z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

Size: px
Start display at page:

Download "z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z"

Transcription

1 Tips KENZOU sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a

2 z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z z { } f(z) (3) lim = A z z g(z) B, B..2 D w = f(z) D z lim z z f(z) = f(z ) f(z) z () f(z) g(z) z f(z) ± g(z) f(z) g(z) f(z)/g(z) g(z = ) z (2) F (w) w = w w = f(z) z w = f(z ) F (f(z)) z.2 D w = f(z) D z df dz = lim f(z) f(z ) f(z + z) f(z ) = lim z z z z z z (.) f(z) z f (z ) D D f(z) z z z f(z) f(z) z = z z () {f(z) ± g(z)} = f (z) ± g (z) (2) f(z) g(z) = f (z)g(z) + f(z)g (z) (3) { } f(z) = f (z)g(z) f(z)g (z) g(z) g(z) 2 2

3 . z θ (.) df dz = lim r z = re iθ (.2) f(z + re iθ ) f(z) e iθ (.3) r f(z) z (.3) θ f(z) [Example] { f(x) = x 2 (x ) x 2 (x < ) (.4) f(x) f (x) = { 2x (x ) 2x (x < ) (.5) y y x x f (x) f () = ) f (x) x = f (x) x = f (x) x =.2. f(z) (.3) df/dz θ z z = x + i y, ( z = x + iy ) (.6) f(z) = u(x, y) + iv(x, y) f(z + z) f(z) = u(x + x, y + y) u(x, y) +i{v(x + x, y + y) v(x, y)} (.7) 3

4 u, v.7 x y θ r u(x + x, y + y) = u(x, y) + u u x + y (.8) x y v(x + x, y + y) = v(x, y) + v v x + y (.9) x y f(z + z) f(z) = x u u v v + y + i x + i y x y x y ( u = x + i v ) ( ) u x + x y + i v y (.) y df dz = lim f(z + z) f(z) = z z cos θ = e iθ i sin θ df dz = u x + i v [ u x + y + v x i x = r cos θ, y = r sin θ, z = re iθ (.) ( u x + i v ) ( ) u cos θe iθ + x y + i v sin θe iθ (.2) y ( u x v y )] sin θe iθ (.3).3 θ [ ] = = u x = v y, u y = v x (.4).4 f(z) w = z 2 2 z = x + iy z 2 = (x + iy) 2 = x 2 y 2 + 2ixy = u + iv u v = 2x = x y, u v = 2y = y x w = z 2 2 f(z) = z 2 () (2) z = x + iy f(z) = z 2 = (x + iy)(x iy) = x 2 + y 2 = u + iv... u = x 2 + y 2, v = u x = 2x, u y = 2y, v y = v x = z = x = y = f(z) () z = (2) 2 f(z) z = z f(z) z 4

5 .3 f(z) z f(z) 3 () 2 (2) () (2) (3) (4).3. f(z) z f(z) z f(z ) = lim z z f(z) (.5) f(z) z = z z = z f(z) = z e z z = f(z) z = z lim f(z) = lim z z e z = z = f(z) f() = z =.3.2 f(z) z = z z z lim f(z) = (.6) z z z = z f(z) z = z (z z ) n z f(z) N N z z (z z ) 2 (z z ) f(z) = z 2 +, f(z) = (z i)(z + i) f(z) z = i i 3 5

6 .3.3 f(z) z = z z = z z = z z = z 4 f(z) = e z z = x(x > ) lim f(z) = lim e x = x + x z = x(x < ) lim f(z) = lim e x = x x + z = x 5 f(z) = e z a, a f(z) = e z a = N = 6 f(z) = (z + i)e z+i, f(z) e z = n! (z a) n z n n! (z + i) n f(z) = (z + i)e (z+i) = (z + i) n! =, ( z + i > ) n!(z + i) n z = i.3.4 (z z ) b b log (z z ) z = z 2π z = z w = z b z z = e iθ θ 2π θ θ 2π z e iθ e i2π = w e ibθ e i2πb θ 2π z w b = n e i2πn b θ = 2π w z w Q&A 4 z z e z sin z z = 6

7 f(z) = cosec(/z) z = /nπ (n = ±, ±2, ) n z = z = z = y = /x x x + x 2 + f(z) = /z r e iθ r θ k 2 z z 2 f(z) z z I = f(z)dz (2.) I = f(z)dz (2.2) 5 contour( 7

8 I 6 z z 2 z 2 z f(z)dz = I (2.3) 2. z z 2 z = z(t) = x(t) + iy(t), (α t β) z(α) = z z(β) = z 2 t α t β f(t) = u(t) + iv(t) z2 z f(t)dt = z2 z z2 u(t)dt + i v(t)dt (2.4) z f(z) D D z z 2 [ ] f z2 (z)dz = f(z) = f(b) f(a) (2.5) z y z 2 y Ex-7 y 2 z 2 = x 2 + iy y Ex-8 z 2 = + i z x x 2 x 2 x 7 I n = zdz n (n =, 2, 3) x x 2 z 2 I 2 I = zdz + z = x 2 + iy H H P zdz = zdz H P H xdx = 2 x2 ( y y 2 ) dz = idy y2 P zdz = i (x 2 + iy)dy = ix 2 y 2 2 y2 2 I = 2 x2 + ix 2 y 2 2 y2 2 = 2 (x 2 + iy 2 ) 2 = 2 z2 2 (2.6) 2 2 y = (y 2 /x 2 )x z = x + iy = x + i y ( 2 x = + i y ) 2 x x 2 x 2 dz = ( + i y 2 x 2 I 2 = zdz = 2 ) dx x2 6 ( + i y ) 2 2 dx = x 2 2 (x 2 + iy 2 ) 2 = 2 z2 2 8

9 3 y2 zdz = ydy = 2 y2 2 zdz = P x2 H (x + iy 2 )dx = 2 x2 + ix 2 y 2 I 3 = 2 x2 2 2 y2 2 + ix 2 y 2 = 2 z2 2 I = I 2 = I 3 f(z) = z 8 + i 2 x = y 2 () f(z) = z, (2) f(z) = z 2 () x(t) = t 2 y(t) = t t ) z(t) = x(t) + iy(t) = t 2 + it dz = (2t + i)dt z(t) = x(t) iy(t) = t 2 it zdz = (t 2 it)(2t + i)dt = i x = t, y = t ) x = y = t t ) zdz = 2 H zdz + zdz = P tdt + i( it)dt = + i f(z) = z z = (2)f(z) = z i [ z 2 dz = z 2 dz = z 2 dz = 2 3 z3 ] +i = 2 ( i) 3.9 a n { (z a) n 2πi n = dz = n z a = re iθ dz = ire iθ dθ 2π 2π (z a) n dz = i (re iθ ) n re iθ dθ = ir n+ e i(n+)θ dθ = I n... n = I n = i n = 2π dθ = 2πi I n = ir n+ [ e i(n+)θ n + ] 2π = (2.7) 2. f(z) f(z) f(z)dz = (2.8) 9

10 7 F ig. F ig.2 2 F ig.3 F ig.4 D n D 2 z D 2 z 2 [ ] z = x + iy dz = dx + idy f(z) f(z) = u + iv f(z)dz = (u + iv)(dx + idy) = {(u + iv)dx + (iu v)dy} = (P dx + Qdy) P = u + iv Q = iu v 8 P Q x, y (P dx + Qdy) = D ( Q x P ) y (2.9) 2.9 Q x P ( u y = y + v ) ( u + i x x v ) y f(z) D F ig. f(z)dz = (2.) f(z) 2 n D F ig.2 f(z)dz = f(z)dz + f(z)dz f(z)dz n (2.) f(z) D z z 2 D 2 D F ig.3 f(z)dz = f(z)dz 2 (2.2) f(z) D D 2 Fig4 D f(z)dz = f(z)dz (2.3) f(z)

11 . z = Fig.5 z 2 = r 2 e iθ2 I = z dz I 2 = 2 z dz 2 z 2 F ig.5 z 2 θ 2 r 2 θ 2 2π r 2 2 f(z) = z z = I y = f(z) = /z = /x r2 I = x dx = log r 2 z = r 2 e iθ dz = ir 2 θe iθ I = I = I + I z2 r 2 z dz = i θ2 I = log r 2 + iθ 2 r 2 e iθ r 2 e iθ dθ = iθ 2 I 2 I 2 = r2 z2 I 2 = r 2 z dz = i I 2 = I 2 + I 2 x dx = log r 2 θ2 2π I 2 = log r 2 + i(θ 2 2π) I 2 = I 2πi 2 dθ = i(θ 2 2π) F ig.ex F ig.ex 2 2i Γ a i Γ Γ 2 i 2

12 Ex- a Fig.Ex- () dz = 2πi (2) dz = (n > ) z a (z a) n Ans a Γ Γ (z a) Γ dz = 2πi, z a (z a) n dz = Γ Γ (z a) n dz dz = (n > ) (z a) n z Ex-2 z 2 dz z = 2 Fig.Ex-2 + Ans z z 2 + = ( 2 z i + ) z + i z = ±i z = ± Γ Γ 2 z z 2 + Γ Γ 2 2. z z 2 + dz = z z 2 + dz + z z 2 + dz Γ Γ z z 2 + dz = ( ) 2 Γ z i dz + Γ z + i dz /(z + i) Γ (2.7 dz = 2πi Γ z i Γ 2 Γ 2 Γ Γ 2 z z 2 dz = iπ + z z 2 dz = πi + z z 2 dz = 2πi f(z) D D a f(a) = f(z) dz (2.4) 2πi z a a Γ (Fig Ex- Γ f(z) z a 2.3 f(z) z a dz = f(z) dz (2.5) Γ z a 2

13 Γ z z = a + re iθ f(z) 2π Γ z a dz = i f(a + re θ ) re iθ re iθ dθ = i r [ ] 2π lim i f(a + re iθ )dθ = if(a) r 2π 2π f(a + re iθ )dθ (2.6) dθ = 2πif(a) (2.7) 2 2 D f(z) a D f(a) = 2πi f(z) z a dz f(z) dz (2.8) 2πi 2 z a 2 a D 2.8 h a + h 2.4 f(a + h) f(a) = ( f(z) h 2πhi z (a + h) f(z) ) dz = f(z) z a 2πi (z a h)(z a) dz h f(a + h) f(a) lim = f (a) = lim h h h 2πi f(z) (z a h)(z a) dz = f(z) dz (2.9) 2πi (z a) 2 f(z) f (z) f (a) = 2! f(z) dz (2.2) 2πi (z a) 2 f (n) (a) = n! f(z) dz (n =, 2, ) (2.2) 2πi (z a) n+ f(z) n Q&A 3

14 ( f(x) x f(z) z f(z) f(z) u v f(z) ashida/work/ {a n } a n = a + a + + a n + z z n f(z) = c n z n = c + c z + c 2 z c n z n + (3.) c n n c n z n n c n z n > c n+ z n+ (3.2) 4

15 3.2 n c n z n > c n+ z n z z < c n c n+ (3.3) 3. c n R = lim n c n+ (3.4) z < R (3.5) R z. R + 2z + 4z 2 + 8z 3 + f(z) = c n z n = 2 n z n 2 n R = lim n 2 n+ = 2 /2 z < /2.2 e z e z = c n = /n! R z n n! = + z! + z2 2! + z3 3! + c n (n + )! R = lim = lim = lim n c n+ n n! n = n R = z < z.3 f(z) = + z + 2z 2 + 3z 2 + 4z 2 + f(z) = + nz n n 2 R = lim n n + = z <.4 z + z 2 + z 3 + z > z = + h, (h ) z n = ( + h) n > + nh > nh lim n z n > lim > nh = n 5

16 z < a = / z > lim n z n > lim n > /an = / = z = lim n zn =.5 + z + z 2 + z 3 + z < /( z) S n = + z + z z n = zn z z < zn /(z ) 3.2 D f(z) D a D 2 f(z) = A n (z a) n = f (n) (a) (z a) n (3.6) n! A = f(a), A = f (a), A 2 = 2 f (a),, A n = n! f (n) (a) (3.7) F ig.5 z a D z a R r ζ [ ] Fig 5 a R 3 a r < R r f(z) r z a r < R (3.8) z 2.4 f(z) = f(ζ) dζ (3.9) 2πi ζ z z ζ, a z ζ ζ a = r (3.) z 2 z a < r (3.) z a ζ z < (3.2) 2 3 R 6

17 3.9 /(ζ z) ζ z = ζ a (z a) = ζ a z a ζ a = ζ a ( ) n z a (3.3) ζ a (3.9 f(z) = (z a) n 2πi f(ζ) dζ (3.4) (ζ a) n+ f(z) = f (n) (a) (z a) n (3.5) n! 3.8 z a < R R 4.6 z = 3.7 f(z) = z + f (z) = ( + z) 2, f 2 (z) = ( + z) 3,, f (n) (z) = ( )n n! ( + z) n z = f (n) () = ( ) n n! + z = z + z2 z 3 + (3.6) z = R z = R =.7 f(z) z = a f(z) = z a + b z = a z a + z a b f(z) = = z a b f(z) = b z a b 2 + z a b z a + b = b + z a b ( ) 2 ( ) 3 z a z a + + b b (z a)2 (z a)3 b 3 b 4 + < z a < b b.8 f(z) z = 2 f(z) = (a + z) 2 4 a 7

18 z = z f(z) = a 2 ( + z a) 2 z/a < f(z) f(z) = a 2 2z a 3 + 3z2 a 4 4z3 a 5 + = ( ) n n + c n = ( ) n (n + )/a n R a n c n R = lim n c n+ = lim a n + n n + 2 = a f(z) z = a R = a zn 4 a a D f(z) z = a a f(z) f(z) = A + A (z a) + A 2 (z a) A z a + A 2 (z a) 2 + = A n (z a) n A n + (z a) n = A n (z a) n (4.) n= n= a A ( f(z) z = a f (a) A n A n = f(ζ) 2πi (ζ a) n+ dζ, A n = f(ζ) dζ 2πi (ζ a) n+ (z a) (z a) k f(z) k f(z) z = a k z = a f(z).9 f(z) = z = z(z + ) f(z) 6 f(z) = z z + = z + z z2 + z f(z) z = 8

19 5 5. a A z = a f(z) f(z) a z a A Res(f, a) Res(a) z = a f(z) = F (z) z a f(z) Res(a) = lim z a (z a)f(z) (5.) f(z) = A z a + A n (z a) n (z a) z a { } lim (z a)f(z) = lim A + A n (z a) n+ = A z a z a z = a k f(z) = f(z) Res(a) = Res(a) = lim z a (z a)f(z) F (z) (z a) k [ d k { (k )! lim z a dz k (z a) f(z)} ] k (5.2) f(z) = A k (z a) k + A k+ (z a) k + + A (z a) + A n (z a) n (z a) k (z a) k f(z) = A k + (z a)a k+ + (z a) 2 A k (z a) k A + A n (z a) n+k A z k z a [ d k { lim z a dz k (z a) f(z)} ] [ ] k = lim (k )! A + A n (n + k)(n + k ) (n + 2)(z a) n+ z a = (k )! A [ d k { } ] Res(a) = (k )! lim z a dz k (z a) k f(z) f(z) = Q(z) P (z) P (a) = P (a) Res(a) = Q(a) P (a) (5.3) 9

20 P (z) z = a P (a) = P (z) = P (a)(z a) + P (a) (z a) 2 + 2! f(z) = Q(z) z a P (a) + 2 (z a)p (a) + (z a) z a { } Q(z) Res(a) = lim (z a)f(z) = lim z a z a P (a) + 2 (z a)p (a) +.2 f(z) = e /z = Q(a) P (a) f(z) z = f(z) f(z) = e /z = n! z n = + z + 2! z 2 + A Res() =.2 z3 + 5 z(z ) 3 z = Res() = lim z zf(z) = 5 z = 3 Res() = lim z 2! dz 2 {(z )3 f(z)} = 6 d f(z) z = a f(z) = A + A (z a) + A 2 (z a) A z a + A 2 (z a) 2 + (5.4) z = a.9 { (z a) n 2πi n = dz = n (5.5) 5.4 z = a { f(z)dz = A + A (z a) + A 2 (z a) A z a + A 2 (z a) 2 + }dz = 2πiA = 2πi Res(a) (5.6) f(z) a k (k =, 2,, n) D f(z)dz = n k= k f(z)dz = 2πi n Res(a k ) (5.7) 5.7 k= 2

21 F ig.6 n a n 2 a a 2 D 5.2. Ex- I = x 2 dx (a > ) + a2 Ans x z = x + iy r I = lim r x 2 dx = lim + a2 r z 2 dz = lim f(z)dz (5.8) + a2 r r F ig.7 y F ig.8 y F ig.9 y ia r ia r ia x r r x r x r ia ia ia f(z) = /(z 2 + a 2 ) f(z) = z 2 + a 2 = (z ia)(z + ia) (5.9) z = ±ia f(z) Fig.8 5 y Fig I = I + I 2 = lim f(z)dz + r f(z)dz (5.) 2

22 5. 2 I 2 = f(z)dz = 2πiRes(ia) Res(ia) = lim (z ia)f(z) = lim z ia z ia z + ia = 2ia I 2 = π a I I = lim f(z)dz lim r r z = re iθ ( θ π) π z 2 dz = lim + a2 r 6 π { ie iθ } I = dθ lim = r 2r rie iθ r 2 e 2iθ + a 2 dθ Q&A I = x 2 + a 2 dx = I + I 2 = π a (5.) A f(z)

23 6 6. f(z) z f(z) f(z) D D f(a) = f (a) = f (a) = = f (n ) (a) =, f (n) (a) (6.) a n n a f(z) f(z) = f (n) (a) (z a) n (6.2) n! a n f (n ) (a) f(z) = f (n) (a) (z a) n + f (n+) (a) n! (n + )! (z a)n+ + f (n+2) (a) (n + 2)! (z a)n+2 + = (z a) n { f (n) (a) n! + f (n+) (a) (n + )! (z a) + f (n+) } (a) (n + 2)! (z a)2 + = (z a) n g(z) (6.3) 6.2 D 2 f (z) f 2 (z) D D D f (z) = f 2 (z) D f (z) = f 2 (z) D f (z) = f 2 (z) D f (z) = f 2 (z) D D D f(z) f (z) = f 2 (z) D f(z) D a n f(z) = (z a) n g(z) g(z) = g(a) + g(z) g(a) g(z) g(z) g(a) 23

24 z a g(z) g(a) ɛ g(z) > g(a) ɛ > g(z) a z z a g(z) 7 a a f(a) = a f(z) = D f(z) D f(z) = D f(z) = f(z) = f (z) f 2 (z) f(z) f (z) f 2 (z) D f (z) f 2 (z) D f (z) = f 2 (z) D f (z) = f 2 (z) cos x = ( ) ( ) n x 2n (6.4) 2n! z ( ) cos z = ( ) n z 2n (6.5) 2n! cos z z ( cos x = sin x + π ) ( = cos z = sin z + π ) 2 2 cos 2 x + sin 2 (x) = = cos 2 z + sin 2 (z) = 6.3 D f(z ) D or ) D D or ) f(z) = f (z) f(z) D or ) f(z) D f (z) (A) F ig.7 (B) D r a a b r a r b b D 7 8 cos z z = D 24

25 f(z) x z x 6.3. P (z : a) a P (z : a) = A n (z a) n (6.6) r a z a < r a b P (z : a) b Q(z : a) = B n (z b) n (B n = f (n) (b)/n!) (6.7) b r b z b < r b 6.7 Fig.7 A) b z b < r a b a (B) r b r a b a 2 P (z : a) = Q(z : b) Q(z : b) P (z : a) z b < r b z a < R (B) P (z).22 9 f(z) = + iz log 2i iz (6.8) g(z) = tan z (6.9) z = ±i f(z) = ±i z z = ±i f (z) = + z 2 g(z) = tan z,g(z) g (z) = + z 2 f() = g() = 2 f(z) g(z).23 D = {z : z < } f (z) = + z + z 2 + z 3 + (6.) ( z < ) D 9 z 25

26 D f(z) z f (z) = z (6.) D D H G i D F z = D z = D 6. D 6. [ ] f(z) z 2? z < i D 2 D a b D f(z) f (z) 2 f (z) = a z a = a ( ) n z a z a / a < (6.2) a f (z) a a /(z ) /(z ) z = f (z) D f (z) D f (z) a D D D D D f (z) = f (z) f(z) 2 X 2 /( x) = x 2 ( x < ) f(z) = { f (z) z < f (z) z a < a 26

27 f(z) D D f(z) = /( z) f (z) f(z) f(z) f (x) D 2 b f 2 (z) = b ( ) n z b z b / b < b D D D 2 f(z) f(z).24, f (z) = 2z 2 + 4z 4 8z 6 + 6z 8 + f (z) = ( 2) n z 2n c n = ( 2) n z 2n 3.3 n c n z 2n > c n+ z 2(n+) z 2 < 2 z < 2 R = / 2 D z < / z 2 f (z) = + 2z 2 = ( i 2z)( + i 2z) (6.3) z = ±i/ f(z) = ( z) n, F {z; z < } g(z) = i ( + iz) n, G {z; z i < } () g(z) f(z) G (2) H = {z; z + < } H h(z) g(z) H h(z) ()z F z < f(z) = z G ( z) n = + ( z) + ( z) ( z) n + = ( z) = z g(z) g(z) = i + iz = i( i + z) = z i < ( + iz) n + ( + iz) + ( + iz) ( + iz) n i + = ( + iz) = z 27

28 f(z) g(z) D = F G f(z) = g(z) g(z) f(z) (2)h(z) g(z) G H h(z) = g(z) = z H h(z) = z.26 D Re(z) f (z) = sin z D f (z) f (z) = sin z (Re(z) ) f (z) z Re(z) f (z) = sin z = sin(z + 2π) f (z) = sin(z + 2π) (6.4) 2π Re(z) < + D 6.4 f (z) Re(z) f (z) 6.4 f (z) f (z) f 2 (z) f 2 (z) = sin(z + 4π), D 4π Re(z) < + Re(z + 2π) f (z) f 2 (z) f (z).27 x f(x) = x f(x) = { x x x x < f(x) D D x z x < z Γ(z) Γ(z) = t z e t dt (6.5) Re(z) > (6.6) 28

29 refeq-23 D z [ ] zγ(z) = z t z e t dt = (t z ) e t dt = t z e t + t z e t dt = t z e t dt = Γ(x + ) (6.7) t t z e t ) Re(z) > Γ(z) = Γ(z + ) z (6.8) < Re(z) Γ(z).26 Γ() = n 6.8 Γ(n + ) = nγ(n) = n(n )Γ(n ) = n(n )(n 2) Γ() = n! 22 Q&A f (z) = f 2 (z) K 22 29

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0 Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re

More information

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 4 No. pdf pdf II Fourier No. No. 4 No. 4 4 38 f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 9 i = imaginary unit z = x + iy x, y R x real

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d 8. y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = π f(t)e iωt dt. : ϕ(x, y) x + ϕ(x, y) y = ( ).. . : 3. (z p, e z, sin z, sinh

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

Email: kawahiraamath.titech.ac.jp (A=@) 27 2 25 . 2. 3. 4. 5. 3 4 5 ii 5 50 () : (2) R: (3) Q: (4) Z: (5) N: (6) : () α: (2) β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (0) κ: () λ, Λ:

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3) [ ] KENZOU 6 3 4 Origin 6//5) 3 a a f() = b n ( a) n c n + ( a) n n= n= = b + b ( a) + b ( a) + + c a + c ( a) + b n = f() πi ( a) n+ d, c n = f() d πi ( a) n+ () b n c n d n d n = f() d (n =, ±, ±, )

More information

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) III203 00- III : October 4, 203 Version :. Kawahira, Tomoki TA (Takahiro, Wakasa 3 ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/3w-kansuron.html pdf 0 4 0 0 8 2 0 25 8 5 22 2 6 2 3 2 20 0 7 24 3

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

main.dvi

main.dvi 7 f(z) H f(z)dz = f(z), f (z)dz = 9 3 4 7 7.. 7. 7.. 3 f(z) D D z 7. f(z) = f () d (7.) z f(z) - =( z) = z = z Res(z) =lim!z ( z) z = f(z): (7.) 7. (7.) f(z) 7. 5 7.. f(z) z = a jz aj = r z = a r Ref(a)

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

main.dvi

main.dvi 2 f(z) 0 f(z 0 ) lim z!z 0 z 0 z 0 z z 1z = z 0 z 0 1z z z 0 1z 21 22 2 2 (1642-1727) (1646-1716) (1777-1855) (1789-1857) (1826-1866) 18 19 2.1 2.1.1 12 z w w = f (z) (2.1) f(z) z w = f(z) z z 0 w w 0

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

E Riemann-Stieltjes 65 teaching.html (epsilon-delta )

E Riemann-Stieltjes 65   teaching.html (epsilon-delta ) 23 4 4 2 5 3 9 4 6 5 22 6 24 7 3 8 34 9 4 42 48 2 49 3 53 A Goursat 56 B 56 6 D 62 E Riemann-Stieltjes 65 http://www.math.nagoya-u.ac.jp/~yamagami/teaching/ teaching.html (epsilon-delta ) http://sss.sci.ibaraki.ac.jp/teaching/set/set25.pdf,

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

θ (rgument) θ = rg 2 ( ) n n n n = Re iθ = re iϕ n n = r n e inϕ Re iθ = r n e inϕ R = r n r = R /n, e inϕ = e iθ ϕ = θ/n e iθ = e iθ+2i = e iθ+4i = (

θ (rgument) θ = rg 2 ( ) n n n n = Re iθ = re iϕ n n = r n e inϕ Re iθ = r n e inϕ R = r n r = R /n, e inϕ = e iθ ϕ = θ/n e iθ = e iθ+2i = e iθ+4i = ( ( ) i i i (Σe i i = e i + e i 2 + ), y n ( ) 2 y y = +iy 2 (, y) = + iy y > (upper hlf plne) y < (lower hlf plne) = + iy (rel prt) y (imginry prt) Re = Im = y = Re + iim = + iy = = ( + iy)( iy) = 2 + y

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ

ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ KENZOU 28 8 9 9/6 4 1 2 3 4 2 2 5 2 2 5.1............................................. 2 5.2......................................... 3 5.2.1........................................ 3 5.2.2...............................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

.. p.2/5

.. p.2/5 IV. p./5 .. p.2/5 .. 8 >< >: d dt y = a, y + a,2 y 2 + + a,n y n + f (t) d dt y 2 = a 2, y + a 2,2 y 2 + + a 2,n y n + f 2 (t). d dt y n = a n, y + a n,2 y 2 + + a n,n y n + f n (t) (a i,j ) p.2/5 .. 8

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

5.......................................... 5.2................................... 5.3............................... 6.4 exp z =.....................

5.......................................... 5.2................................... 5.3............................... 6.4 exp z =..................... 28 8 24 22 5.......................................... 5.2................................... 5.3............................... 6.4 exp z =....................................... 7.5 Jordan...................................

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

sekibun.dvi

sekibun.dvi a d = a + a+ (a ), e d = e, sin d = cos, (af() + bg())d = a d = log, cosd = sin, f()d + b g()d d 3 d d d d d d d ( + 3 + )d ( + )d ( 3 )d (e )d ( sin 3 cos)d g ()f (g())d = f(g()) e d e d ( )e d cos d

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

di-problem.dvi

di-problem.dvi III 005/06/6 by. : : : : : : : : : : : : : : : : : : : : :. : : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. : : : : : : : : : : : : : : 4 4. : : : : : : : : : : : : : : : : : : : : : : 5 5. :

More information