SICE東北支部研究集会資料(2012年)
|
|
|
- しなつ さくいし
- 9 years ago
- Views:
Transcription
1 77 (..3) 77- Simulation of Disturbance Compensation Control of Dual Manipulator for an Inverted Pendulum Robot Using The Extended State Observer Luis Canete Kenta Nagano, Takuma Sato, Luis Canete,Takayuki Takahashi *, ** *Fukushima University, **Graduate School of Fukushima University. : (Human Support Robot) (Inverted Pendulum) (Dual Manipulator) (Extended State Observer) : Tel.: (4) Fax.: (4) [email protected].. I-PENTAR, ) I-PENTAR Fig. 3) Fig. I-PENTAR
2 レータの動作を外乱と見なして補償を行う ま た マニピュレータ側では未知重量の物体の把 持等の外乱に加え 倒立振子型ロボットの揺れ を外乱と見なして補償を行う 本論文ではマニ ピュレータ側での外乱補償制御のシミュレーショ ンについて述べる. Front view 拡張状態オブザーバ 本章では 一般的な n 次の非線形システムに 対する拡張状態オブザーバ 4) (Extended State Side view Observer 以降 ESO) について述べる Fig. Inverted Pendulum Type Assistant Robot(I-PENTAR) システムの入力を u(t) 出力を y(t) として 一入出力の n 次の非線形システムを考える y n (t) = f (y (n ) (t), y (n ) (t),, y(t), w(t)) +bu(t) () ここで w(t) は有界な外乱 b は定数であり f は外乱を含んだシステムすべての動特性である 以降 記述を簡単にするため f (y (n ) (t), y (n ) (t),, y(t), w(t)) を f と記述する ここで h = f という h を定義する すると式 () は状態空間 モデルとして次のように表現できる Fig. 8 D.O.F dual manipulator. x = x... 研究目的 x n = xn 倒立振子型ロボットにマニピュレータを搭載 x n = xn+ + bu し様々なタスクを行わせる場合 未知の外乱に x n+ = h(x, u, w, w ) 加え マニピュレータの動作がロボット本体に影 y = x 響を与えることが予想される しかし 対象と するマニピュレータがこれらの外乱と比較して 非力で軽量な場合 マニピュレータを搭載した ロボットを正確にモデリングし 制御を行うこ とは得策ではない そこで 本研究では倒立振 子型ロボットにおけるマニピュレータの動作の 影響に対して 制御系を本体側とマニピュレー タ側の つに分離し それぞれで外乱の補償を 行い制御系間の情報のやりとりを最小限にする ここで x = [x, x,, xn+ ]T は状態変数で ある 式 () における xn は f であり その拡張 状態は xn+ と表され オブザーバは xn+ 用い ることで y と f を推定することができる この ようなオブザーバを拡張状態オブザーバ (ESO) と呼ぶ ESO はモデル化されていないダイナミ クスに加わる外乱と y を推定することが可能で ある 制御系を提案する 外乱補償については 本体 側では段差等の外部からの外乱に加え マニピュ () 式 () のシステムにおいて 入力として u と y を与えた ESO は次のように表現できる
3 ˆx = ˆx + l (x ˆx ). ˆx n = ˆx n + l n (x ˆx ) ˆx n = ˆx n+ + l n (x ˆx ) + bu ˆx n+ = l n+ (x ˆx ) (3) ˆx = [ˆx, ˆx,, ˆx n+ ] T l i (i =,,,, n+) ESO u = u ˆf b (4) ˆf ˆf = f () y (n) (t) u (5) y ESO u PD 3. Fig. 3 Table q = [ψ, θ w, θ, θ ] T M(q) q + C(q, q) + V q + G(q) = Eτ w + T τ + T τ + Dτ d (6) M(q) q C(q, q) V q G(q) Fig. 3 Model for dual manipulatar and I-PENTAR Table Control variables and parameters Symbol Unit Description ψ rad Inclination angle of CoG θ w rad Rotational angle of wheel θ rad Rotational angle of upper link θ rad Rotational angle of lower link M g Kg Mass of body m w Kg Mass of wheel m Kg Mass of upper link m Kg Mass of lower link l g m Length between the origin of body coordinates and CoG l m Distance of gravity of upper link l m Distance ofgravity of lower link r w m Radius of wheel τ w Nm Motor torque of wheel τ Nm Motor torque of upper link τ Nm Motor torque of lower link g m/s Gravity acceleration 4. ESO PD 4. 5[s] 8[s] θ.5[rad] θ [rad] 3
4 Fig. 4 Disturbance compensation control in the joint space by PD control 5[s] [s] [Nm] 4. PD ESO Fig. 4 Fig. 5 Fig. 4 PD.[rad] Fig. 5 ESO PD ESO PD 5. Fig. 5 Disturbance compensation control in the joint space by ESO ESO PD 5. P w P s P e (7) P d (x d, y d ) = [x d, y d ] P w (x w, y w ) = [r w θ w, r w ] P s (x s, y s ) = [l ws sin ψ, l ws cos ψ] P e (x e, y e ) = [x d, y d ] (7) (8) l ws = l body l se = (x e x s ) + (y e y s ) l we = (x e x w ) + (y e y w ) (8) Fig. 6 4
5 () q d = J T (JJ T + λ I) dp d dt () λ λ = { when ˆσn > ɛ ɛ ˆσ n otherwise (3) Fig. 6 Model for the calculation of desired value θ d = cos ( l ws + l se l we l ws l se ) cos ( l arm + l se l arm l arm l se θ d = π cos ( l arm + l arm l se l arm l arm ) ) (9) P e (x e, y e ) x e = r w θ w + l body sin ψ + l arm sin(θ ψ) +l arm sin(θ + θ ψ) y e = r w + l body cos ψ l arm cos(θ ψ) l arm cos(θ + θ ψ) () (3) ɛ ˆσ n J I-PENTAR 5) ( q b = J T (JJ T + λ I) Pe ψ ψ + P ) e θw (4) θ w ()(4) q d = q d q b (5) θ, θ J = [ xp θ y p θ ] x p θ y p θ x p θ = l arm cos(θ ψ) +l arm cos(θ + θ ψ) x p θ = l arm cos(θ + θ ψ) y p θ = l arm sin(θ ψ) +l arm sin(θ + θ ψ) y p θ = l arm sin(θ + θ ψ) () 5 5. [s] 3[s] P d (x d, y d ) = [,.] P d (x d, y d ) = [.,.7] 5[s] [s] [Nm] 5[Nm]
6 displacement[m] (a) Tip position in the case of PD control (b) Each angle in the case of PD control displacement[m] (c) Tip position in the case of ESO (d) Each angle in the case of ESO 8 6 torque [Nm] 4 - (e) Each joint torque in the case of ESO Fig. 7 Simulation results in the case of applying step disturbance to each joint of manipulator 6
7 PD ESO Fig. 7(a) Fig. 7(c) PD ESO Fig. 7(b) Fig. 7(d). ESO Fig. 7(e) Fig. 7(a) Fig. 7(b) PD.7[m] Fig. 7(c) Fig. 7(d) ESO.[m] τ = 3[Nm],τ = 3[Nm] Fig.7(e) ESO. ESO PD ESO Fig. 8(a) Fig. 8(c) PD ESO Fig. 8(b) Fig. 8(d) ESO Fig. 8(e) Fig. 8(a) Fig. 8(b) PD Fig. 8(b).6[m] Fig. 8(c) Fig. 8(d) ESO PD.[m] Fig.8(e) ESO. ESO 5.4 PD ESO x [s] [s] P d (x d, y d ) = [,.] P d (x d, y d ) = [.,.7] ESO Fig. 9(a) Fig. 9(b) 7
8 displacement[m] (a) Tip position in the case of PD control (b) Each angle in the case of PD control displacement[m] (c) Tip position in the case of ESO (d) Each angle in the case of ESO 8 6 torque [Nm] 4 - (e) Each joint torque in the case of ESO Fig. 8 Simulation results in the case of applying step disturbance to robot body of manipulator 8
9 displacement [m] (a) Tip position in the case of ESO 6. ESO ESO ESO I-PENTAR - -3 (b) Each angle in the case of ESO Fig. 9 Examination of the initial response Fig. 9(a) Fig. 9(b) x 6) ),, Luis Canete,.,, P-I4,. ) Luis Canete,Takayuki Takahashi. Disturbance Compensation in Pushing, Pulling, and Lifting for Load Transporting Control of a Wheeled Inverted Pendulum Type Assistant Robot Using The Extended State Observer, Intelligent Robots and Systems, October 7-, Vilamoura,Algarve Portugal,. 3),,,,. - -, 9, P-G6 9. 4),,,.., Vol. 8, No., pp ,. 5), Dragomir N. Nenchev,., 5, P- N
10 6),, Luis Canete,., 77, 77-,.
数値計算:常微分方程式
( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )
SICE東北支部研究集会資料(2011年)
269 (2011.12.12) 269-10 Basic analysis of coaching in sprint motion using three dimensional motion capture data Masahiro Nagayama,Takayuki Takahashi *, ** *Graduate School Fukushima University,**Fukushima
Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu
Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical
mt_4.dvi
( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................
IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus
IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsushi UMEMURA, Yoshiharu KANESHIMA, Hiroki MURAKAMI(IHI
Robot Platform Project(RPP) "Spur" "YP-Spur" rev. 4 [ ] Robot Platform Project(RPP) WATANABE Atsushi 1.,,., Fig. 1.,,,,,.,,,..,,..,,..,,,,. "
Robot Platform Project(RPP) "Spur" "YP-Spur" ev. 4 [.8.9] Robot Platform Project(RPP) WATANABE Atsushi.,,., Fig..,,,,,.,,,..,,..,,..,,,,. "",,, Spur.,, Robot Platform Project, "YP-Spur".,,, 98 99,. [][3][4].,,,
xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL
PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP
IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came
3DCG 1,a) 2 2 2 2 3 On rigid body animation taking into account the 3D computer graphics camera viewpoint Abstract: In using computer graphics for making games or motion pictures, physics simulation is
特-3.indd
Development of Automation Technology for Precision Finishing Works Employing a Robot Arm There is demand for the automation of finishing processes that require technical skills in the manufacturing of
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
1 P2 P P3P4 P5P8 P9P10 P11 P12
1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520
Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee
Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,
1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing
1,a) 2,b) 3 Modeling of Agitation Method in Automatic Mahjong Table using Multi-Agent Simulation Hiroyasu Ide 1,a) Takashi Okuda 2,b) Abstract: Automatic mahjong table refers to mahjong table which automatically
550 Vol. 32 No. 6, pp , Saddle Type Human Body Motion Interface for Personal Mobility Vehicle Sho Yokota 1, Hiroshi Hashimoto 2, D
550 Vol. 32 No. 6, pp.550 557, 2014 1 2 3 4 Saddle Type Human Body Motion Interface for Personal Mobility Vehicle Sho Yokota 1, Hiroshi Hashimoto 2, Daisuke Chugo 3 and Kuniaki Kawabata 4 This paper proposes
Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO
Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO and Masaru KOBAYASHI Chassis Engineering Management
4) 5) ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) )8) ( 1 ) ( 2 ) ( 3 ) ( 200 9) ( 10) 1 2 (
2 1 2 3 4 5 2 2 2 16 2 16 3 2 Proposal of Learning Computer-aided Measurement and Control with a Bipedal Walking Robot Shuji KUREBAYASHI, 1 Daisuke HIGUCHI, 2 Wataru HISHIDA, 3 Motomasa OMURA 4 and Susumu
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%
1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n
1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0
A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1
Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori
Proposal and Characteristics Evaluation of a Power Generation System Utilizing Waste Heat from Factories for Load Leveling Pyong Sik Pak, Member, Takashi Arima, Non-member (Osaka University) In this paper,
untitled
SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E
75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)
3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local
,, 2. Matlab Simulink 2018 PC Matlab Scilab 2
(2018 ) ( -1) TA Email : [email protected], [email protected] : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................
有機性産業廃棄物の連続炭化装置の開発
( ) Development of the apparatus conveyer type which carbonizes continuously organic industrial waste (About the form of blade in conveyer) 1055047 1 1-1 1 1-2 1-3 2 2 2-1 2-2 2-3 2-4 7 3 3-1 20 3-2 3-3
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
SICE東北支部研究集会資料(2012年)
273 (2012.6.29) 273-8 Relation between calculation task load and gait parameter during dual-task Yuta Tsushima, Manami Shibata Koichi Sagawa * *Hirosaki Univresity graduate school science and technogy
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット
Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
航空機の縦系モデルに対する、非線形制御の適用例
制御システム工学研究グルプ 航空機の縦系モデルに対する非線形最適制御の適用例 菊池芳光 * * 名古屋大学 MBD 中部コンファレンス @2014 年 12 月 18 日 目次 はじめに 先行研究 提案手法 縦系航空機モデル シミュレーション結果 おわりに はじめに PIO(Pilot Induced Oscillation) Category II 速度飽和 位相遅れ PIO 事故 PIOにより墜落するGripen
Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows
AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO
17 1060126 1 1 2 2 AFO 2.1 3 2.2AFO 4 2.3AFO 5 3 AFO 3.1 AFO 6 3.2 6 3.3 7 3.4 8 3.5 9 4.1 14 4.2 17 4.3 18 4.4 18 5.1 19 5.2 19 5.3 19 5.4 21 6.1 22 23 24 1 1 (Ankle-foot orthosis AFO) 1) AFO(Fig.1) AFO
A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2
1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)
Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3
36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
本文/報告2
Integral Three Dimensional Image with Enhanced Horizontal Viewing Angle Masato MIURAJun ARAITomoyuki MISHINA and Yuichi IWADATE ABSTRACT NHK R&D/No.144/2014.3 37 38 NHK R&D/No.144/2014.3 p w h f w h p
4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........
version 0.01 : 2004/04/16 1 2 1.1................. 2 1.2.......................... 3 1.3................. 5 1.4............... 6 1.5.............. 7 2 9 2.1........................ 9 2.2......................
Microsoft PowerPoint - 6.PID制御.pptx
プロセス制御工学 6.PID 制御 京都大学 加納学 Division of Process Control & Process Systems Engineering Department of Chemical Engineering, Kyoto University [email protected] http://www-pse.cheme.kyoto-u.ac.jp/~kano/
untitled
2M5-24 SM311 SM332 3 4 e30mm 5 e30mm [2M5-24] 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25
04_奥田順也.indd
82016 pp. 45~58 STUDIES IN ART 8 Bulletin of Tamagawa University, College of Arts 2016 This study aimed to identify the contemporary issues considered necessary in today s keyboard harmonica instruction,
NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................
NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 81
9 CQ 1 80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 81 CQ 2 82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 83 84 CQ 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 85 CQ 4
[7] 2 [7] 2.1 Rudlf von Laban Weight Effort Space Effort Time Effort 3 1 Door Plane Shape Wheel Plane Shape Table Plane Shape
HAI シンポジウム 2014 Human-Agent Interaction Symposium 2014 P-12 Body motion expressions considering the Laban theory in flight robots 1 1 1 Chie Hieida 1 Shunsuke Kudoh 1 Takashi Suehiro 1 1 1 The University
Fig. 1.1 Annual commercial landings of masu salmon in Hokkaido during 1970-2002. Fig. 1.2 Number of hatchery-reared masu salmon stocked in Hokkaido, 1980-2001. Fig. 2.2a Masu salmon landed
DVIOUT
A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)
ファーマーズアイ
F a r m e r ' s E y e 2 0 1 1 vol.300 F a r m e r ' s E y e 2 0 1 1 vol. 300 2 6 16 20 201111 M'S Kitchen 25 60 27 29 31 32 33 34 1 Sasaki Kiyoshi Akita Hidekatsu 2 8.7 6.4 5.9 1.0 1.0 1.0 4.51 4.51 4.47
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
