¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

Size: px
Start display at page:

Download "¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó"

Transcription

1

2 1 (4/13) : ruby 2 / 49

3 2 ( ) : gnuplot 3 / 49

4 IIJ / 4 / 49

5 1 ( ) / 5 / 49

6 ( ) 6 / 49

7 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 7 / 49

8 (mean): x = 1 n (median): { xr+1 m, m = 2r + 1 x median = (x r + x r+1 )/2 m, m = 2r n i=1 (mode): x i f(x) mode median mean median mode mean x 8 / 49

9 (percentiles) pth-percentile: p% median = 50th-percentile total observations (%) sorted variable x 9 / 49

10 (range): (variance): σ 2 = 1 n (x i x) 2 n i=1 (standatd deviation): σ 68% (mean ± stddev) 95% (mean ± 2stddev) f(x) 1 mean median exp(-x**2/2) σ % x 95% 10 / 49

11 (variance): σ 2 = 1 n (x i x) 2 n i=1 σ 2 = 1 n (x i x) 2 n i=1 = 1 n (x 2 i n 2x i x + x 2 ) i=1 = 1 n n ( x 2 i 2 x n x i + n x 2 ) i=1 i=1 = 1 n x 2 i n 2 x2 + x 2 i=1 = 1 n x 2 i n x2 i=1 11 / 49

12 : 12 / 49

13 : 1/N ( ) 1/N : 1 13 / 49

14 : ( ) ( ) (population): (sample) : ( ) : ( ) population samples estimate estimate 14 / 49

15 ( ) N(µ, σ/ n) n 15 / 49

16 (normal distribution) N(µ, σ) 2 : µ σ f(x) 1 mean median exp(-x**2/2) σ % x 95% 16 / 49

17 (sample mean): x x = 1 n n i=1 x i (sample variance): s 2 s 2 = 1 n 1 n (x i x) 2 i=1 (sample standard deviation): s : n (n 1) (degree of freedom): x 1 17 / 49

18 (standard error) : (SE) SE = σ/ n n 1/ n ( ) N(µ, σ) µ SE = σ/ n 18 / 49

19 (sample variance): s 2 s 2 = 1 n 1 n (x i x) 2 i=1 (n 1) x µ S 2 σ 2 x µ N(µ, σ/ n) (n 1)/n E(S 2 ) = n 1 n σ2 σ 2 = n n 1 S2 = 1 n 1 n (x i x) 2 i=1 19 / 49

20 normalized traffic volume cdf time (sec) normalized traffic volume / 49

21 : sample data from a book: P. K. Janert Gnuplot in Action # Minutes Count :2,355 :171.3 :14.1 : / 49

22 : (2) count finish time (minutes) 22 / 49

23 : (3) rank finish time (minutes) 23 / 49

24 XY XY : 0 ( ) XY 3D ( : ) 24 / 49

25 25 / 49

26 X Y 4 normalized traffic volume time (sec) 26 / 49

27 (1/2) X : Y : frequency normalized traffic volume 27 / 49

28 (2/2) ( ) ( ) 28 / 49

29 (probability density function; pdf) 1 : X x f(x) = P [X = x] pdf normalized traffic volume 29 / 49

30 (cumulative distribution function; cdf) : x f(x) = P [X = x] : x F (x) = P [X <= x] cdf normalized traffic volume 30 / 49

31 CDF CDF CDF 1800 ping rtt 18 ping rtt histogram histogram response time (msec) response time (msec) CDF samples 100 samples response time (msec) ( ) ( )100 ( )CDF 31 / 49

32 (interquartile range) interquartile range (IQR): ( - ) ( 50%) ( ): ( ) : 25/50/75-percentiles : min/max inner fance (Q 1 1.5IQR, Q IQR) max upper quartile mean median lower quartile min 32 / 49

33 (original vs 100 samples) : min max CDF original 100 samples samples 100 samples response time (msec) 33 / 49

34 (scatter plots) 2 X : X Y : Y X Y : ( ) 0.7 ( ) 0.0 ( ) / 49

35 gnuplot grace GUI gnuplot Mac: gnuplot Homebrew/MacPorts (XQuatrz ) Windows: windows 35 / 49

36 : filename = ARGV[0] count = 0 file = open(filename) while text = file.gets count += 1 end file.close puts count count.rb $ ruby count.rb foo.txt Ruby #!/usr/bin/env ruby count = 0 ARGF.each_line do line count += 1 end puts count 36 / 49

37 : : P. K. Janert Gnuplot in Action 37 / 49

38 : ( ) # regular expression to read minutes and count re = /^(\d+)\s+(\d+)/ sum = 0 # sum of data n = 0 # the number of data ARGF.each_line do line if re.match(line) min = $1.to_i cnt = $2.to_i sum += min * cnt n += cnt end end mean = Float(sum) / n printf "n:%d mean:%.1f\n", n, mean % ruby mean.rb marathon.txt n:2355 mean: / 49

39 : : σ 2 = 1 n n i=1 (x i x) 2 # regular expression to read minutes and count re = /^(\d+)\s+(\d+)/ data = Array.new sum = 0 # sum of data n = 0 # the number of data ARGF.each_line do line if re.match(line) min = $1.to_i cnt = $2.to_i sum += min * cnt n += cnt for i in 1.. cnt data.push min end end end mean = Float(sum) / n sqsum = 0.0 data.each do i sqsum += (i - mean)**2 end var = sqsum / n stddev = Math.sqrt(var) printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev % ruby stddev.rb marathon.txt n:2355 mean:171.3 variance:199.9 stddev: / 49

40 : : σ 2 = 1 n n i=1 x2 i x2 # regular expression to read minutes and count re = /^(\d+)\s+(\d+)/ sum = 0 # sum of data n = 0 # the number of data sqsum = 0 # sum of squares ARGF.each_line do line if re.match(line) min = $1.to_i cnt = $2.to_i sum += min * cnt n += cnt sqsum += min**2 * cnt end end mean = Float(sum) / n var = Float(sqsum) / n - mean**2 stddev = Math.sqrt(var) printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev % ruby stddev2.rb marathon.txt n:2355 mean:171.3 variance:199.9 stddev: / 49

41 : # regular expression to read minutes and count re = /^(\d+)\s+(\d+)/ data = Array.new ARGF.each_line do line if re.match(line) min = $1.to_i cnt = $2.to_i for i in 1.. cnt data.push min end end end data.sort! # just in case data is not sorted n = data.length # number of array elements r = n / 2 # when n is odd, n/2 is rounded down if n % 2!= 0 median = data[r] else median = (data[r - 1] + data[r])/2 end printf "r:%d median:%d\n", r, median % ruby median.rb marathon.txt r:1177 median: / 49

42 : gnuplot gnuplot 42 / 49

43 plot "marathon.txt" using 1:2 with boxes ( ) set boxwidth 1 set xlabel "finish time (minutes)" set ylabel "count" set yrange [0:180] set grid y plot "marathon.txt" using 1:2 with boxes notitle "marathon.txt" using 1:2 count finish time (minutes) 43 / 49

44 : CDF : # Minutes Count : # Minutes Count CumulativeCount / 49

45 : CDF (2) ruby code: re = /^(\d+)\s+(\d+)/ cum = 0 ARGF.each_line do line begin if re.match(line) # matched time, cnt = $~.captures cum += cnt.to_i puts "#{time}\t#{cnt}\t#{cum}" end end end gnuplot command: set xlabel "finish time (minutes)" set ylabel "CDF" set grid y plot "marathon-cdf.txt" using 1:($3 / 2355) with lines notitle 45 / 49

46 CDF CDF finish time (minutes) 46 / 49

47 : gnuplot> set terminal png gnuplot> set output "plotfile.png" gnuplot> replot gnuplot> load "scriptfile" gnuplot> quit 47 / 49

48 2 ( ) : gnuplot 48 / 49

49 3 (4/27) : 49 / 49

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè7²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè7²ó 7 2013 5 29 6 (5/15) : 2 / 41 7 : 3 / 41 (univariate analysis) (multivariate analysis) ( ) 4 / 41 : 5 / 41 : WIDE 2001 1570 6 / 41 ITS 3 (, ) source: google crisis response 7 / 41 ( ) 8 / 41 :.Locky WiFi

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè1²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè1²ó 1 2011 5 11 lumeta internet mapping http://www.lumeta.com http://www.cheswick.com/ches/map/ 2 / 43 ( ) 3 / 43 (Kenjiro Cho) WIDE 1984 ( ) OS 1993 1996 ( ) (QoS ) 2001 ( ) 2004 ( ) QoS 4 / 43 (Internet

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè1²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè1²ó 1 2013 4 10 lumeta internet mapping http://www.lumeta.com http://www.cheswick.com/ches/map/ 2 / 39 ( ) 3 / 39 (Internet measurement and data analysis) : TA: SA:

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè1²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè1²ó 1 2014 4 7 lumeta internet mapping http://www.lumeta.com http://www.cheswick.com/ches/map/ 2 / 41 ( ) 3 / 41 (Internet measurement and data analysis) : TA: SA:

More information

2 I I / 61

2 I I / 61 2 I 2017.07.13 I 2 2017.07.13 1 / 61 I 2 2017.07.13 2 / 61 I 2 2017.07.13 3 / 61 7/13 2 7/20 I 7/27 II I 2 2017.07.13 4 / 61 π-computer gnuplot MobaXterm Wiki PC X11 DISPLAY I 2 2017.07.13 5 / 61 Mac 1.

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

gnuplot.dvi

gnuplot.dvi gnuplot gnuplot 1 gnuplot exit 2 10 10 2.1 2 plot x plot sin(x) plot [-20:20] sin(x) plot [-20:20][0.5:1] sin(x), x, cos(x) + - * / ** 5 ** plot 2**x y =2 x sin(x) cos(x) exp(x) e x abs(x) log(x) log10(x)

More information

!!! 2!

!!! 2! 2016/5/17 (Tue) SPSS ([email protected])! !!! 2! 3! 4! !!! 5! (Population)! (Sample) 6! case, observation, individual! variable!!! 1 1 4 2 5 2 1 5 3 4 3 2 3 3 1 4 2 1 4 8 7! (1) (2) (3) (4) categorical

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: [email protected] 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

こんにちは由美子です

こんにちは由美子です Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean

More information

こんにちは由美子です

こんにちは由美子です 1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386

More information

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

1 1 Gnuplot gnuplot   Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang Gnuplot で微分積分 2011 年度前期 数学解析 I 講義資料 (2011.6.24) 矢崎成俊 ( 宮崎大学 ) 1 1 Gnuplot gnuplot http://www.gnuplot.info/ Windows gnuplot 2011 6 22 4.4.3 gp443win32.zip gnuplot binary, contrib, demo, docs, license 5

More information

programmingII2019-v01

programmingII2019-v01 II 2019 2Q A 6/11 6/18 6/25 7/2 7/9 7/16 7/23 B 6/12 6/19 6/24 7/3 7/10 7/17 7/24 x = 0 dv(t) dt = g Z t2 t 1 dv(t) dt dt = Z t2 t 1 gdt g v(t 2 ) = v(t 1 ) + g(t 2 t 1 ) v v(t) x g(t 2 t 1 ) t 1 t 2

More information

Debian での数学ことはじめ。 - gnuplot, Octave, R 入門

Debian での数学ことはじめ。 - gnuplot, Octave, R 入門 .... Debian gnuplot, Octave, R [email protected] IRC nick: mkouhei 2009 11 14 OOo OS diff git diff --binary gnuplot GNU Octave GNU R gnuplot LaTeX GNU Octave gnuplot MATLAB 1 GNU R 1 MATLAB (clone)

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè3²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè3²ó 3 2011 5 25 :gnuplot 2 / 26 : 3 / 26 web server accesslog mail log syslog firewall log IDS log 4 / 26 : ( ) 5 / 26 ( ) 6 / 26 (syslog API ) RRD (Round Robin Database) : 5 1 2 1 1 1 web 7 / 26 web server

More information

gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x

gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x gnuplot gnuplot y = x + x y = sin x.8 sin(x) 8 7 6 x*x*x+*x*x.6.. -. -. -.6 -.8 - - - - - - - -. - -. - -.. gnuplot gnuplot> set xrange[-.:.] gnuplot> plot x**+*x** y = x x gnuolot> reset gnuplot> plot

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè9²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè9²ó 9 2012 6 8 : 2 2 / 45 : 3 / 45 ARPANET in 1969 4 / 45 4 ARPANET ARPANET in 1973 5 / 45 lumeta internet mapping http://www.lumeta.com http://www.cheswick.com/ches/map/ 6 / 45 IP 7 / 45 ( ) (L3) : : 7 Application

More information

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

こんにちは由美子です

こんにちは由美子です Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA

More information

1 I EViews View Proc Freeze

1 I EViews View Proc Freeze EViews 2017 9 6 1 I EViews 4 1 5 2 10 3 13 4 16 4.1 View.......................................... 17 4.2 Proc.......................................... 22 4.3 Freeze & Name....................................

More information

情報活用資料

情報活用資料 y = Asin 2πt T t t = t i i 1 n+1 i i+1 Δt t t i = Δt i 1 ( ) y i = Asin 2πt i T 21 (x, y) t ( ) x = Asin 2πmt y = Asin( 2πnt + δ ) m, n δ (x, y) m, n 22 L A x y A L x 23 ls -l gnuplot gnuplot> plot "sine.dat"

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

Excel97関数編

Excel97関数編 Excel97 SUM Microsoft Excel 97... 1... 1... 1... 2... 3... 3... 4... 5... 6... 6... 7 SUM... 8... 11 Microsoft Excel 97 AVERAGE MIN MAX SUM IF 2 RANK TODAY ROUND COUNT INT VLOOKUP 1/15 Excel A B C A B

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

DAA09

DAA09 > summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: [email protected] 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

-2 gnuplot( ) j ( ) gnuplot /shell/myscript 1

-2 gnuplot( ) j ( ) gnuplot /shell/myscript 1 -2 gnuplot( ) j 2006 05 03 2006 05 12 2006 05 09 2 ( ) gnuplot /shell/myscript 1 1 shell script Level 1 myls #!/bin/sh # nowdir= pwd # if [ -f $1 -o -z $1 ] ; then echo "Enter pass" echo "ex) myls.sh./"

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

1

1 PalmGauss SC PGSC-5G Instruction Manual PalmGauss SC PGSC-5G Version 1.01 PalmGauss SC PGSC5G 1.... 3 2.... 3 3.... 3 3.1... 3 3.2... 3 3.3 PalmGauss... 4 3.4... 4 3.4.1 (Fig. 4)... 4 3.4.2 (Fig. 5)...

More information

1.3 2 gnuplot> set samples gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),co

1.3 2 gnuplot> set samples gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),co gnuplot 8 gnuplot 1 1.1 gnuplot gnuplot 2D 3D gnuplot ( ) gnuplot UNIX Windows Machintosh Excel gnuplot C 1.2 web gnuplot $ gnuplot gnuplot gnuplot> exit 1 1.3 2 gnuplot> set samples 1024 1024 gnuplot>

More information

2 Windows 10 *1 3 Linux 3.1 Windows Bash on Ubuntu on Windows cygwin MacOS Linux OS Ubuntu OS Linux OS 1 GUI Windows Explorer Mac Finder 1 GUI

2 Windows 10 *1 3 Linux 3.1 Windows Bash on Ubuntu on Windows cygwin MacOS Linux OS Ubuntu OS Linux OS 1 GUI Windows Explorer Mac Finder 1 GUI 2017 1 2017 -September I ll remember- 1,2 Linux 6 Linux Linux 2 3 Linux 2 (OS) Windows MacOS OS MacOS Linux 3 Windows Windows ( ) 1. Bash on Ubuntu on Windows ( Windows 10 ) 2. cygwin ( ) 3. VM Ware Linux

More information

C言語によるアルゴリズムとデータ構造

C言語によるアルゴリズムとデータ構造 Algorithms and Data Structures in C 4 algorithm List - /* */ #include List - int main(void) { int a, b, c; int max; /* */ Ÿ 3Ÿ 2Ÿ 3 printf(""); printf(""); printf(""); scanf("%d", &a); scanf("%d",

More information

if clear = 1 then Q <= " "; elsif we = 1 then Q <= D; end rtl; regs.vhdl clk 0 1 rst clear we Write Enable we 1 we 0 if clk 1 Q if rst =

if clear = 1 then Q <=  ; elsif we = 1 then Q <= D; end rtl; regs.vhdl clk 0 1 rst clear we Write Enable we 1 we 0 if clk 1 Q if rst = VHDL 2 1 VHDL 1 VHDL FPGA VHDL 2 HDL VHDL 2.1 D 1 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; regs.vhdl entity regs is clk, rst : in std_logic; clear : in std_logic; we

More information

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, School of Medicine, Tokushima University, Tokushima Fetal

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

きれいなグラフを作ろう!gnuplot 入門 1. 基本 1.1. プロット :test.plt plot x, sin(x) 1.2. データファイルのプロット 1:data.plt plot "data.dat" 1.3. データファイルのプロット 2:data2.plt plot "data2

きれいなグラフを作ろう!gnuplot 入門 1. 基本 1.1. プロット :test.plt plot x, sin(x) 1.2. データファイルのプロット 1:data.plt plot data.dat 1.3. データファイルのプロット 2:data2.plt plot data2 きれいなグラフを作ろう!gnuplot 入門 1. 基本 1.1. プロット :test.plt plot x, sin(x) 1.2. データファイルのプロット 1:data.plt plot "data.dat" 1.3. データファイルのプロット 2:data2.plt plot "data2.dat" using 1:3 2. 例題 2.1. カラーマップ :color_map.plt #

More information

27011559 2018 3 1 3 2 4 2.1........................ 4 2.2.................................. 5 2.3 pseudovasp................................... 7 3 8 3.1 EAM potential.................................

More information

double float

double float 2015 3 13 1 2 2 3 2.1.......................... 3 2.2............................. 3 3 4 3.1............................... 4 3.2 double float......................... 5 3.3 main.......................

More information

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in C 1 / 21 C 2005 A * 1 2 1.1......................................... 2 1.2 *.......................................... 3 2 4 2.1.............................................. 4 2.2..............................................

More information

Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21

Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21 Stata User Group Meeting in Kyoto / 2017 9 16 ( / ) Stata User Group Meeting in Kyoto 2017 9 16 1 / 21 Rosenbaum and Rubin (1983) logit/probit, ATE = E [Y 1 Y 0 ] ( / ) Stata User Group Meeting in Kyoto

More information

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

/22 R MCMC R R MCMC? 3. Gibbs sampler :   kubo/ 2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )

More information

橡kenkyuhoukoku8.PDF

橡kenkyuhoukoku8.PDF 10-1- -2- 11 21 10 5 12 1 10 0 5 3-3- -4-10 75 3 10 10 75 100 10 75 5 10 (1) (2) -5- (3) -6- (4) 27 11.290 291-7- (5) 1 1-8- 1 (6) 51 (7) -9- (1) (2) -10- (3) -11- (4) -12- -13- (5) (6) (7) (1) (2) -14-

More information

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t +

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t + B: 2016 12 2, 9, 16, 2017 1 6 1,.,,,,.,.,,,., 1,. 1. :, ν. 2. : t = ν 2 u x 2, (1), c. t + c x = 0, (2). e-mail: [email protected],. 1 3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t +

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

資料

資料 PC PC C VMwareをインストールする Tips: VmwareFusion *.vmx vhv.enable = TRUE Tips: Windows Hyper-V -rwxr-xr-x 1 masakazu staff 8552 7 29 13:18 a.out* -rw------- 1 masakazu staff 8552 7 29

More information

Microsoft Word - gnuplot

Microsoft Word - gnuplot GNUPLOT の使い方 I. 初期設定 GNUPLOT を最初に起動させたときの Window の文字は小さいので使い難い そこで 文字フォントのサイズを設定します 1.GNUPLOT を起動させます ( 右のような Window が起動します ) 2. 白い領域のどこでも構わないので ポインタを移動して マウスの右ボタンをクリックします ( 右のようにメニューが起動します ) 3. Choose

More information