A A. ω ν = ω/π E = hω. E
|
|
|
- ありかつ いくのや
- 9 years ago
- Views:
Transcription
1 B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A A A
2 A A. ω ν = ω/π E = hω. E h p p = hk. k ω k x e iωt+ikx.3 ψx, t E n p n n n a n ψx, t = n e iω nt+ik n x a n.4 a n. h i i h t ψx, t = n hω n e iω nt+ik n x a n = n E n e iω nt+ik n x a n.5 m p V x E mv / = p /m V x E = p + V x.6 m E n = p n + V x.7 m
3 .5 i h t ψx, t = p n m + V x e iω nt+ik n x a n = hkn m n n = h + V x e iωnt+iknx a n m i x n h = + V x e iω nt+ik n x a n m i x n h = + V x m i x + V x e iω nt+ik n x a n ψx, t.8 x, y, z 3 [ i h ] t ψx, t = h h h V x ψx, t.9 m i x i y i z. A. ψx, t. 3. Ω ω n Ωu n = ω n u n. 4. E p x ψx = a n u n x. n a n ψ u n 5. u n, u m = δ n,m. δ n,m n = m ψ, φ ψ, φ ψ, φ = d 3 xψx φx.3 3
4 Ω ω n a n ψ a n =.4 n Ω ψx Ω Ω = a n ω n = dxψ xωψx.5 n.3 A Hux = Eux H = h d + V x,.6 m dx {, x > a, V x =, x < a.7.6 E k me k = h h d ux m dx = Eux.8.9 d ux/dx = k ux k sin kx cos kx A B ux = A cos kx + B sin kx, a < x < a. k E ux = a =, ux = a =. A cos ka + B sin ka =, A cos ka + B sin ka =. 4
5 A cos ka =, B sin ka =.3 A, B B =, cos ka =,.4 A =, sin ka =.5 k n k = n + π a.6 ux = A cos ux = B sin n + πx, n =,, 4,,.7 a n + πx, n =, 3, 5,,.8 a E n = π h n + 8ma, n =,,, 3,,.9 A B n n E = π h 8ma.3 x a p = h/a h /ma x x.8 5
6 V x = V x, H x = Hx.3 ux Hxux = Eux, Hxu x = H xu x = Eu x.3 E u x = cux.33 x x ux = cu x.34 c =, c = ±.35 c = c = E ux.9 n... { V, x > a, V x =, x < a. x = du x = =. dx ux = =.3 6
7 V V d ux = κ ux,.4 dx mv E κ = h C D.5 ux = Ce κx + De κx, x > a.6 D ψx, t <.7 D =, ux = Ce κx, x > a.8 x < a. k me k = h..9 ux = A cos kx..3 ux = B sin kx,
8 x = a ux x = a a ϵ a + ϵ du du x = a + ϵ x = a ϵ = dx dx a+ϵ a ϵ dx d ux dx = h m a+ϵ a ϵ dx V x E ux. ϵ ϵ x = a A C.3 A cos ka = Ce κa.3 ka sin ka = κce κa.4 k tan ka = κ.5 x = a. B C.6 B sin ka = Ce κa.6 kb cos ka = κce κa.7 k cot ka = κ k κ ξ = ka, η = κa.9 ξ + η = mv a h. η = ξ tan ξ,. η = ξ cot ξ. V a < V a π h.3 8m 8
9 n π h 8m < V a n + π h 8m.4 n + V E.4 V E E E n < x < n nπ a < k n+π a { A cos kx, x < a, ux = A cos kae κ x a, x > a.5 A = a + κ.5.6 ux = { B sin kx, x < a, x x B sin kae κ x a, x > a.8 B = a + κ.7.8 V E E V.5 κ A B.3.4 V ±.6 9
10 3 3. ω c V x = mω c x 3. Hux = Eux, 3. H = p m + mω c x = h d + mω c m dx x 3.3 mωc Q = x, 3.4 h P = m hωc p = h d m hωc i dx = i d dq 3.5 H = hω c P + Q 3.6 [Q, P ] = i 3.7 a = Q + ip, a = Q ip 3.8?? Q, P a, a [a, a ] = 3.9 H = hω c a a + aa = hω c N +, N = a a 3. N a a N ν u ν [N, a] = a, [N, a ] = a 3. Nu ν = νu ν 3.
11 a 3.9 au ν, au ν = u ν, a au ν = u ν, Nu ν = νu ν, u ν, 3.3 a u ν, a u ν = u ν, aa u ν = u ν, N + u ν = ν + u ν, u ν ν 3.5 Nau ν = an u ν = ν au ν, 3.6 Na u ν = a N + u ν = ν + a u ν 3.7 au ν ν > N ν νu ν, u ν, a u ν ν > N ν + ν + u ν, u ν ν a N ν ν a ν N u N ν =,,,, n, u ν u, u = a u, u = a u,, u n = n! a n u, E = hω c, E = + hω c, E = + E n = hω c,, n + hω c, 3.9 u a 3.3 au, au = u au = 3. E = hω c hω c hω c N a N a N N
12 3. u n x 3. au = Q + ip u = Q + d u = 3. dq u x e Q mωc 4 u x = e mωc Q 4 = e mω c h x 3. π h π h n n u n x = a n mωc 4 u = Q d n e Q 3.3 n! π h n! n dq ψq Q d ψq = e Q dq d dq e Q ψq 3.4 Q d n = dq = = Q d dq = e Q d Q dq e 3.5 Q d dq Q d dq Q d dq = e Q d dq n e Q n e Q n e Q d dq e d dq e d dq Q Q e Q e Q = d dq e Q n e Q 3.6 u n x = = mωc π h mωc π h mωc π h 4 e Q d n! n dq 4 n! n e Q H n Q 4 n! n mωc e h n e Q mωc x H n h x 3.7 H n Q Hermite H n Q = n e Q dn dq n e Q, n =,,,, 3.8 n H Q =, H Q = Q, H Q = 4Q, H 3 Q = 8Q 3 Q, 3.9 n H n Q n n H n Q = n H n Q 3.3
13 4 4. L = x p 4. L = h i x 4. L x, L y, L z L x = h i y z z y, L y = h i z x x z, L z = h i x y y x 4.3 [L x, L y ] = i hl z, [L y, L z ] = i hl x, [L z, L x ] = i hl y [L i, L j ] = i h ε ijk L k 4.5,, 3 x, y, z k= 4. L L J J [J x, J y ] = i hj z, [J y, J z ] = i hj x, [J z, J x ] = i hj y 4.6 L 4.3 J J = Jx + Jy + Jz, 4.7 [J, J x ] = [J, J y ] = [J, J z ] = 4.8 J J x J y J z z J z J z J z u jm J u jm = jj + h u jm, J z u jm = m hu jm 4.9 3
14 j J jj + h J J = J jj + m jj + 4. J x J y J + = J x + ij y, J = J x ij y 4. J + J [J z, J ± ] = ± hj ±, [J +, J ] = hj z 4. J x, J y J ± J J = J +J + J J + + Jz, 4.3 [J, J z ] =, [J, J ± ] = 4.4 z J z J J J + = J J z J z + h, J + J = J J z J z h 4.5 u jm u jm J J + u jm = j mj + m + h u jm, 4.6 J + J u jm = j + mj m + h u jm 4.7 J + J J ± = J 4.8 J + u jm = J + u jm, J + u jm = u jm, J J + u jm = j mj + m + h u jm, 4.9 J u jm = J u jm, J u jm = u jm, J + J u jm = j + mj m + h u jm 4. j j m j 4. J J ± u jm = jj + h J ± u jm, 4. J z J ± u jm = m ± hj ± u jm 4.3 J + u jm z + h j h z m h 4.9 j mj + m + J z j 4
15 J J z j h J J z j h j. J jj + h j j j =,,, 3,, 4.4. J z m h m z m 3. J J z jm m = j, j +,, j 4.5 j + j + J x, J y, J z j + j u jm J J z h j z h m = j, j,, j j z h u jm c jm J u jm = c jm u jm c jm c jm = [jj + mm ] h, 4.7 c jm c jm J u jm = j + mj + m hu jm 4.8 J + u jm u jm+ J + J J u jm c jm J + u jm J + u jm = j mj + + m hu jm+ 4.9 J z m h = j h J + J z J + u jj = 4.3 5
16 m h = j h J J u j j = 4.3 j j + u jj J u jm = j + m! j!j m! u j j J + u jm = j m! j!j + m! j m J u jj 4.3 h j+m J+ u j j 4.33 h 4.3 j j u j m, u j m u jm J k = J k + J k, k = x, y, z 4.34 z u j j u j j 4.35 J z u j j u j j = j + j hu j j u j j 4.36 z j + j J u j j u j j = j + j j + j + h u j j u j j 4.37 z u j+j j +j = u j j u j j 4.38 J = J + J j + j z J z J z j + j h = j + j hu j +j,j +j = J u j +j,j +j = J u J u j j u j j + u j j J u j j j j u j j = j hu j j u j j + j hu j j u j j 4.39 z J z J z z J z j + j h u j,j u j,j, u j,j u j,j 4.4 6
17 J j + j j + j z j + j h j + j j + j j + j u j +j,j +j = j u j j + j j u j j + j u j j u j j 4.4 J z. j j j = j j, j j +,, j + j 4.4. j j + j Hx, p ; x, p = Hx, p ; x, p 5. α β u α,β x ; x = u α x u β x, 5. u β,α x ; x = u β x u α x 5.3 u S u A u S = u α,β + u β,α, u A = u α,β u β,α 5.4 c S c A u = c S u S + c A u A, c S + c A = 5.5 7
18 c S c A u t ψ i h ψx, t = Hψx, t 5.6 t ψx ; x ; t = c S ψ S x ; x ; t + c A ψ A x ; x ; t 5.7 t x, x P x ; x ; t = ψx ; x ; t + ψx ; x ; t 5.8 [ P x ; x ; t = c S ψ S x ; x ; t + c A ψ A x ; x ; t ] 5.9 c S, c A c S, c A Bose 5. 8
19 ψx, x ψx, x = φ α x φ β x 5. P P ψx, x = ψx, x 5. ψ S x, x = ψx, x + ψx, x = + P ψx, x 5. ψ A x, x = ψx, x ψx, x = P ψx, x 5.3 ψx, x ± ψx, x = ψx, x + ψx, x ± Re [ψx, x ψ x, x ] 5.4 ψ A x, x = ψ A x, x =, T E n n P n P n = e En/kBT Z 5.6 k B Z Z = n=,, e nϵτ /kbt 5.7 τ ϵ τ n nϵ τ n 5.6 P n = e nϵ τ /k B T 5.8 Z ϵ n Z n =,,, 5.9 Z = + e ϵ/kbt + e ϵ/kbt + = 9 e ϵ/kbt 5.
20 ϵ τ e ϵ/k BT e ϵ/k BT = e ϵ/k BT 5. ϵ τ n =, 5. Z Z = + e ϵ/k BT 5.3 ϵ τ e ϵ/kbt + e ϵ/kbt = e ϵ/kbt ϵ k B T T ν = ω/π hν = hω = k B T 5.5 h = h/π 6 6. V x, t 3 V x V x, t = V r 6. r, θ, φ x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ 6. x, y, z r, θ, φ [ h m r r + r r r sin θ sin θ + θ θ r sin θ ] φ u + V ru = Eu 6.3
21 r, θ, φ e r = sin θ cos φ, sin θ sin φ, cos θ, e θ = cos θ cos φ, cos θ sin φ, sin θ, e φ = sin φ, cos φ, 6.4 e i e j = δ ij, e i e j = k ε ijk e k, i, j, k = r, θ, φ 6.5 ε ijk 3 ε 3 = +,, 3 r, θ, φ x x = re r 6.6 r, θ, φ e r θ e θ θ e φ θ = e θ, = e r, =, e r φ = sin θe φ, e θ φ = cos θe φ, e φ φ = sin θe r cos θe θ dx fr, θ, φ dx = dre r + rdθe θ + r sin θdφe φ 6.8 df = dr f f + dθ r θ + dφ f φ, f = dre r + rdθe θ + r sin θdφe φ e r r + e f θ r θ + e f φ, r sin θ φ = dx f 6.9 = e r r + e θ r θ + e φ r sin θ φ e r, e θ, e φ = e r e r, φ r + e θ r θ + e φ r sin θ r + e θ r θ + e φ r sin θ = e r e r + e θ e θ r r r θ + e θ r + e φ e φ r sin θ r sin θ φ + sin θe φ r + cos θe φ, r θ [ = + r r r + r + cot θ θ θ + ] sin θ φ φ
22 L = h i re r e r, = h i = h i e φ r + e θ r θ + e φ r sin θ, φ θ e θ sin θ φ sin φ cot θ cos φ θ φ, cos φ cot θ sin φ θ φ, z L z = h i L = h e φ θ e θ e φ sin θ φ θ e θ, sin θ φ [ = h e φ e φ θ e θ sin θ θ φ + e r sin θ φ e θ e φ φ θ e θ sin θ φ sin θe r + cos θe θ θ e cos θ φ sin θ [ ] = h, = h [ sin θ θ + cot θ θ + sin θ sin θ θ θ φ + sin θ φ ] φ φ ], φ H = h m r r + L + V r 6.5 r r mr 4. z m h Y m θ, φ Y m L Y m θ, φ = h + Y m θ, φ 6.6 L z Y m θ, φ = hmy m θ, φ 6.7 θ, φ Y m θ, φ ur, θ, φ =,m R ry m θ, φ [ h d m r r dr + R ] dr dr mr h + Y m θ, φ + V rr Y m θ, φ = E,m,m Y m R Y m θ, φ 6.9 h d m r r dr + h + dr dr mr R + V rr = ER 6. r 6.
23 6. z m h z 6.3 L z u jm θ, φ = h i C φ u jmθ, φ = m hu jm θ, φ 6. u jm = Ce imφ 6. φ φ + π 6.3 z h m z j j =,,, θ, φ z h m =,,, + Y m θ, φ Y Y Y ± a b c : =, Y m. a =, m =, b =, m =, c =, m = ±, m Y = 4π, 6.4 Y = 3 ± 3 cos θ, Y = 4π 8π sin θe±iφ, 6.5 3
24 Y 3 = Y = 5 6π 3 cos θ, Y ± Y ± = 5 = 8π sin θ cos θe±iφ, π sin θe ±iφ π 5 cos3 θ 3 cos θ, Y 3 ± = 64π sin θ5 cos θ e ±iφ, Y 3 ± = 3π sin θ cos θe ±iφ, Y 3 ±3 = 64π sin3 θe ±3iφ θ, φ π θ, φ + π 6.3 Y m π θ, φ + π = Y m θ, φ 6.3 z xy,, 3 xy z xy Y.5 Y ± - Y ± a b c : = Y m. a m =, b m = ±, c m = ± m h z z = Y m, m = +,, x, y, z 4
25 Y Y ± Y ± 3 - Y ± a b c d 3: = 3 Y m 3. a m =, b m = ±, c m = ±, d m = ±3. x, y, z 3 3 Y z = 4π r, 6.3 Y + Y 3 x = 4π r, 6.33 Y + Y 3 i y = π r 4. Y m θ, φ Y m θ, φ L Y m θ, φ = h + Y m θ, φ, L z Y m θ, φ = hmy m θ, φ, L ± Y m θ, φ = h m + ± my m± θ, φ z Y θ, φ z 6. φ L z Y θ, φ = h i φ Y θ, φ = hy θ, φ, 6.36 Y θ, φ exp iφ 6.37 L ± 6. [ L ± = L x ± il y = he ±iφ ± θ + i cot θ ] φ
26 θ h z z L Y 4.3 N = L Y θ, φ = he iφ [ θ + cot θ ] Y θ, φ 6.39 Y θ, φ = N sin θe iφ 6.4 Y θ, φ Y θ, φ Y, Y π dφ π sin θdθy θ, φ Y θ, φ 6.4 N Y θ, φ = z L + +! 4π sin θe iφ 6.4! L + Y θ, φ = he iφ [ θ + cot θ ] Y θ, φ 6.35 h Y θ, φ Y = hn sin θ cos θe i φ 6.43 θ, φ = N sin θ cos θe i φ +! = 4π! sin θ cos θe i φ 6.44 L + z Y θ Θθ L + [ e imφ Θθ ] = he im+φ [ θ m cot θ ] Θθ = he im+φ sin θ m d [ sin θ m Θθ ] dθ = he im+φ sin θ m+ d [sin θ m Θθ ] 6.45 d cos θ θ, φ L + m + Y m θ, φ 6.45 = = = Y m θ, φ = + 4π + 4π + 4π L+ + m + m h m! + m! m! + m! e imφ! e imφ! m+ Y θ, φ [ ] [ ] d d m cot θ cot θ sin θ dθ dθ [ ] d m cot θ sin θ + dθ d d cos θ sin θ m! +m +m d + m! e imφ sin θ m sin θ 6.46! d cos θ 6
27 z Y θ, φ Y θ, φ z m h Y m θ, φ = Y m θ, φ = + 4π L + + m m h + m! m!! eimφ sin θ m m Y θ, φ m d sin θ 6.47 d cos θ L L [ e imφ Θθ ] = he im φ sin θ m+ d d cos θ [sin θm Θθ] 6.48 sin θ z m > 6.46 m 6.47 P m cos θ m = P cos θ Y m θ, φ = ϵ, m P m + m! 4π + m! P m cos θe imφ 6.49 { m, m >, ϵ, m =, m m cos θ = d sin θ m sin θ! d cos θ 6.5 L / h + L z / h m Y m θ, φ 6.49 γ η = e iγ Y θ, φ [ H = h m r r r r Hur, θ, φ = Eur, θ, φ r sin θ + ] sin θ θ θ sin θ φ + V r 6.53 u r = im rur, θ, φ = 6.54 r 7
28 6.49 Y m θ, φ r = 6.54 im rr r = 6.55 r 6. r h m r d r d = d dr dr dr + r d dr = d r 6.56 r dr d + h r + dr mr + V r E R r = 6.57 z m h z z r = 6.55 h m d + h + dr mr χ r = rr r 6.58 im χ r = 6.59 r + V r E χ r = 6.6 χ r V eff V eff = V r + + h mr 6.6 r > r = χ r χ r = r γ n= a n r n 6.6 γ V r = r η n= 6.59 V n r n, η > 6.63 a [γγ + ] = 6.64 γ = γ =
29 z m h u u, u = = drr R r dr χ r sin θdθdφ Y m θ, φ sin θdθdφ Y m θ, φ 6.67 r R r 6.55 r = /r r = 7 7. MKSA α ε α e 4πε hc Ze e V r = Zα hc r r 6.49 Y m θ, φ z m h 7. u m r, θ, φ = R ry m θ, φ 7.3 [ h d d + m r dr r h + dr mr Zα hc ] E R r = 7.4 r ρ = κr, κ = m E h m, λ = Zαc E 7.5 ρ R d ρ ρ dr [ λ + dρ dρ ρ ] + 4 ρ R = 7.6 ρ /4 d R dρ 4 R ρ 7.7 R ρ e ± ρ, ρ 7.8 R ρ e ρ 9
30 R ρ R e ρ R v R ρ = ρ e ρ v ρ v ρ d dρ v + [ + ρ] d dρ v + λ v = v v ρ = k= a k ρ k ρ a k+ = k k + + λ k + k + + a k 7. a k+ a k k 7.3 k v e +ρ 7.4 R e ρ v e ρ e + ρ e ρ ρ n λ = n + + n 7.5 n n λ 7.5 n E n = mz αc n a k = k + n kk + + a k + nk + n k = kk + + k k + a k = = k + nk + n + n kk k + + k + + a 7.7 3
31 7. dρe ρ ρ p+ [L p qρ] = [q + p!]3 p + q q! N. Bohr a B a B h mαc 7.5 κ = Z na B, 7.9 ρ = κr = Zr na B R n r 6.49 Y m θ, φ u nm r, θ, φ Z R n r = a B 3 n u nm = R n ry m θ, φ, 7. n! Zr Zr [n +!] 3 L + n e Zr na B 7. na B na B R n r a B n /r u r = nn m, r u nn m = Z n 7.3 a B Z = n = R /r m n =,,, 3, 4, 5, = s, p, d, f, g, h, 7.4 = p n =,, 3, 4, 5, 6, K, L, M, N, O, P,. K s n =, =. L s n =, = p n =, = Z R r = Z R r = a B R r = a B 3 Z a B 3 e Zr a B 7.5 Zr e Zr a B 7.6 a B 3 Zr 6a B e Zr a B 7.7 3
32 3. M 3s n = 3, = R 3 r = Z a B Zr Zr + a B 3a B e Zr 3a B 7.8 3p n = 3, = 3d n = 3, = R 3 r = Z a B Zr a B Zr e Zr 3a B 7.9 3a B R 3 r = Z a B Zr a B e Zr 3a B 7.3 r r u = r R r n n n z m h =,,, n, m =, +,, 7.3 n = m= n = + = n 7.3 = n E n E n h z m z z r 3 x, y, z r, θ, φ SU3 r O4 3
33 / Z Z +Z n =,, n =,,, n n, z = h, + h,, h z + / n, + n, /r n =,,, n E n = mz αc /n n n n,,, 8 3 3, 3, , 4, 4, , 5, 5, , 3 5, 6, 6, 3 86 : n,,, 8, 36, 54, 86, / n n, +, 8,, 8, 5, 8, 6, 33
34
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =
1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
note01
γ 5 J, M α J, M α = c JM JM J, M c JM e ipr p / M p = 0 M J(J + 1) / Λ p / M J(J + 1) / Λ ~ 1 / m π m π ~ 138 MeV J P,I = 0,1 π 1, π, π 3 ( ) ( π +, π 0, π ) ( ), π 0 = π 3 π ± = m 1 π1 ± iπ ( ) π ±,
( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1
2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h
A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3
π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................
2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..
Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.
,..,,.,,.,.,..,,.,,..,,,. 2
A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,
( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,
7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv
- - m k F = kx ) kxt) =m d xt) dt ) ω = k/m ) ) d dt + ω xt) = 0 3) ) ) d d dt iω dt + iω xt) = 0 4) ω d/dt iω) d/dt + iω) 4) ) d dt iω xt) = 0 5) ) d dt + iω xt) = 0 6) 5) 6) a expiωt) b exp iωt) ) )
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
330
330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1
I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +
I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.
6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit
6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h
09- B, C B ( ) 3 4 WKB 5 3 6 I C ( B ) 7 II 8 LS 9 Hartree-Fock 0 Born-Oppenheimer II S Tomonaga-Schwinger 3 4 Bell EPR(Einstein-Podolsky-Rozen) 3 E = p c + m c 4 mc + m p + O(mc ( p mc )4 ) () mc p mc
b3e2003.dvi
15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r
4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =
z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z
Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y
受賞講演要旨2012cs3
アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α
平成18年度弁理士試験本試験問題とその傾向
CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3
dvipsj.4131.dvi
7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :
Microsoft Word - Wordで楽に数式を作る.docx
Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる
4 2 4.1: =, >, < π dθ = dφ = 0 3 4 K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R
1 4 4.1 1922 1929 1947 1965 2.726 K WMAP 2003 1. > 100Mpc 2. 10 5 3. 1. : v = ȧ(t) = Ha [ ] dr 2. : ds 2 = c 2 dt 2 a(t) 2 2 1 kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) a(t) H k = +1 k *1) k = 0 k = 1 dl 2 = dx
1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0
A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1
C:/KENAR/0p1.dvi
2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x
M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y
1 1.1 M n p M T p M Tp M p (x 1,..., x n ) x 1,..., x n T p M dx 1,..., dx n Tp M dx i dx i ( ) = δj i x j Tp M Tp M i a idx i 1.1. M x M ω(x) Tx M ω(x) = n ω i (x)dx i i=1 ω i C r ω M C r C ω( x i ) C
ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d
A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9
dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp
+ P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy
46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-
45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2
Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = 9.7 3 kg A. Drude-orentz Drude orentz N. i v i j = N q i v
確率論と統計学の資料
5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........
+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....
+ http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46
閨75, 縺5 [ ィ チ573, 縺 ィ ィ
39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2
1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)
W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)
3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)
(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)
2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x
ボールねじ
A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49
d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r
2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad
13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =
m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d
m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m
2010 4 3 0 5 0.1......................................... 5 0.2...................................... 6 1 9 2 15 3 23 4 29 4.1............................................. 29 4.2..............................
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................
1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030
1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
hirameki_09.dvi
2009 July 31 1 2009 1 1 e-mail: [email protected] 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b
SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ
SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
