A A. ω ν = ω/π E = hω. E

Size: px
Start display at page:

Download "7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E "

Transcription

1 B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A A A

2 A A. ω ν = ω/π E = hω. E h p p = hk. k ω k x e iωt+ikx.3 ψx, t E n p n n n a n ψx, t = n e iω nt+ik n x a n.4 a n. h i i h t ψx, t = n hω n e iω nt+ik n x a n = n E n e iω nt+ik n x a n.5 m p V x E mv / = p /m V x E = p + V x.6 m E n = p n + V x.7 m

3 .5 i h t ψx, t = p n m + V x e iω nt+ik n x a n = hkn m n n = h + V x e iωnt+iknx a n m i x n h = + V x e iω nt+ik n x a n m i x n h = + V x m i x + V x e iω nt+ik n x a n ψx, t.8 x, y, z 3 [ i h ] t ψx, t = h h h V x ψx, t.9 m i x i y i z. A. ψx, t. 3. Ω ω n Ωu n = ω n u n. 4. E p x ψx = a n u n x. n a n ψ u n 5. u n, u m = δ n,m. δ n,m n = m ψ, φ ψ, φ ψ, φ = d 3 xψx φx.3 3

4 Ω ω n a n ψ a n =.4 n Ω ψx Ω Ω = a n ω n = dxψ xωψx.5 n.3 A Hux = Eux H = h d + V x,.6 m dx {, x > a, V x =, x < a.7.6 E k me k = h h d ux m dx = Eux.8.9 d ux/dx = k ux k sin kx cos kx A B ux = A cos kx + B sin kx, a < x < a. k E ux = a =, ux = a =. A cos ka + B sin ka =, A cos ka + B sin ka =. 4

5 A cos ka =, B sin ka =.3 A, B B =, cos ka =,.4 A =, sin ka =.5 k n k = n + π a.6 ux = A cos ux = B sin n + πx, n =,, 4,,.7 a n + πx, n =, 3, 5,,.8 a E n = π h n + 8ma, n =,,, 3,,.9 A B n n E = π h 8ma.3 x a p = h/a h /ma x x.8 5

6 V x = V x, H x = Hx.3 ux Hxux = Eux, Hxu x = H xu x = Eu x.3 E u x = cux.33 x x ux = cu x.34 c =, c = ±.35 c = c = E ux.9 n... { V, x > a, V x =, x < a. x = du x = =. dx ux = =.3 6

7 V V d ux = κ ux,.4 dx mv E κ = h C D.5 ux = Ce κx + De κx, x > a.6 D ψx, t <.7 D =, ux = Ce κx, x > a.8 x < a. k me k = h..9 ux = A cos kx..3 ux = B sin kx,

8 x = a ux x = a a ϵ a + ϵ du du x = a + ϵ x = a ϵ = dx dx a+ϵ a ϵ dx d ux dx = h m a+ϵ a ϵ dx V x E ux. ϵ ϵ x = a A C.3 A cos ka = Ce κa.3 ka sin ka = κce κa.4 k tan ka = κ.5 x = a. B C.6 B sin ka = Ce κa.6 kb cos ka = κce κa.7 k cot ka = κ k κ ξ = ka, η = κa.9 ξ + η = mv a h. η = ξ tan ξ,. η = ξ cot ξ. V a < V a π h.3 8m 8

9 n π h 8m < V a n + π h 8m.4 n + V E.4 V E E E n < x < n nπ a < k n+π a { A cos kx, x < a, ux = A cos kae κ x a, x > a.5 A = a + κ.5.6 ux = { B sin kx, x < a, x x B sin kae κ x a, x > a.8 B = a + κ.7.8 V E E V.5 κ A B.3.4 V ±.6 9

10 3 3. ω c V x = mω c x 3. Hux = Eux, 3. H = p m + mω c x = h d + mω c m dx x 3.3 mωc Q = x, 3.4 h P = m hωc p = h d m hωc i dx = i d dq 3.5 H = hω c P + Q 3.6 [Q, P ] = i 3.7 a = Q + ip, a = Q ip 3.8?? Q, P a, a [a, a ] = 3.9 H = hω c a a + aa = hω c N +, N = a a 3. N a a N ν u ν [N, a] = a, [N, a ] = a 3. Nu ν = νu ν 3.

11 a 3.9 au ν, au ν = u ν, a au ν = u ν, Nu ν = νu ν, u ν, 3.3 a u ν, a u ν = u ν, aa u ν = u ν, N + u ν = ν + u ν, u ν ν 3.5 Nau ν = an u ν = ν au ν, 3.6 Na u ν = a N + u ν = ν + a u ν 3.7 au ν ν > N ν νu ν, u ν, a u ν ν > N ν + ν + u ν, u ν ν a N ν ν a ν N u N ν =,,,, n, u ν u, u = a u, u = a u,, u n = n! a n u, E = hω c, E = + hω c, E = + E n = hω c,, n + hω c, 3.9 u a 3.3 au, au = u au = 3. E = hω c hω c hω c N a N a N N

12 3. u n x 3. au = Q + ip u = Q + d u = 3. dq u x e Q mωc 4 u x = e mωc Q 4 = e mω c h x 3. π h π h n n u n x = a n mωc 4 u = Q d n e Q 3.3 n! π h n! n dq ψq Q d ψq = e Q dq d dq e Q ψq 3.4 Q d n = dq = = Q d dq = e Q d Q dq e 3.5 Q d dq Q d dq Q d dq = e Q d dq n e Q n e Q n e Q d dq e d dq e d dq Q Q e Q e Q = d dq e Q n e Q 3.6 u n x = = mωc π h mωc π h mωc π h 4 e Q d n! n dq 4 n! n e Q H n Q 4 n! n mωc e h n e Q mωc x H n h x 3.7 H n Q Hermite H n Q = n e Q dn dq n e Q, n =,,,, 3.8 n H Q =, H Q = Q, H Q = 4Q, H 3 Q = 8Q 3 Q, 3.9 n H n Q n n H n Q = n H n Q 3.3

13 4 4. L = x p 4. L = h i x 4. L x, L y, L z L x = h i y z z y, L y = h i z x x z, L z = h i x y y x 4.3 [L x, L y ] = i hl z, [L y, L z ] = i hl x, [L z, L x ] = i hl y [L i, L j ] = i h ε ijk L k 4.5,, 3 x, y, z k= 4. L L J J [J x, J y ] = i hj z, [J y, J z ] = i hj x, [J z, J x ] = i hj y 4.6 L 4.3 J J = Jx + Jy + Jz, 4.7 [J, J x ] = [J, J y ] = [J, J z ] = 4.8 J J x J y J z z J z J z J z u jm J u jm = jj + h u jm, J z u jm = m hu jm 4.9 3

14 j J jj + h J J = J jj + m jj + 4. J x J y J + = J x + ij y, J = J x ij y 4. J + J [J z, J ± ] = ± hj ±, [J +, J ] = hj z 4. J x, J y J ± J J = J +J + J J + + Jz, 4.3 [J, J z ] =, [J, J ± ] = 4.4 z J z J J J + = J J z J z + h, J + J = J J z J z h 4.5 u jm u jm J J + u jm = j mj + m + h u jm, 4.6 J + J u jm = j + mj m + h u jm 4.7 J + J J ± = J 4.8 J + u jm = J + u jm, J + u jm = u jm, J J + u jm = j mj + m + h u jm, 4.9 J u jm = J u jm, J u jm = u jm, J + J u jm = j + mj m + h u jm 4. j j m j 4. J J ± u jm = jj + h J ± u jm, 4. J z J ± u jm = m ± hj ± u jm 4.3 J + u jm z + h j h z m h 4.9 j mj + m + J z j 4

15 J J z j h J J z j h j. J jj + h j j j =,,, 3,, 4.4. J z m h m z m 3. J J z jm m = j, j +,, j 4.5 j + j + J x, J y, J z j + j u jm J J z h j z h m = j, j,, j j z h u jm c jm J u jm = c jm u jm c jm c jm = [jj + mm ] h, 4.7 c jm c jm J u jm = j + mj + m hu jm 4.8 J + u jm u jm+ J + J J u jm c jm J + u jm J + u jm = j mj + + m hu jm+ 4.9 J z m h = j h J + J z J + u jj = 4.3 5

16 m h = j h J J u j j = 4.3 j j + u jj J u jm = j + m! j!j m! u j j J + u jm = j m! j!j + m! j m J u jj 4.3 h j+m J+ u j j 4.33 h 4.3 j j u j m, u j m u jm J k = J k + J k, k = x, y, z 4.34 z u j j u j j 4.35 J z u j j u j j = j + j hu j j u j j 4.36 z j + j J u j j u j j = j + j j + j + h u j j u j j 4.37 z u j+j j +j = u j j u j j 4.38 J = J + J j + j z J z J z j + j h = j + j hu j +j,j +j = J u j +j,j +j = J u J u j j u j j + u j j J u j j j j u j j = j hu j j u j j + j hu j j u j j 4.39 z J z J z z J z j + j h u j,j u j,j, u j,j u j,j 4.4 6

17 J j + j j + j z j + j h j + j j + j j + j u j +j,j +j = j u j j + j j u j j + j u j j u j j 4.4 J z. j j j = j j, j j +,, j + j 4.4. j j + j Hx, p ; x, p = Hx, p ; x, p 5. α β u α,β x ; x = u α x u β x, 5. u β,α x ; x = u β x u α x 5.3 u S u A u S = u α,β + u β,α, u A = u α,β u β,α 5.4 c S c A u = c S u S + c A u A, c S + c A = 5.5 7

18 c S c A u t ψ i h ψx, t = Hψx, t 5.6 t ψx ; x ; t = c S ψ S x ; x ; t + c A ψ A x ; x ; t 5.7 t x, x P x ; x ; t = ψx ; x ; t + ψx ; x ; t 5.8 [ P x ; x ; t = c S ψ S x ; x ; t + c A ψ A x ; x ; t ] 5.9 c S, c A c S, c A Bose 5. 8

19 ψx, x ψx, x = φ α x φ β x 5. P P ψx, x = ψx, x 5. ψ S x, x = ψx, x + ψx, x = + P ψx, x 5. ψ A x, x = ψx, x ψx, x = P ψx, x 5.3 ψx, x ± ψx, x = ψx, x + ψx, x ± Re [ψx, x ψ x, x ] 5.4 ψ A x, x = ψ A x, x =, T E n n P n P n = e En/kBT Z 5.6 k B Z Z = n=,, e nϵτ /kbt 5.7 τ ϵ τ n nϵ τ n 5.6 P n = e nϵ τ /k B T 5.8 Z ϵ n Z n =,,, 5.9 Z = + e ϵ/kbt + e ϵ/kbt + = 9 e ϵ/kbt 5.

20 ϵ τ e ϵ/k BT e ϵ/k BT = e ϵ/k BT 5. ϵ τ n =, 5. Z Z = + e ϵ/k BT 5.3 ϵ τ e ϵ/kbt + e ϵ/kbt = e ϵ/kbt ϵ k B T T ν = ω/π hν = hω = k B T 5.5 h = h/π 6 6. V x, t 3 V x V x, t = V r 6. r, θ, φ x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ 6. x, y, z r, θ, φ [ h m r r + r r r sin θ sin θ + θ θ r sin θ ] φ u + V ru = Eu 6.3

21 r, θ, φ e r = sin θ cos φ, sin θ sin φ, cos θ, e θ = cos θ cos φ, cos θ sin φ, sin θ, e φ = sin φ, cos φ, 6.4 e i e j = δ ij, e i e j = k ε ijk e k, i, j, k = r, θ, φ 6.5 ε ijk 3 ε 3 = +,, 3 r, θ, φ x x = re r 6.6 r, θ, φ e r θ e θ θ e φ θ = e θ, = e r, =, e r φ = sin θe φ, e θ φ = cos θe φ, e φ φ = sin θe r cos θe θ dx fr, θ, φ dx = dre r + rdθe θ + r sin θdφe φ 6.8 df = dr f f + dθ r θ + dφ f φ, f = dre r + rdθe θ + r sin θdφe φ e r r + e f θ r θ + e f φ, r sin θ φ = dx f 6.9 = e r r + e θ r θ + e φ r sin θ φ e r, e θ, e φ = e r e r, φ r + e θ r θ + e φ r sin θ r + e θ r θ + e φ r sin θ = e r e r + e θ e θ r r r θ + e θ r + e φ e φ r sin θ r sin θ φ + sin θe φ r + cos θe φ, r θ [ = + r r r + r + cot θ θ θ + ] sin θ φ φ

22 L = h i re r e r, = h i = h i e φ r + e θ r θ + e φ r sin θ, φ θ e θ sin θ φ sin φ cot θ cos φ θ φ, cos φ cot θ sin φ θ φ, z L z = h i L = h e φ θ e θ e φ sin θ φ θ e θ, sin θ φ [ = h e φ e φ θ e θ sin θ θ φ + e r sin θ φ e θ e φ φ θ e θ sin θ φ sin θe r + cos θe θ θ e cos θ φ sin θ [ ] = h, = h [ sin θ θ + cot θ θ + sin θ sin θ θ θ φ + sin θ φ ] φ φ ], φ H = h m r r + L + V r 6.5 r r mr 4. z m h Y m θ, φ Y m L Y m θ, φ = h + Y m θ, φ 6.6 L z Y m θ, φ = hmy m θ, φ 6.7 θ, φ Y m θ, φ ur, θ, φ =,m R ry m θ, φ [ h d m r r dr + R ] dr dr mr h + Y m θ, φ + V rr Y m θ, φ = E,m,m Y m R Y m θ, φ 6.9 h d m r r dr + h + dr dr mr R + V rr = ER 6. r 6.

23 6. z m h z 6.3 L z u jm θ, φ = h i C φ u jmθ, φ = m hu jm θ, φ 6. u jm = Ce imφ 6. φ φ + π 6.3 z h m z j j =,,, θ, φ z h m =,,, + Y m θ, φ Y Y Y ± a b c : =, Y m. a =, m =, b =, m =, c =, m = ±, m Y = 4π, 6.4 Y = 3 ± 3 cos θ, Y = 4π 8π sin θe±iφ, 6.5 3

24 Y 3 = Y = 5 6π 3 cos θ, Y ± Y ± = 5 = 8π sin θ cos θe±iφ, π sin θe ±iφ π 5 cos3 θ 3 cos θ, Y 3 ± = 64π sin θ5 cos θ e ±iφ, Y 3 ± = 3π sin θ cos θe ±iφ, Y 3 ±3 = 64π sin3 θe ±3iφ θ, φ π θ, φ + π 6.3 Y m π θ, φ + π = Y m θ, φ 6.3 z xy,, 3 xy z xy Y.5 Y ± - Y ± a b c : = Y m. a m =, b m = ±, c m = ± m h z z = Y m, m = +,, x, y, z 4

25 Y Y ± Y ± 3 - Y ± a b c d 3: = 3 Y m 3. a m =, b m = ±, c m = ±, d m = ±3. x, y, z 3 3 Y z = 4π r, 6.3 Y + Y 3 x = 4π r, 6.33 Y + Y 3 i y = π r 4. Y m θ, φ Y m θ, φ L Y m θ, φ = h + Y m θ, φ, L z Y m θ, φ = hmy m θ, φ, L ± Y m θ, φ = h m + ± my m± θ, φ z Y θ, φ z 6. φ L z Y θ, φ = h i φ Y θ, φ = hy θ, φ, 6.36 Y θ, φ exp iφ 6.37 L ± 6. [ L ± = L x ± il y = he ±iφ ± θ + i cot θ ] φ

26 θ h z z L Y 4.3 N = L Y θ, φ = he iφ [ θ + cot θ ] Y θ, φ 6.39 Y θ, φ = N sin θe iφ 6.4 Y θ, φ Y θ, φ Y, Y π dφ π sin θdθy θ, φ Y θ, φ 6.4 N Y θ, φ = z L + +! 4π sin θe iφ 6.4! L + Y θ, φ = he iφ [ θ + cot θ ] Y θ, φ 6.35 h Y θ, φ Y = hn sin θ cos θe i φ 6.43 θ, φ = N sin θ cos θe i φ +! = 4π! sin θ cos θe i φ 6.44 L + z Y θ Θθ L + [ e imφ Θθ ] = he im+φ [ θ m cot θ ] Θθ = he im+φ sin θ m d [ sin θ m Θθ ] dθ = he im+φ sin θ m+ d [sin θ m Θθ ] 6.45 d cos θ θ, φ L + m + Y m θ, φ 6.45 = = = Y m θ, φ = + 4π + 4π + 4π L+ + m + m h m! + m! m! + m! e imφ! e imφ! m+ Y θ, φ [ ] [ ] d d m cot θ cot θ sin θ dθ dθ [ ] d m cot θ sin θ + dθ d d cos θ sin θ m! +m +m d + m! e imφ sin θ m sin θ 6.46! d cos θ 6

27 z Y θ, φ Y θ, φ z m h Y m θ, φ = Y m θ, φ = + 4π L + + m m h + m! m!! eimφ sin θ m m Y θ, φ m d sin θ 6.47 d cos θ L L [ e imφ Θθ ] = he im φ sin θ m+ d d cos θ [sin θm Θθ] 6.48 sin θ z m > 6.46 m 6.47 P m cos θ m = P cos θ Y m θ, φ = ϵ, m P m + m! 4π + m! P m cos θe imφ 6.49 { m, m >, ϵ, m =, m m cos θ = d sin θ m sin θ! d cos θ 6.5 L / h + L z / h m Y m θ, φ 6.49 γ η = e iγ Y θ, φ [ H = h m r r r r Hur, θ, φ = Eur, θ, φ r sin θ + ] sin θ θ θ sin θ φ + V r 6.53 u r = im rur, θ, φ = 6.54 r 7

28 6.49 Y m θ, φ r = 6.54 im rr r = 6.55 r 6. r h m r d r d = d dr dr dr + r d dr = d r 6.56 r dr d + h r + dr mr + V r E R r = 6.57 z m h z z r = 6.55 h m d + h + dr mr χ r = rr r 6.58 im χ r = 6.59 r + V r E χ r = 6.6 χ r V eff V eff = V r + + h mr 6.6 r > r = χ r χ r = r γ n= a n r n 6.6 γ V r = r η n= 6.59 V n r n, η > 6.63 a [γγ + ] = 6.64 γ = γ =

29 z m h u u, u = = drr R r dr χ r sin θdθdφ Y m θ, φ sin θdθdφ Y m θ, φ 6.67 r R r 6.55 r = /r r = 7 7. MKSA α ε α e 4πε hc Ze e V r = Zα hc r r 6.49 Y m θ, φ z m h 7. u m r, θ, φ = R ry m θ, φ 7.3 [ h d d + m r dr r h + dr mr Zα hc ] E R r = 7.4 r ρ = κr, κ = m E h m, λ = Zαc E 7.5 ρ R d ρ ρ dr [ λ + dρ dρ ρ ] + 4 ρ R = 7.6 ρ /4 d R dρ 4 R ρ 7.7 R ρ e ± ρ, ρ 7.8 R ρ e ρ 9

30 R ρ R e ρ R v R ρ = ρ e ρ v ρ v ρ d dρ v + [ + ρ] d dρ v + λ v = v v ρ = k= a k ρ k ρ a k+ = k k + + λ k + k + + a k 7. a k+ a k k 7.3 k v e +ρ 7.4 R e ρ v e ρ e + ρ e ρ ρ n λ = n + + n 7.5 n n λ 7.5 n E n = mz αc n a k = k + n kk + + a k + nk + n k = kk + + k k + a k = = k + nk + n + n kk k + + k + + a 7.7 3

31 7. dρe ρ ρ p+ [L p qρ] = [q + p!]3 p + q q! N. Bohr a B a B h mαc 7.5 κ = Z na B, 7.9 ρ = κr = Zr na B R n r 6.49 Y m θ, φ u nm r, θ, φ Z R n r = a B 3 n u nm = R n ry m θ, φ, 7. n! Zr Zr [n +!] 3 L + n e Zr na B 7. na B na B R n r a B n /r u r = nn m, r u nn m = Z n 7.3 a B Z = n = R /r m n =,,, 3, 4, 5, = s, p, d, f, g, h, 7.4 = p n =,, 3, 4, 5, 6, K, L, M, N, O, P,. K s n =, =. L s n =, = p n =, = Z R r = Z R r = a B R r = a B 3 Z a B 3 e Zr a B 7.5 Zr e Zr a B 7.6 a B 3 Zr 6a B e Zr a B 7.7 3

32 3. M 3s n = 3, = R 3 r = Z a B Zr Zr + a B 3a B e Zr 3a B 7.8 3p n = 3, = 3d n = 3, = R 3 r = Z a B Zr a B Zr e Zr 3a B 7.9 3a B R 3 r = Z a B Zr a B e Zr 3a B 7.3 r r u = r R r n n n z m h =,,, n, m =, +,, 7.3 n = m= n = + = n 7.3 = n E n E n h z m z z r 3 x, y, z r, θ, φ SU3 r O4 3

33 / Z Z +Z n =,, n =,,, n n, z = h, + h,, h z + / n, + n, /r n =,,, n E n = mz αc /n n n n,,, 8 3 3, 3, , 4, 4, , 5, 5, , 3 5, 6, 6, 3 86 : n,,, 8, 36, 54, 86, / n n, +, 8,, 8, 5, 8, 6, 33

34

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

note01

note01 γ 5 J, M α J, M α = c JM JM J, M c JM e ipr p / M p = 0 M J(J + 1) / Λ p / M J(J + 1) / Λ ~ 1 / m π m π ~ 138 MeV J P,I = 0,1 π 1, π, π 3 ( ) ( π +, π 0, π ) ( ), π 0 = π 3 π ± = m 1 π1 ± iπ ( ) π ±,

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv - - m k F = kx ) kxt) =m d xt) dt ) ω = k/m ) ) d dt + ω xt) = 0 3) ) ) d d dt iω dt + iω xt) = 0 4) ω d/dt iω) d/dt + iω) 4) ) d dt iω xt) = 0 5) ) d dt + iω xt) = 0 6) 5) 6) a expiωt) b exp iωt) ) )

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

09- B, C B ( ) 3 4 WKB 5 3 6 I C ( B ) 7 II 8 LS 9 Hartree-Fock 0 Born-Oppenheimer II S Tomonaga-Schwinger 3 4 Bell EPR(Einstein-Podolsky-Rozen) 3 E = p c + m c 4 mc + m p + O(mc ( p mc )4 ) () mc p mc

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

平成18年度弁理士試験本試験問題とその傾向

平成18年度弁理士試験本試験問題とその傾向 CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information

4 2 4.1: =, >, < π dθ = dφ = 0 3 4 K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R

4 2 4.1: =, >, < π dθ = dφ = 0 3 4 K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R 1 4 4.1 1922 1929 1947 1965 2.726 K WMAP 2003 1. > 100Mpc 2. 10 5 3. 1. : v = ȧ(t) = Ha [ ] dr 2. : ds 2 = c 2 dt 2 a(t) 2 2 1 kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) a(t) H k = +1 k *1) k = 0 k = 1 dl 2 = dx

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y

M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y 1 1.1 M n p M T p M Tp M p (x 1,..., x n ) x 1,..., x n T p M dx 1,..., dx n Tp M dx i dx i ( ) = δj i x j Tp M Tp M i a idx i 1.1. M x M ω(x) Tx M ω(x) = n ω i (x)dx i i=1 ω i C r ω M C r C ω( x i ) C

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp + P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2 Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = 9.7 3 kg A. Drude-orentz Drude orentz N. i v i j = N q i v

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

ボールねじ

ボールねじ A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

2010 4 3 0 5 0.1......................................... 5 0.2...................................... 6 1 9 2 15 3 23 4 29 4.1............................................. 29 4.2..............................

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

hirameki_09.dvi

hirameki_09.dvi 2009 July 31 1 2009 1 1 e-mail: [email protected] 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information