ケミカルエンジニアのためのExcelを用いた化学工学計算法

Size: px
Start display at page:

Download "ケミカルエンジニアのためのExcelを用いた化学工学計算法"

Transcription

1 VBA 7.1 f ()= ( f ( )) y = f ()(1) y = f ( )( ) + f ( ) (1) = f ( ) f ( ) (2) 1 n = = y = f() y = () 1 n+1 = n (f( n )f( n ))

2 log()2 145

3 7.2 f ( ) f ( ) (3) (4) ) ( ) ( ) '( = f f f ) ' 1 f = + ) ( f ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) '( ) = = = f f f f f f f f f ( 146

4 X 1 X1 X2: 1 FXf( 1 ) FX1f( ) NX1: DX: 147

5 Sub () ' Dim X As Double, X1 As Double, X2 As Double 'X,X1 Dim N1 As Integer ' N1 EPS =.1 ' X = Cells(3, 3) 'Ecel X X1 = Cells(4, 3) 'Ecel X1 1: FX = X ^ 3-2 * X ^ 2 - X + 2 ' FX FX1 = X1 ^ 3-2 * X1 ^ 2 - X1 + 2 ' FX1 X2 = (X * FX1 - X1 * FX) / (FX1 - FX) ' X2 DX = Abs((X2 - X1) / X1) 'X1 X2 DX N1 = N1 + 1 ' N1 ' Cells(12 + N1, 2) = N1 ' N1 Cells(12 + N1, 3) = X 'X Cells(12 + N1, 4) = X1 'X1 Cells(12 + N1, 5) = X2 ' X2 Cells(12 + N1, 6) = FX ' FX Cells(12 + N1, 7) = FX1 ' FX1 '********************************** ' DX EPS If DX < EPS Then GoTo 2 ' X1 X Else X = X1 ' X1 X X1 = X2 ' X2 X1 GoTo 1 End If '*************************************************** 2: Cells(8, 3) = X1 ' X1 Cells(9, 3) = N1 ' N1 End Sub

6 f()= f( )f( 1 )f( )f( 1 )< 2 1 y=f()[, 1 ] [, 1 ] 1 1 [, 1 ] c1 c1 ( + 1 )/2 2f( c1 )f( )f( c1 )f( )> = c1 f( c1 ) f( )f( c1 )f( )< 1 = c1 31,2 = 1-1 /.1 f( ) 1 f( c2 ) f( c3 ) f( c1 ) c = c1 c3 c f( c )f( )>c f( c )f( )<c1 149

7 Sub () Dim tin As Range Dim tout As Range Set tin = Range("B1:B1") Set tout = Range("C1:C1") ' = tin.cells(1, 1) 1 = tin.cells(2, 1) f = ^ 3-2 * ^ f1 = 1 ^ 3-2 * 1 ^ If f * f1 > Then MsgBo "" Eit Sub End If Do c = ( + 1) / 2 fc = c ^ 3-2 * c ^ 2 - c + 2 y = f * fc If y = Then Eit Do ElseIf y > Then = c Else 1 = c End If n = n + 1 If n = 5 Then c 1 MsgBo "5" Eit Sub End If Loop Until Abs((1 - ) / 1) <.1 tout.cells(1, 1) = "=" & c tout.cells(2, 1) = "=" & n End Sub 15

8 7.4 i y i y i f ( i ) f ( i ) e i = y i f ( i ) y=a 1 +a S y e i S y=a 1 +a a a 1 y=a 1 +a S=e i ={y i -(a 1 i +a )} S (S a )= (S a 1 )= a,a S yf () = a + a 1 a a 1 X Y

9 y=a 1 +a y e i Ecel 152

10 -y -y X X Y Y 153

11 X/Y/ (S) (F) 1 R 154

12 L E OK 155

13 3 Sub SAISYO1() Dim NP As Integer Dim XX(1), YY(1) As Double Dim targetin, targetout As Range NP = Cells(2, 2) For i = 1 To NP XX(i) = Cells(3 + i, 2) YY(i) = Cells(3 + i, 3) Net i SX2 = SX = SSX = SY = SXSY = For i = 1 To NP SX2 = SX2 + XX(i) ^ 2 SX = SX + XX(i) 156

14 SY = SY + YY(i) SXSY = SXSY + XX(i) * YY(i) Net i SSX = SX ^ 2 A = (SX2 * SY - SX * SXSY) / (NP * SX2 - SSX) A1 = (-SX * SY + SXSY * NP) / (NP * SX2 - SSX) Cells(2, 5) = "Y=A+A1*X" Cells(3, 5) = "A=" Cells(4, 5) = "A1=" Cells(3, 6) = A Cells(4, 6) = A1 End Sub 157

15

16 1 12wt.% 25wt.% 1g F[g]V[g]L[g] w 1 w 2 y 1 y F=V+L (1) w 1 Fy 1 V 1 L (2) w 2 Fy 2 V 2 L (3) y 1 w 1.12w y 1 y F1 (1)(2) V+L1 (1).121V+.25L.25LV12 (2) (1) (2) 159

17 1 1 V 1 =.25 L 12 (4) (5) (5) V 52 [g], L48 [g] wt. SO 3 (SO 3 22wt.%78wt.%) 1g/sSO 3 97wt.% H 2 SO wt.%H 2 SO 4 H 2 SO 4 95wt.% (98.5wt.% H 2 SO 4 ) H 2 SO 4 98SO 3 8S32 (a) 95wt.% H 2 SO 4 (b), y, z, w [g/s] i [g/s] A 16

18 A 1 + = i + y (1) (.22)( 1) =.985y (2) (.78)(1)=i (3) B + w = z (4) z (5) (1)(5) A B y z = 1 i w AB AB A.312 B y z = i w = 151, y= 173 z= 353., i= 78 w= 21 a) 95wtH 2 SO 4 151g/sb 98.5wt H SO 4 173g/s 161

19 7.6 y = f() [a, b]n, 1, 2, n y, y 1, y 2, y n P, P 1, P 2, P n n S = S 1 + S 2 + S 3 + S n (1) h=1/n S 1 =(h/2)(y +y 1 ), S 2 =(h/2)(y 1 +y 2 ),, S n =(h/2)(y n1 +y n ) (1) S=(h/2)(y +y 1 )+(h/2)(y 1 +y 2 )+(h/2)(y 2 +y 3 )++(h/2)(y n 1+y n ) =(h/2)y + y n + 2(y 1 + y 2 + y n 1) y y = f() P P 1 P 2 P -1 P Pn S 1 S 2 S Sn y y 1 y 2 y 1 y y n a 1 2 n = y 1 b = S 1 1 h y 162

20 Sub fore1() Dim a, b, h, V As Single a = Cells(6, 3) b = Cells(6, 4) h = Cells(6, 6) M = (b- a) / h SS = N = = For N = 1 To M - 1 X = a + N * h SS = SS + 3 * X ^ 2 Net N S =.5 * h * (3 * a ^ * b ^ * SS) Cells(12, 3) = S End Sub y=3 2 =~2 163

21 . 8.1 adsorption 4mg/ 4m 3 6g mg/g/g nw (1) + V[] C [mg/] : W[g] (C -C)V (2) nw(c -C)V (3) C C V n = V = ( C C ) (4) W W V (3) 1 W 1g : n[mol/g] V n g / g) = ( C C W 2 C 4 3 ( 4 ) = ( C 4) 6 164

22 -2/3 Langmuir C n KC n = 1+ KC 1 165

23 g 4mg/ 4m 3 C[mg/] [g/g] 3g g 4mg/ 4m 3 C[mg/] [g/g] 15g

24 8.2 (a) Henry nkc (1) K 1 (a) C n C p (a) (b) (c) (d)bet 1 167

25 (b)langmuir 2 1 [-]r [mols -1 ]a[mols -1 ] 2 Langmuir ra (2) r[mols -1 ](1-)[-]C[mol m -3 ] r b(1-)c (3) b[m 3 s -1 ] ab(1-)c (4) b C θ = (5) a + b C 168

26 n n [molg -1 ] b/a K[m 3 mol -1 ](K)θ = n n KC n = 1+ KC (6) (c)(freundlich) 1(c) nc 1/ (7) n[molg -1 ][-] (d)bet(brunauer-emmett-teller) BET 1(d) 1 BET 3 q = q K c ( 1 c) ( 1 + Kc c) 169

27 3 8.3 Langmuir 12 1 Kn n K 1 n, C, C/n C [molm -3 ] n [molg -1 ] C/n [gm -3 ] (6) 1 K C = 1+ n n KC (9) C C n (1 + KC ) C n KC 1 1 = n K n = C = C (1) 17

28 =1n =1(n K)(1)C/nC =1n =1n K 1 C/nC 1 4 =1/n =.36 =1/(n K)=35.7 n K n =3.27 molg -1 K =.86 m 3 mol -1 n KCn(Cn) 5 = 1 / n 1 n K 4 171

29 n [ molg -1 ] Langmuir n : C [ molm -3 ] 5 12 C n V[m 3 ] C [molm -3 ]W[g] n[molg -1 ]WnW (C -C b )VC b [molm -3 ] nw(c -C b )V (11) n=-v/w(c b -C ) (12) 1 172

30 (12)-V/W C C 1 C 2 C 3 6 n [ molg -1 ] q 1 V W c 1 c C [ molm -3 ] 7 173

31 -V/W-V/W=-1/1=-.1 m 3 g -1 2 mol m -3 (4-2)1=38 mol q 1 V? - W c 1 c

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

Excel Excel Excel 20132 20 = 1048576 Excel 201316 100 III 7 (2014 11 18 ) 1

Excel Excel Excel 20132 20 = 1048576 Excel 201316 100 III 7 (2014 11 18 ) 1 III 7 VBA / III 7 (2014 11 18 ) Excel Excel Excel 20132 20 = 1048576 Excel 201316 100 III 7 (2014 11 18 ) 1 Excel VBA Excel Excel 2 20 Excel QR Excel R QR QR BLASLAPACK III 7 (2014 11 18 ) 2 VBA VBA (Visual

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

コンピュータ概論

コンピュータ概論 5.1 VBA VBA Check Point 1. 2. 5.1.1 ( bug : ) (debug) On Error On Error On Error GoTo line < line > 5.1.1 < line > Cells(i, j) i, j 5.1.1 MsgBox Err.Description Err1: GoTo 0 74 Visual Basic VBA VBA Project

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

D0020.PDF

D0020.PDF n 3 X n Y n = Z n 17 1995 300 n n 2 3 2 a b c c 2 a 2 b 2 600 2000 322 3 15 2 3 580 3 1 5 4 3 2 1 300 2 1 2 1 1 ExcelVBA 2 VBA 1 VBA 2 API Sleep ExcelVBA 2 100 60 80 50 ExcelVBA API Sleep 3 100 60 (80

More information

Excel Excel Excel = Excel ( ) 1

Excel Excel Excel = Excel ( ) 1 10 VBA / 10 (2016 06 21 ) Excel Excel Excel 20132 20 = 1048576 Excel 201316 100 10 (2016 06 21 ) 1 Excel VBA Excel Excel 2 20 Excel QR Excel R QR QR BLASLAPACK 10 (2016 06 21 ) 2 VBA VBA (Visual Basic

More information

B 5 (2) VBA R / B 5 ( ) / 34

B 5 (2) VBA R / B 5 ( ) / 34 B 5 (2) VBAR / B 5 (2014 11 17 ) / 34 VBA VBA (Visual Basic for Applications) Visual Basic VBAVisual Basic Visual BasicC B 5 (2014 11 17 ) 1 / 34 VBA 2 Excel.xlsm 01 Sub test() 02 Dim tmp As Double 03

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

My関数の作成演習問題集

My関数の作成演習問題集 Excel Sum,Average,Max 330 BMI Excel My Excel VBA Visual BASIC Editor AltF11 Visual BASIC Editor My Function Function -1- Function ( As Single, As Single) As Double Function Funciton Funciton As Single

More information

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5:

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5: BASIC 20 4 10 0 N88 Basic 1 0.0 N88 Basic..................................... 1 0.1............................................... 3 1 4 2 5 3 6 4 7 5 10 6 13 7 14 0 N88 Basic 0.0 N88 Basic 0.1: N88Basic

More information

Microsoft Word - VBA基礎(3).docx

Microsoft Word - VBA基礎(3).docx 上に中和滴定のフローチャートを示しました この中で溶液の色を判断する部分があります このような判断はプログラムではどのように行うのでしょうか 判断に使う命令は IF 文を使います IF は英語で もし何々なら という意味になります 条件判断条件判断には次の命令を使います If 条件式 1 Then ElseIf 条件式 2 Then ElseIf 条件式 3 Then 実行文群 1 実行文群 2 実行文群

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

45 VBA Fortran, Pascal, C Windows OS Excel VBA Visual Basic Excel VBA VBA Visual Basic For Application Microsoft Office Office Excel VBA VBA Excel Acc

45 VBA Fortran, Pascal, C Windows OS Excel VBA Visual Basic Excel VBA VBA Visual Basic For Application Microsoft Office Office Excel VBA VBA Excel Acc \n Title 文 系 学 生 のための VBA プログラミング 教 育 についての 考 察 Author(s) 五 月 女, 仁 子 ; Soutome, Hiroko Citation 商 経 論 叢, 46(1): 45-60 Date 2010-10-31 Type Departmental Bulletin Paper Rights publisher KANAGAWA University

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

- 1 - - 2 - 320 421 928 1115 12 8 116 124 2 7 4 5 428 515 530 624 921 1115 1-3 - 100 250-4 - - 5 - - 6 - - 7 - - 8 - - 9 - & & - 11 - - 12 - GT GT - 13 - GT - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

untitled

untitled StiLL StiLL Excel VBA IT Excel2000 2003 StiLL StiLL! Excel2007 StiLL -- -- Excel!!!! DB CSV VBA VBA ' VBA Public Sub SampleProgramDAO1() Dim SheetName As String Dim strname As String SheetName = "Sheet2"

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/

More information

(1) (2) (3) (4) (1) (a) (b) (c) (d) kg 9.8 N 5.0 kg 19.6 m/s kg m/s 8.0kg (2) 1 r=1.0m ABC QA =1

(1) (2) (3) (4) (1) (a) (b) (c) (d) kg 9.8 N 5.0 kg 19.6 m/s kg m/s 8.0kg (2) 1 r=1.0m ABC QA =1 2/ 土 28 6 11 10:30 11:20 似通った科目名がありますので注意してください. 受験許可されていない科目を解答した場合は無効 整理番号と科目コードは受験許可証とよく照合し正確に記入 30 10 11 12 00011 00016 2 01101 02607 4 (1) (2) (3) (4) 02703 (1) (a) (b) (c) (d) 1 5.0 kg 9.8 N 5.0

More information

Microsoft PowerPoint - VBA解説1.ppt [互換モード]

Microsoft PowerPoint - VBA解説1.ppt [互換モード] 九州大学工学部地球環境工学科船舶海洋システム工学コース 計算工学演習第一 演習資料担当 : 木村 Excel 上のマクロを利用してプログラムを組む Visual Basic for Applications (VBA) のテクニック Excel のマクロとは? 一連の操作を自動的に行う機能 例 ) セル ( マス目 ) に数字を 1 から順番に埋めていく Excel のマクロでどんなプログラムが作れるのか?

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

AccessVBA−‹ŠpŁÒ-flO“Z

AccessVBA−‹ŠpŁÒ-flO“Z Microsoft Access 1 2 Private Sub After5days_Click( ) msg = Date + 5 MsgBox mag End Sub 3 Me.Filter = " =' " & Me! & "'" 4 5 Private Sub _Click() If IsNull(Me!) Then MsgBox " " Me!.SetFocus Me!.Dropdown

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

Microsoft PowerPoint - Visualプログラミング

Microsoft PowerPoint - Visualプログラミング 流れの制御構造 多方向分岐 プログラムの制御構造は下記の 6 つ (1) 連接 ( 連なり ) (2) 所定回数反復 ( 一定回数の繰り返し ) (3) 判断 ( 分かれ ) (4) 多方向分岐 (5) 前判定反復 (6) 後判定反復 上記以外は使ってはいけない. 141 if 文による多方向に分岐する処理 (1) Sub elseif2() Dim a As Integer a = Range("A1").Value

More information

csv csv

csv csv 2009 1 9 2 1. 1 2. 2 2.1......................................... 2 2.2 csv.................................... 3 2.3 csv.................................. 3 3. 4 3.1.........................................

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 = x n 1 1.,,.,. 2..... 4 = 2 2 12 = 2 2 3 6 = 2 3 14 = 2 7 8 = 2 2 2 15 = 3 5 9 = 3 3 16 = 2 2 2 2 10 = 2 5 18 = 2 3 3 2, 3, 5, 7, 11, 13, 17, 19.,, 2,.,.,.,?.,,. 1 , 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: [email protected] 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

270万回再生レポート

270万回再生レポート 270 270 2 2 Keynote(Mac) Camtasia PC VIdeo5 Point 2 Point 15 2 Point Point ) (2 2 3 2 3 Point 2 4 3 2 1 OK 100 4 10 20 2 75% Point 4 3 SEX Point SEX SEX SEX 2 SEX Point 2 2500 Point ( 100 Point

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Microsoft PowerPoint - vp演習課題

Microsoft PowerPoint - vp演習課題 演習課題 (1) 27 Nov., '18 katakan2hiragana.xlsm は, 下図のように 4~8 行目の B 列に漢字で表記した氏名,C 列にカタカナで表記したヨミガナ,D 列にひらがなで表記したよみがなを表示させることを意図している. このシートは, セル範囲 "B4:B8"( 図の赤枠内 ) に, キーボードから漢字で氏名を入力すると C 列にカタカナのヨミガナが自動的に表示されるようになっている.

More information

untitled

untitled Tylor 006 5 ..........5. -...... 5....5 5 - E. G. BASIC Tylor.. E./G. b δ BASIC.. b) b b b b δ b δ ) δ δ δ δ b b, b ) b δ v, b v v v v) ) v v )., 0 OPTION ARITHMETIC DECIMAL_HIGH INPUT FOR t TO 9 LET /*/)

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

PROSTAGE[プロステージ]

PROSTAGE[プロステージ] PROSTAGE & L 2 3200 650 2078 Storage system Panel system 3 esk system 2 250 22 01 125 1 2013-2014 esk System 2 L4OA V 01 2 L V L V OA 4 3240 32 2 7 4 OA P202 MG55 MG57 MG56 MJ58 MG45 MG55 MB95 Z712 MG57

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

P ZR.indd

P ZR.indd øøøøø ZK2 ZQ ZB Z ZX ZM Z -X267 P ZU VQD-V 131 132 1-W 1-V ZSE2-0R-15,55 ZSE30-00-- 1-F 1-RV a 133 ZK2 ZQ Z ZB ZX ZM Z ZU P -X267 VQD-V 1 1 1 20 1 20 5 M Z K1 5 M Z K2 1 1 20 1 1 S S 20 q 10 13 15 18 20

More information