y = a + bx x y a = 3, b = 2 y = 3 + 2x x = 0 y = = 3, x = 2 y = = 7..., 4 x y y x

30 学 籍 番 号 身 長 (cm) 体 重 (kg) 体 重 身 長 29

31 Ìd W e i g h t H e i g h t g x y x i y i, i = 1, 2, 3,..., 12. ŷ = a + bx d i = y i ŷ = y i (a + bx i ) 30

32 S 12 S = (y i (a + bx i )) 2 S = n (y i (a + bx i )) 2. (1) 35 ( ) S b = n x iy i n xȳ n x2 i n x2 (2) a = ȳ b x (3) 11 a b S a b 1 ( n n ) ( n ) S = yi 2 + na 2 + b 2 + x i 2ab x 2 i ( n ) ( n ) y i 2a x i y i 2b (4) x i y i 3 a a ( ( n ) ( n ) S = na 2 y i 2a + x i 2ab ( nȳ 2 2nb xȳ + nb 2 x 2)) + ( nȳ 2 2nb xȳ + nb 2 x 2) + ( n n yi 2 + x 2 i ) ( n ) b 2 x i y i 2b S = n(a (ȳ b x))

33 S a = ȳ b x (5) 3 b b S = n x 2 i ( b S ( n x iy i a n x )) 2 i n + x2 i n x2 i b = ( n x iy i ) a n x i (6) 5 a 6 b = ( n x iy i ) n xȳ ( n x2 i ) n x2 (7) a = ȳ b x (8) 1 { S = 0 a S = 0 b

34 i x i y i x 2 i x i y i (x iy i ) 12 x i 12 y i 12 x2 i x ȳ b = ( n x iy i ) n xȳ ( n x2 i ) = = 0.80 n x a = ȳ b x = = ŷ = x 1cm 0.8kg 36 x = {2, 5, 6, 9}, y = {4, 6, 8, 9} 33

35 x, y y = a + bx x y a = 3, b = 2 y = 3 + 2x x = 0 y = = 3, x = 2 y = = 7..., 4 x y y x

36 12.2 学 籍 番 号 身 長 (cm) 体 重 (kg) 体 重 身 長 35

37 Ìd W e i g h t H e i g h t g x y x i y i, i = 1, 2, 3,..., 12. ŷ = a + bx d i = y i ŷ = y i (a + bx i ) 36

38 S 12 S = (y i (a + bx i )) 2 S = n (y i (a + bx i )) 2. (9) 37 ( ) S b = n x iy i n xȳ n x2 i n x2 (10) a = ȳ b x (11) 13 a b S a b 1 ( n n ) ( n ) S = yi 2 + na 2 + b 2 + x i 2ab x 2 i ( n ) ( n ) y i 2a x i y i 2b (12) x i y i 3 a a ( ( n ) ( n ) S = na 2 y i 2a + x i 2ab ( nȳ 2 2nb xȳ + nb 2 x 2)) + ( nȳ 2 2nb xȳ + nb 2 x 2) + ( n n yi 2 + x 2 i ) ( n ) b 2 x i y i 2b S = n(a (ȳ b x))

39 S a = ȳ b x (13) 3 b b S = n x 2 i ( b S ( n x iy i a n x )) 2 i n + x2 i n x2 i b = ( n x iy i ) a n x i (14) 5 a 6 b = ( n x iy i ) n xȳ ( n x2 i ) n x2 (15) a = ȳ b x (16) 1 { S = 0 a S = 0 b

40 i x i y i x 2 i x i y i (x iy i ) 12 x i 12 y i 12 x2 i x ȳ b = ( n x iy i ) n xȳ ( n x2 i ) = = 0.80 n x a = ȳ b x = = ŷ = x 1cm 0.8kg 38 x = {2, 5, 6, 9}, y = {4, 6, 8, 9} 39

41 x = {4, 6, 9}, y = {6, 6, 9} x y DATA03 Excel Excel Excel OK Y X OK 40

42 概 要 回 帰 統 計 重 相 関 R 重 決 定 R 補 正 R 標 準 誤 差 観 測 数 30 分 散 分 析 表 自 由 度 変 動 分 散 観 測 された 分 散 比 有 意 F 回 帰 残 差 合 計 係 数 標 準 誤 差 t P 値 下 限 95% 上 限 95% 下 限 95.0% 上 限 95.0% 切 片 X 値 y x 7 y = a + b x + u u a 94.4 b X y = x 17, 40 A 1 A = {... } 41 A = {2, 1, 5}, B = {3, 6, 5} A B A B A B = {2, 1, 5, 3, 6} A B A B A B = {5} 41

43 / / n n m n m/n p p p 42

44 A P (A) 0 P (A) 1 2. Ω P (Ω) = 1 3. A B A B P (A B) = P (A) + P (B) A B { { 4 1 1/4 47 A = { 2 }, B = { } P {A B}? 48 {A B} = { 2 } P {A B} = 1 49 C = { 2 } D = { 2 } 50 P (C D) C = { } D = { } C D C D = φ φ P {φ} = P {B} P {A B} = P {A} + P {B} ?{ 1 2 }?{ 1 2 }? 43

45 Excel Excel P = 0.5 OK X X = 0 0.5, X = x = 1 1 6, x = 2 1 6, X 0 1 0, 1, 2, 3, 4, 5, X x 1 x 2 x 3 x 4 P (x) P (x 1 ) P (x 2 ) P (x 3 ) P (x 4 ) x i P (x) P (x 1 ), P (x 2 )... x 44

46 F (x) {X x} F (x) = P ({X x}) F (x) = P ({X x}) = x i <x P (x i ) x x i F (x 3 ) = P (X x 3 ) = P (x 1 ) + P (x 2 ) + P (x 3 ) x i X E (X) E (X) = n x i P (x i ). X V (X) V (X) = E [ (X E (X)) 2] = n [ (xi E (X)) 2 P (x i ) ]. 53 () X P (x) X P (x) { P (x) = p P (x) = 1 p x = 1 x = 0 E (X) = 1 p + 0 (1 p) = p. V (X) = (0 p) 2 (1 p) + (1 p) 2 p = p 2 p 3 + p 2p 2 + p 3 = p p 2 45

47 F(x) p = F (x) = 1 p 1 x < 0 0 x < 1 x 1 46

48 F(x) p = 0.5 p = P (x) = C x np x (1 p) n x x = 0, 1, 2,..., n. Y i 0 p X = n ( n ) E (X) = E Y i = np V (X) = V ( n ) Y i = n(p p 2 ) C x n Cn x = P n x n!/ (n x)! = Px x x! n (n 1) (n 2) (n x + 1) = x (x 1) (x 2) 3 2 Y i 47

49 F (x) = x P (x i ) n x p = P (x) = e λ λ x p = λ/n. p = λ/n x! C x np x (1 p) n x = (n 1) (n 2) n n = n!/ (n x)! x! n n (n 1) n (n 2) n ( m ) x ( 1 m ) n x n n (n (x 1)) n x! ( m x 1 m ) n ( 1 m ) x n n ) x 1 ( 1 m n ) n e m n (n (x 1)) 1, ( 1 m n n n P (x) = e λ λ x x! E (X) = λ. V (X) = λ. F (x) = x P (x i ) n p 48

50 λ = 10 P (X 2) = F (2) = = e λ λ 0 0! 2 e λ i λ x i i=0 + e λ λ 1 1! x i! + e λ λ 2 2! = e ! = e ! + e ! p = 0.3, n = 10 P (6) Probability Density Funtion PDF x x x 1000 P (c) 6 = C c np c (1 p) n c x = 0, 1, 2,..., n. (17) 6 P (c), f (c), F (c) P (x), f (x), F (x) 49

51 f (c) = 1 σ (c µ) 2 2π e 2σ 2 (18) f (x) X c c

52 21 (Cumulative Distribution Function CDF) F (c) = P (X c) = c P (x i ) = c C x i n p x i (1 p) n x i x = 0, 1, 2,..., n. (19) 51

53 F (c) = P (X c) = c 1 σ (x µ) 2 2π e 2σ 2 dx (20) k k k F (x) c c c P (c) f (c) F (c) a b a < b X a b a b X 52

54 X c d c d X F (c) = P (X c) = c P (x i ) (21) F (c) = P (X c) = c f (x) dx (22) The area of this part F ( 1) 53

55 This value F ( 1) E (X) = n x i P (x i ). X V (X) V (X) = E [ (X E (X)) 2] = n [ (xi E (X)) 2 P (x i ) ]. E (X) = V (X) = E [ (X E (X)) 2] = xf (x) dx. (x E (X)) 2 f (x) dx. 54

56 22 1. P (x) = C x np x (1 p) n x x = 0, 1, 2,..., n. (23) x F (x) = P (x i ) (24) ( n ) E (X) = E Y i = np (25) ( n ) V (X) = V Y i = n(p p 2 ). (26) 2. f (c) = 1 σ (c µ) 2 2π e 2σ 2 (27) F (c) = 1 c σ e (x µ)2 2σ 2 dx (28) 2π 55

57 µ σ 2 E (X) = V (X) = = 1 σ 2π = µ = 1 σ 2π = σ 2 xf (x) dx c xe (x µ)2 2σ 2 dx (x µ) 2 f (x) dx c (x µ) 2 e (x µ)2 2σ 2 dx Excel Excel 10 p = x i, i = 1, 2,..., 100 x i 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, Excel p = 0.3, n = 6 P (3) C Excel 56

58 : 1 59 Excel p = 0.5, n = 10 x = 0, 1, 2,..., X 0 2 (1) 2 1 (2) 1 0 (3) P (X 1) P (X 0) f(0), f(1) 61 X 2 F ( 1) F (0) P (X 1) P (X 0) 57

59 : 58

60 Excel Cn x nc x = combin (n, x) C6 3 = combin (6, 3) P (x) = Cnp x x (1 p) n x x = 0, 1, 2,..., n. (29) x F (x) = P (x i ) (30) ( n ) E (X) = E Y i = np (31) ( n ) V (X) = V Y i = n(p p 2 ). (32) 2. µ σ 2 f (c) = 1 σ (c µ) 2 2π e 2σ 2 (33) F (c) = 1 c σ e (x µ)2 2σ 2 dx (34) 2π 59

61 3. P (x) = e λ λ x x! (35) p = λ/n E (X) = λ. (36) V (X) = λ. (37) 25 p n x P (x) = C x np x (1 p) n x x = 0, 1, 2,..., n. (38) P (x) = e λ λ x λ x x! (39) 26 1 X 0 2 (1) 2 1 (2) 1 0 (3) P (X 1) 60

62 P (X 0) f(0), f(1) X P (X c) P (X c) = F (c) = 1 σ 2π c e (x µ)2 2σ 2 dx (40) c P (X c) µ = 0 σ 2 =

63 27.1 E (X) = µ V (X) = σ 2 X X Z = X µ σ E (Z) = 0 V (Z) = 1 63 X µ = 0 σ 2 = 1 X 1.64 F (1.64) P (X 1.64) P (0 < X 1.64) X 1.64 P (X 1.64) = 0.95 P (0 < X 1.64) = P (X 1.64) P (X 0) P (X 0) P (X 1.64) P (0 < X 1.64) = P (X 1.64) P (X 0) = = X µ = 1 σ 2 = 4 X 4.28 µ = 1 σ 2 = 4 X µ = 0 σ 2 = 1 Z Z = X µ σ 2 = X 1 2 Z x = 4.38 x X z = x 1 = = P (X 4.28) = P (Z 1.64) =

64 28.1 X {X 1, X 2, X 3,..., X n } X E (X) µ V ar (X) = σ 2 65 (at random ) µ n X = 1 n X i σ 2 S 2 = 1 n 1 n (X i X) 2 X: 100 {X 1, X 2, X 3,..., X 100 } E (X) µ µ X = X i σ 2 S 2 = (X i X) 2 66 ( ) Γ γ E (γ) = Γ γ Γ 63

65 X S 2 µ σ 2 X E ( ( ) 1 n X) = E X i n = 1 n E (X i ) n X i X E (X i ) = µ = 1 n µ = µ. n ( ) X i µ σ 2 lim n X = µ. 68 ( ) Γ γ lim n γ = Γ γ Γ X µ

66 H 0 H H 0 H 1 : ( ) X i µ σ 2 n n X n( X µ) d N(0, 1). σ 31.3 σ σ σ

67 70 X 100 X = 175 σ = 10 µ 170 H 0 µ = 170 H 1 µ > 170 X µ = 170 σ = 10 N (170, 100) X 175 α 1% 5% µ = 170 n X Z 0 Z 0 1. H 0 µ = 170 H 1 µ > α α = 5% 3. α Z P (Z > Z ) = α Z P (Z > Z ) = 5% Z P (Z Z ) = 1 5% Z Z = Z 0 = n ( X µ ) /σ Z 0 = 100 ( ) /10 = 5 66

68 5. Z 0 Z Z 0 > Z Z 0 Z Z 0 = 5, Z = 1.65 Z 0 > Z µ = 170 µ > 170 Z 0 Z µ = % σ 2 = 9 25 X = 12 H 0 µ = 10 H 1 µ > 10 67

69 DATA01 µ 160 cm σ = σ 100 X = 3.2 cm σ 2 = 4 µ = 3 µ σ 2 X µ = 3 1. H 0 µ = 3 cm H 1 µ > 3 cm µ < 3 cm µ 3cm 2. α 1/2 α α = 5% 1/2 α = 2.5% 3. 1/2 α Z P (Z > Z ) = 1/2 α Z P (Z > Z ) = 2.5% Z P (Z Z ) = 1 2.5% z Z = Z 0 = n ( X µ ) /σ Z 0 = 100 (3.2 3) /2 = 1 68

70 5. Z 0 Z Z 0 > Z Z 0 < Z Z Z 0 Z Z 0 = 1, Z = 1.96 Z 0 < Z µ = 3 Z 0 Z Z µ = % 2.5%

71 , 9.3, 8, 7, 8.9, 9.8, 9.3, 9.2, 9, 8.9 α = 1% σ 2 = 4 37 σ n 37.1 σ σ n( X µ) σ d N(0, 1). σ σ σ s n( X µ) s n 1( X µ) s d N(0, 1) d t (n 1). 70

72 t (n 1) n 1 t n 1( X µ) t t n 1 t s 37.2 t t t t 3 t 37.3 σ σ t t σ 71 X 25 71

73 µ H 0 µ = 170 H 1 µ > α α = 5% 3. υ = n 1 υ = 25 1 = α n 1 t t t P (t > t ) = α t 24 t P (t > t ) = 5% t t = X s s 2 = n (x i x) 2 n 1 X = 175, s 2 = t 0 = n 1 ( X µ ) /s t 0 = 24 ( ) / t 0 4 t t 0 > t t 0 t t 0 = 2.5, t = 1.71 t 0 > t µ = 170 µ > cm 72

74 H 0 µ = µ 0 H 1 µ µ 0 2. α 1/2 α 3. υ = n 1 υ = 25 1 = /2 α n 1 t t t P (t > t ) = α t 5. X s s 2 = n (x i x) 2 n 1 6. t 0 = n 1 ( X µ ) /s 7. t 0 t t 0 > t t 0 < t t 0 t t 0 t 72 DATA01 9 µ > σ 73

75 100 X = 3.8 cm σ 2 = 4 µ = 3 µ σ 2 X µ = 3 1. H 0 µ = 3 cm H 1 µ > 3 cm µ < 3 cm µ 3cm 2. α 1/2 α α = 5% 1/2 α = 2.5% 3. 1/2 α Z P (Z > Z ) = 1/2 α Z P (Z > Z ) = 2.5% Z P (Z Z ) = 1 2.5% z Z = Z 0 = n ( X µ ) /σ Z 0 = 100 (3.2 3) /2 = 1 5. Z 0 z Z 0 > Z Z 0 < Z Z 0 Z Z 0 Z Z 0 = 1, Z = 1.96 Z 0 < Z µ = 3 Z 0 Z Z 74

76 µ = % 2.5% σ 4 10 cm, 12 cm, 15 cm, 9 cm 13 cm X = {3, 6, 9} Y = {2, 3, 8} 74 75

77 % [1] ˆb Y i = a + b X i (41) / n t ˆb (x i x) 2 t n 2 t Excel t 41.1 DATA03 Excel Excel 76

78 概 要 回 帰 統 計 重 相 関 R 重 決 定 R 補 正 R 標 準 誤 差 観 測 数 30 分 散 分 析 表 自 由 度 変 動 分 散 観 測 された 分 散 比 有 意 F 回 帰 残 差 合 計 係 数 標 準 誤 差 t P 値 下 限 95% 上 限 95% 下 限 95.0% 上 限 95.0% 切 片 X 値 y x 7 y = a + b x + u u a 94.4 b X y = x x t t p t p p [1] 2002) 77

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4 1234567 0.1234567 = 2 3 =2+3 =2-3 =2*3 =2/3 =2^3 1:^, 2:*/, 3:+- () =2+3*4 =(2+3)*4 =3*2^2 =(3*2)^2 =(3+6)^0.5 A12 =A12+B12 ( ) ( )0.4 ( 100)0.9 % 1 2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26

More information

statstcs statstcum (EBM) 2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2

statstcs statstcum (EBM) 2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2 (descrptve statstcs) 2010 9 3 1 1 2 2 3 2 3.1............................................. 3 3.2............................................. 3 4 4 4.1........................................ 5 5 6 6 -pvot

More information

2変量データの共分散・相関係数・回帰分析

2変量データの共分散・相関係数・回帰分析 2, 1, Excel 2, Excel http://hig3.net ( ) L04 2 I(2017) 1 / 24 2 I L04(2017-10-11 Wed) : Time-stamp: 2017-10-10 Tue 23:02 JST hig L03-Q1 L03-Q2 Quiz : 1.6m, 0.0025m 2, 0.05m. L03-Q3 Quiz : Sx 2 = 4, S x

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

統計的仮説検定とExcelによるt検定

統計的仮説検定とExcelによるt検定 I L14(016-01-15 Fri) : Time-stamp: 016-01-15 Fri 14:03 JST hig 1,,,, p, Excel p, t. http://hig3.net ( ) L14 Excel t I(015) 1 / 0 L13-Q1 Quiz : n = 9. σ 0.95, S n 1 (n 1)

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 例 題 で 学 ぶ Excel 統 計 入 門 第 2 版 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/084302 このサンプルページの 内 容 は, 第 2 版 発 行 当 時 のものです. i 2 9 2 Web 2 Excel Excel Excel 11 Excel

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

【補足資料】確率・統計の基礎知識

【補足資料】確率・統計の基礎知識 補 足 資 料 確 率 統 計 の 基 礎 知 識 2011 年 3 月 日 本 銀 行 金 融 機 構 局 金 融 高 度 化 センター 1 目 次 1. 基 本 統 計 量 (1 変 量 ) - 平 均 分 散 標 準 偏 差 パーセント 点 2. 基 本 統 計 量 (2 変 量 ) - 散 布 図 共 分 散 相 関 係 数 相 関 行 列 3. 確 率 変 数 - 確 率 変 数 確 率

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

Excel97関数編

Excel97関数編 Excel97 SUM Microsoft Excel 97... 1... 1... 1... 2... 3... 3... 4... 5... 6... 6... 7 SUM... 8... 11 Microsoft Excel 97 AVERAGE MIN MAX SUM IF 2 RANK TODAY ROUND COUNT INT VLOOKUP 1/15 Excel A B C A B

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

untitled

untitled 1 1 Excel3 2008.8.19 2 3 10 1 () 4 40596079 2 OK 1 5 341 1 1 6 3-1 A134A135 B135 COUNTIF OK 3-1 7 3 B6B132 1 B135 COUNTIF) OK B6B132 8 2 3-1 3 3-1 3 1 2A133 A134 A135 3B133 SUBTOTAL 9 2 B5B131 OK 4SUBTOTAL

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

untitled

untitled [email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó 2 2015 4 20 1 (4/13) : ruby 2 / 49 2 ( ) : gnuplot 3 / 49 1 1 2014 6 IIJ / 4 / 49 1 ( ) / 5 / 49 ( ) 6 / 49 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 7 / 49

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

Box-Jenkinsの方法

Box-Jenkinsの方法 Box-Jeks の 方 法 自 己 回 帰 AR 任 意 の 時 系 列 を 過 程 ARと 呼 ぶ で 表 す これが AR または AR m m m 個 の 過 去 の 値 に 依 存 する 時 これを 次 数 の 自 己 回 帰 ここで は 時 間 の 経 過 に 対 して 不 変 な 分 布 を 持 つ 系 列 相 関 のない 撹 乱 誤 差 項 である 期 待 値 一 定 の 分 散 σ

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

1 2 3 2 2.1 -countif Excel 22 http://software.ssri.co.jp/statweb2/ 1. 111 3 2. 4 4 3 3.E4:E10E4:E10 OK 2/27

1 2 3 2 2.1 -countif Excel 22 http://software.ssri.co.jp/statweb2/ 1. 111 3 2. 4 4 3 3.E4:E10E4:E10 OK 2/27 1....................... 1 2............................... 2 2.1 -countif(2 ) 2.2 (7 ) 2.3 frequency(7 ) 3....................... 8 4 [].................... 10 5................................ 10 5.1

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

ID POS F

ID POS F 01D8101011L 2005 3 ID POS 2 2 1 F 1... 1 2 ID POS... 2 3... 4 3.1...4 3.2...4 3.3...5 3.4 F...5 3.5...6 3.6 2...6 4... 8 4.1...8 4.2...8 4.3...8 4.4...9 4.5...10 5... 12 5.1...12 5.2...13 5.3...15 5.4...17

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: [email protected] 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

untitled

untitled 280 200 5 7,800 6 8,600 28 1 1 18 7 8 2 ( 31 ) 7 42 2 / / / / / / / / / / 1 3 (1) 4 5 3 1 1 1 A B C D 6 (1) -----) (2) -- ()) (3) ----(). ()() () ( )( )( )( ) ( ) ( )( )( )( ) () (). () ()() 7 () ( ) 1

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

untitled

untitled 11 10 267 6 129 48.3 6 63 2 1 2JIS ME JIS T 1005JIS 1994 1 11 A 10 1999 5 3 13 ME 4 2 11 B B 1999 4 10 267 6 B 7 9 6 10 12 3 11 Excel MODE Excel STANDARDIZE STANDARDIZE(X,)X AVERAGE STDEVP Excel VAR 0.5

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information