( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

Size: px
Start display at page:

Download "( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1"

Transcription

1 , WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1

2 ( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 = X 2 ) (Y 1 = Y 2 ) (( x X 1 )f 1 (x) = f 2 (x)) 2.1 ( ) f X Y X, Y, f, ( ) X = {1, 2, 3}, Y = {4, 5} f : X Y x = 1, 2, 3 f(x) f 8 f j (j = 1, 2,, 8) 2 Y 1 = Y 2 [2] 2

3 f(1) f(2) f(3) f f f f f f f f f 2 (1) = 4, f 2 (2) = 4, f 2 (3) = 5. g(x) := max{x + 2, 4} g : X Y g(1) = max{1 + 2, 4} = 4, g(2) = max{2 + 2, 4} = 4, g(3) = max{3 + 2, 4} = 5. h(x) := [ ] x+7 2 h: X Y h(1) = [ ] 8 = 4, h(2) = 2 [ ] 9 = 4, h(3) = 2 [ ] 10 = 5. 2 f 2, g, h : f 2 = g = h. X, Y, 3 f(x) ( f 2 ) 2.1 ( ) X x Y X Y ( ) ( ) ( ) ( ) f (x) = sin f(x), f(0) = 1, f (0) = 0 ( ) f : R R ( ) f(x) x ( x f(x) ) ( ) f(x) f f(x) 3

4 f(x) f x (the image of x under f), f x (the mapping value at x) f x y f : x y f : x y y = f(x) X f (the domain of f, the domain of definition of f),, source set ( [3] X ) Y f Y f X A f(a) := {y ( x A) y = f(x)} ( {f(x) x A} ) A f (the image of A under f) X f f(x) = {y ( x X)y = f(x)} = {f(x) x X} f (the image of f) f (the range of f) 3 f = f = f X = f(x) = {f(x) x X} = Image(f). 2.2 (Y ),,,, [4], [5] ( ) target 1 x f(x) Y the codomain of f, the target (set) of f, the range of f f ( the range of f ) 4 4 {y x(x X, y = f(x)} ( f(x) ) f Y f 3 4 range f(x) Y 4

5 f(x) Y [1] Y f ( ) range range Y f(x) ( ) f(x) f, f X f X f f, f X 1: f(x) = x, f(x) x 1 f(x) 2. f(x) = x X, Y (a) X X f(x) x (b) Y Y f Y f f(x) R Y = R 2.3 Y = R f(x) = x 2 +2x+3, x R f(x) R, X = R OK ( f : X Y ). f(x) = 1, x R \ {0} f(x) R, X = R \ {0} OK. x f(x) = x, x [0, ) f(x) R, X = [0, ) OK. f(x) = log x, x (0, ) f(x) R, X = (0, ) OK. 1 (x > 0) f(x) = 0 (x = 0). X = R 1 (x < 0) (?) 5

6 2.4 Y 1 ( 1 ) X Y R N ( R N ) X Y ( ) ( ) X id X : X X id X (x) = x (x X) X (the identity mapping of X) 2.6 (Dirichlet ) f : R R, f(x) = { 1 (x Q) 0 (x Q). f(1) = 1, f(1/2) = 1, f( 2) = 0, f(π) = 0. f Dirichlet 2.7 ( ) X, Y X Y pr 1 : X Y X, pr 1 (x, y) = x. pr 2 : X Y Y, pr 2 (x, y) = y. pr j j X Y X = {,, }, Y = {, } (R 2 ) a, b, c, d R f : R 2 f(x, y) = (x, y ) ( ) ( ) ( ) x a b x =. y c d y R 2 f R 2 1 ad bc 0 ( ) 2.9 X :=, Y := R, f(a) := A, f : X Y 2.10 ( ) C (R; R) R R C ( ) X := C (R; R), Y := C (R; R), D : X Y f f D(f) = f (f X) 2.11 ( ) X, Y c Y f : X Y f(x) = c (x X) f (constant map) 6

7 2.12 ( ) X A X χ A : X R χ A (x) = { 1 (x A) 0 (x X \ A) χ A A (the characteristic function of A) 2.13 ( ) X Y i: X Y i(x) = x (x X) i (the inclusion map) 2.14 ( ) N R a 1, a 2,, a n, f : N R, f(n) = a n (n N) ( ) A n (a 1, a 2,, a n, ) N n=1 A n n N n=1 a n A n ( ) f : X Y, g : Y Z h(x) = g(f(x)) (x X) h: X Z ( ) h f g (the composition of f and g), (the composite mapping) g f : g f : X Z, (g f)(x) = g (f(x)) (x X). n {}}{ g f gf f f f f n 3.2 ( ) f : X Y, g : Y Z, h: Z W h (g f) = (h g) f. g f : X Z (g f)(x) = g(f(x)) (x X) h (g f): X W (h (g f))(x) = h ((g f) (x)) = h (g (f(x))). h g : Y W (h g)(y) = h(g(y)) (y Y ) (h g) f : X W ((h g) f) (x) = (h g) (f(x)) = h(g(f(x))). h (g f) = (h g) f. 7

8 1. f : X Y f id X = f, id Y f = f 4,,, ( ) f : X Y (an injection, injective) 1 1 (one to one) ( ) ( x X)( x X) (x x f(x) f(x )) ( ) ( x X)( x X) (f(x) = f(x ) x = x ) ( ) 4.1 ( ) x x prime (dash) - (en-dash), (em-dash) ( ) 4.2 X =, f : X R, f(x) = x, f ( ) 4.3 ( ) (( x 1 X) ( x 2 X) (x 1 < x 2 f(x 1 ) < f(x 2 )) f ) (( x 1 X) ( x 2 X) (x 1 < x 2 f(x 1 ) > f(x 2 )) f ) f : R R, f(x) = x f 1 : R R, f 1 (x) = x 2 1 1, f( 1) = f(1) f 2 : [0, ) R, f 2 (x) = x 2 [0, ) (x < x f 2 (x) < f 2 (x )) f 1 (x), f 2 (x) x 2 (1), (2) 8

9 4.5 ( ) f : X Y, g : Y Z (1) f g g f (2) g f f (3) g f g (4) g f f g (1) x, x X, x x f f(x) f(x ). g g(f(x)) g(f(x )). (g f)(x) (g f)(x ). g f. ( ) x, x X, g f(x) = g f(x ) f(x), f(x ) Y, g(f(x)) = g(f(x )) g f(x) = f(x ). f x = x. g f (2) x, x X, f(x) = f(x ) (g f)(x) = g(f(x)) = g(f(x )) = g f(x ). g f x = x. f (3) f : [0, ) R, f(x) = x (x [0, )), g : R R, g(y) = y 2 (y N) g f : [0, ) R, (g f)(x) = ( x ) 2 = x. g ( 1 1 g( 1) = 1 = g(1)) (4) y, y Y, y y f x, x X s.t. f(x) = y, f(x ) = y. g(y) = g(f(x)) = g f(x), g(y ) = g(f(x )) = g f(x ). g f g f(x) g f(x ). g(y) g(y ). g ( ) f : X Y (a surjection, surjective) (an onto mapping, onto) ( ) ( y Y ) ( x X) y = f(x) ( ) Y = f(x) ( Y = Image f) 9

10 ( f(x) Y ) ( y Y )( x X) y = f(x) Y f(x) Y = f(x). 4.7 f 1 : R R, f 1 (x) = x 2 f(r) = [0, ) ( f 1 f 1 (0) = 0 lim f 1 (x) =, ) R x f 1 (R) R f 3 : R [0, ), f 3 (x) = x 2 f 3 (R) = [0, ), [0, ) f 3 (R) = [0, ) (1) (2) 4.8 ( ) f : X Y, g : Y Z (1) f g g f (2) g f g (3) g f f (4) g f g f (1) z Z g ( y Y ) g(y) = z. y f ( x X) f(x) = y. (g f)(x) = g(f(x)) = g(y) = z. g f (2) z Z g f ( x X) (g f)(x) = z. x y := f(x) y Y, g(y) = g(f(x)) = (g f)(x) = z. g (3) f : [0, ) R, f(x) = x, g : R [0, ), g(y) = y 2 g f(x) = x (x [0, ]), g f = id [0, ) g f f (f(x) = 1 x ) (4) z Z z := g(y) g f ( x X) (g f)(x) = z. z = g(y) = g(f(x)) g y = f(x). f ( ) f : X Y f (a bijection, bijective) 1 1 (one-to-one correspondence) 10

11 4.2 (1 1 ) (one to one, ) 5 ( ) ( f : X Y ) X Y 1 (X and Y are in one-to-one correspondence) 1 1 (2 ) ( ) (1) f 1 : R R, f 1 (x) = x 2. ( 1 1 f 1 ( 1) = 1 = f 1 (1)) (f 1 (x) = 1 x R ) (2) f 2 : [0, ) R, f 2 (x) = x 2. ( ) (f 2 (x) = 1 x [0, ) ) (3) f 3 : R [0, ), f 3 (x) = x 2. (f 1 ) (y [0, ) x := y x R, f 3 (x) = y.) (4) f 4 : [0, ) [0, ), f 4 (x) = x 2. (f 2 ) (f 3 ) [0, ) [0, ) (X = {1, 2, 3}, Y = {4, 5}) f j (j = 2, 3, 4, 5, 6, 7) f 1 f 8 5 (X = {1, 2, 3}, Y = {4, 5, 6}) 3. X = {1, 2}, Y = {3, 4, 5} X Y 4.11 ( ) X, Y X, Y (1) X Y X Y. (2) X Y X Y. (3) X = Y f : X Y (i), (ii), (iii) 11

12 (i) f (ii) f (iii) f (4) X Y X = Y. n := X, m := Y, X = {x 1,, x n }, Y = {y 1,, y m } ( ) (1) f : X Y f(x i ) (1 i n) {f(x i ) 1 i n} Y X = n Y. n m f(x i ) = y i (1 i n) f : X Y f (2) f : X Y {f(x i ) 1 i n} = Y X = n Y. n m f(x i ) = y i (1 i m), f(x i ) = y 1 (m < j n) f : X Y f (3) (i) (ii) f : X Y f(x i ) (1 i n) {f(x i ) 1 i n} = n, Y {f(x i ) 1 i n} Y {f(x i ) 1 i n} = Y. f f : X Y {f(x i ) 1 i n} = Y. n = Y f(x i ) (1 i n) f (4) X Y (1) X Y, (2) X Y X = Y. X = Y (1) X Y f (3) f 4.12 ( ) X, Y K dim X, dim Y (1) X Y dim X dim Y. (2) X Y dim X dim Y. (3) dim X = dim Y f : X Y (i) f (ii) f (iii) f (4) X Y dim X = dim Y. 12

13 4.4 ( id X ) f : X Y f y Y f(x) = y x X x f (1 y ) 1 y = f(x) = f(x ) f x = x. y Y f(x) = y x X! (! 1 )! P (x) x x(p (x) y(p (y) y = x)). (!x) P (x) 1 1 f : X Y ( ) ( y Y )(!x X) f(x) = y. ( ) f 4. ( ) f 4.13 f : X Y (i) f (ii) ( y Y ) (!x X) f(x) = y. y Y f(x) = y x X y Y (1) g(y) := f(x) = y x (f y x) g : Y X g f (the inverse mapping of f) f 1 f 1 f inverse f : X Y (2) f 1 (y) := f(x) = y x X (y Y ) f 1 : Y X f ( ) ( : f : X Y Y f(x) ) ( ) : 13

14 f 1 = f, f 1 = f. f (3) ( x X)( y Y ) (y = f(x) x = f 1 (y)) f 1 (f y y = f(x) x f 1 (y) ) f x X, y Y y = f(x) x = f 1 (y) f : R R f(x) = x 2 (x R) f(2) = 4 f 1 (4) = 2 ( f 1 ) (3) f 1 (f(x)) = x (x X), f(f 1 (y)) = y (y Y ) 5 (f 1 f)(x) = x (x X), (f f 1 )(y) = y (y Y ). ( f 1 f : X X, f f 1 : Y Y ) (4) f 1 f = id X, f f 1 = id Y f : X Y (5) f 1 f = id X, f f 1 = id Y. g f 4.15 f : X Y, g : Y X ( ) g f = id X, f g = id Y ( : f ) f g = f 1 ( f g g f = g 1 ) 4.16 ( ( )) f : X Y ( ) g f ( ) 5 : x X y := f(x) x = f 1 (y) f 1 (f(x)) = f 1 (y) = x. y Y x := f 1 (y) y = f(x) f(f 1 (y)) = f(x) = y. 14

15 g f = id X f ( 4.5) f g = id Y f ( 4.8) f f 1 y x = f 1 (y) y = f(x) g(y) = g(f(x)) = id X (x) = x. g(y) = f 1 (y). g = f 1 g f = id X (g f) f 1 = id X f 1. g = f ( ) n X := {1, 2,, n} n 1 f : X X f g : X X g f = id X, f g = id X 4.15 f g = f 1. ( ) f g g g 1 = f 4.18 f f f 1 f 1 f ( f 1 ) 1 = f f 4 : [0, ) [0, ), f 4 (x) = x 2 f4 1 : [0, ) [0, ) f4 1 (y) = y 5. f(x) = e x f : X Y (X, Y (X f ) f ) f 1 f 1 (y) sin f : X Y, g : Y Z g f : X Z (g f) 1 = f 1 g 1. g f : X Z, f 1 g 1 : Z X (g f) (f 1 g 1 ) = ((g f) f 1 ) g 1 = (g (f f 1 )) g 1 = (g id Y ) g 1 = g g 1 = id Z, (f 1 g 1 ) (g f) = ( (f 1 g 1 ) g ) f = (f 1 (g 1 g)) f = (f 1 id Y ) f = f 1 f = id X. f 1 g 1 g f : (g f) 1 = f 1 g ( ) A, B n (BA) 1 = A 1 B 1. 5 f(x) f A f(a) 15

16 5.1 (, ( )) f : X Y (1) A X A f f(a) A f (the image of A under f) (the direct image of A under f) f(a) := {y ( x A) y = f(x)} = {f(x) x A}. (2) f X f f(x) f (the image of f) f (the range of f) Image(f) Image(f) := f(x) = {y ( x X) y = f(x)} = {f(x) x X}. f : X Y, a X, A X f(a) f(a) f f(a) Y f(a) Y ( x A) y = f(x) y {y P (y)} (P (y) y ) {f(x) x A} {y ( x A) y = f(x)} f f(x) = Image(f) = f = f = {f(x) x X}. f f 5.2 ( ) f : X Y B Y X f B f 1 (B) B f (the inverse image of B, pull-back) f 1 (B) := {x X f(x) B}. f f f 1 f 1 (B) [1] 5.3 f : R R, f(x) = sin x ({ f ({0}) = {0}, f 0, π }) ([ = {0, 1}, f ({0, π}) = {0}, f 0, π ]) = [0, 1], f ([0, π]) = [0, 1]. 2 2 ({ }) 1 { π } ( f 1 ({0}) = {x R ( n Z)z = nπ}, f 1 ({2}) = ϕ, f 1 =, f 1 [ 1 ) 2 6 2, 6] =.. f 1 f 1 (2), f 1 (0) 5.4 ( [1] ) [1] f(a) f 1 (B) f(a) f (A), f 1 (B) f (B) f(a) = f (A) = A f = {f(a) a A} = {y a(a A y = f(a))}. f 1 (B) = f (B) = B f = {x X f(x) B} = {x x X f(x) B}. f(a) f 1 (B) 16

17 X x f f(x) X A f f(a) ( ) f (B) f (A) f 1 f 1 (B) f 1 B f B f 1 f 1 B = { x X ( y) ( y B x = f 1 (y) )} = {x X ( y) (y B y = f(x))} = {x X f(x) B} = f B. (f 1 ) (B) = f (B) f 1 (B) f f ( ) Image(f), f (X), f(x) 3 (Image(f) ) f : X Y f(x) = Y f : X Y B Y f 1 : Y X B f {f 1 (b) b B} = { y b(b B y = f 1 (b)) } = {y b(b B b = f(y))} = {y f(y) B }. 5.5 f : X Y (1) f( ) =, f 1 ( ) =. (2) f 1 (Y ) = X. (3) ( x X) f({x}) = {f(x)}. (4) ( y Y ) f 1 ({y}) = {x X f(x) = y}

18 5.6 f : X Y, A 1, A 2 X (1) A 1 A 2 f(a 1 ) f(a 2 ). (2) f(a 1 A 2 ) f(a 1 ) f(a 2 ). (3) f(a 1 A 2 ) = f(a 1 ) f(a 2 ). (4) f(a 1 \ A 2 ) f(a 1 ) \ f(a 2 ). (5) f (1) (2) (4) ( ) f(a 1 ) f(a 2 ) A 1 A 2. ( ) f(a 1 A 2 ) = f(a 1 ) f(a 2 ). ( ) f(a 1 \ A 2 ) = f(a 1 ) \ f(a 2 ). (6) f ( ), ( ), ( ) A 1, A 2 (3) (2), (4) (5) (6) (1) A 1 A 2 y f(a 1 ) ( x A 1 ) y = f(x). A 1 A 2 x A 2. y f(a 2 ). f(a 1 ) f(a 2 ). (2) ( y f(a 1 A 2 ) (1) ) A 1 A 2 A 1 A 1 A 2 A 2 (1) f(a 1 A 2 ) f(a 1 ) f(a 1 A 2 ) f(a 2 ). f(a 1 A 2 ) f(a 1 ) f(a 2 ). (3) ( (1) ) (a) A 1 A 1 A 2 A 2 A 1 A 2 (1) f(a 1 ) f(a 1 A 2 ) f(a 2 ) f(a 1 A 2 ). f(a 1 ) f(a 2 ) f(a 1 A 2 ). 18

19 (b) y f(a 1 A 2 ) ( x A 1 A 2 ) y = f(x). x A 1 y f(a 1 ) y f(a 1 ) f(a 2 ). x A 2 y f(a 2 ) y f(a 1 ) f(a 2 ). y f(a 1 ) f(a 2 ). f(a 1 A 2 ) f(a 1 ) f(a 2 ). (a), (b) f(a 1 A 2 ) = f(a 1 ) f(a 2 ). ( ) ( ) y Y y f(a 1 A 2 ) ( x) (x A 1 A 2 y = f(x)) ( x) ((x A 1 x A 2 ) y = f(x)) ( x) ((x A 1 y = f(x)) (x A 2 y = f(x))) (( x) (x A 1 y = f(x)) ( x) (x A 2 y = f(x))) y f(a 1 ) y f(a 2 ) y f(a 1 ) f(a 2 ). f(a 1 A 2 ) f(a 1 ) f(a 2 ). ( ) ( (( x)p (x) Q(x)) (( x)p (x)) (( x)q(x)) 6 ) (4) y f(a 1 ) \ f(a 2 ) y f(a 1 ) y f(a 2 ). y f(a 1 ) ( x A 1 ) y = f(x). x A 2 x A 2 y f(a 2 ) x A 1 \ A 2 y f(a 1 \ A 2 ). (5) [1] pp (6) f ( x 1 X) ( x 2 X) x 1 x 2 f(x 1 ) = f(x 2 ). A 1 := {x 1 }, A 2 := {x 2 } f(a 1 ) = {f(x 1 )}, f(a 2 ) = {f(x 2 )} = {f(x 1 )} = f(a 1 ), f(a 1 A 2 ) = f( ) =, f(a 1 ) f(a 2 ) = {f(x 1 )} = f(a 1 ) f(a 2 ) A 1 A 2, f(a 1 A 2 ) f(a 1 ) f(a 2 ), A 1 := {x 1, x 2 }, A 2 := {x 2 } f(a 1 \ A 2 ) = f ({x 1 }) = {f(x 1 )}, f(a 1 ) \ f(a 2 ) = {f(x 1 ), f(x 2 )} \ {f(x 1 )} = {f(x 1 )} \ {f(x 1 )} = f(a 1 \ A 2 ) f(a 1 ) \ f(a 2 ). f f 1 ( ) 6 (( x)p (x) Q(x) (( x)p (x)) (( x)q(x))) 19

20 5.7 f : X Y, B 1, B 2 Y (1) B 1 B 2 f 1 (B 1 ) f 1 (B 2 ). (2) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ). (3) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ). (4) f 1 (B 1 \ B 2 ) = f 1 (B 1 ) \ f 1 (B 2 ). B Y f 1 (B c ) = (f 1 (B)) c. (5) f (1) (1) B 1 B 2 B 1 B 2 f 1 (B 1 ) f 1 (B 2 ). f 1 (B 1 ) = {x X f(x) B 1 } {x X f(x) B 2 } = f 1 (B 2 ). (2) x X x f 1 (B 1 F 2 ) f(x) B 1 B 2 f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ). (3) (2) (4) (2) f(x) B 1 f(x) B 2 x f 1 (B 1 ) x f 1 (B 2 ) x f 1 (B 1 ) f 1 (B 2 ). (5) (1) f f 1 (B 1 ) f 1 (B 2 ) B 1 B 2 y B 1 f ( x X) y = f(x). f(x) B 1 x f 1 (B 1 ). f 1 (B 1 ) f 1 (B 2 ) x f 1 (B 2 ). y = f(x) B 2. B 1 B f : X Y, A X, B Y (1) A X f 1 (f (A)) A. f f 1 (f (A)) = A. (2) B Y f (f 1 (B)) B. f f (f 1 (B)) = B. (3) f (A f 1 (B)) = f(a) B. 6 f : X Y graph f := {(x, y) x X y = f(x)} = {(x, f(x)) x X} 20

21 f graph f X Y G X Y ( ) x X!z G pr 1 (z) = x X Y X Y G ( ) [1], (2012). [2], II, (1965). [3], (1968),. [4], (1979). [5], (1972). 21

22 bijection, 10 bijective, 10 composite mapping, 7 composition (of mapping), 7 Dirichlet, 6, 7, 7 identity mapping, 6 inclusion map, 7 injection, 8 injective, 8 one to one, 8 one-to-one correspondence, 10 onto, 9 onto mapping, 9 surjection, 9 surjective, 9, 4 1, ( ), 8 1 1, 10, 9, 8, 8 ( ), 7, 7, 6, 6, 2, 9, 10 ( ), 4, 10, 8, 4, 7, 6, 6 22

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

2 2.1 (set) A, B, C, (element). ( ) a A, a A. a A, a A. A a A a 19 N. 3 N, 2 / N ( ) 20 {1, 2, 3, 4, 5} {5, 2, 1, 3, 4} {1, 1, 1} {{1, 2}, {2, 3

2 2.1 (set) A, B, C, (element). ( ) a A, a A. a A, a A. A a A a 19 N. 3 N, 2 / N ( ) 20 {1, 2, 3, 4, 5} {5, 2, 1, 3, 4} {1, 1, 1} {{1, 2}, {2, 3 . (set),, C, (element). ( ),.,. 9 N. N, / N.. ( ) 0 {,,, 4, 5} {5,,,, 4} {,, } {{, }, {,, 4}} (empty set) ϕ {} : N = {0,,, } N, Z, Q, R (0 ).. P (x) x {x P (x)} {x R 0 x } [0, ] (0 ) S = {x P (x)} x S

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

i 2013 0.1. 0.2. JR 0.1 0.2 ii A B B A 0.2 0.1 0.1 0.2 iii 1 1 1.1............................. 1 1.2........................... 10 1.3............................... 17 2 21 2.1...........................

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

Solutions to Quiz 1 (April 17, 2008) 1. P, Q, R (P Q) R (P R) (Q R). P Q R (P Q) R (P R) (Q R) X T T T T T T T T T T T T T T T F T T F T T T F F T F F

Solutions to Quiz 1 (April 17, 2008) 1. P, Q, R (P Q) R (P R) (Q R). P Q R (P Q) R (P R) (Q R) X T T T T T T T T T T T T T T T F T T F T T T F F T F F Quiz 1 Due at 9:00 p.m. on Thursday, April 17, 2008 Division: ID#: Name: 1. P, Q, R (P Q) R (P R) (Q R). P Q R (P Q) R (P R) (Q R) X T T T F T T F F T F T T T F F F F T T F F T F T F F T F F F F F 2. 1.1

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S 12 2 e 2.1 2.1.1 S,T S s S T t T (map α α : S T s t = α(s (2.1 S (domain T (codomain (target set, {α(s} T (range (image 2.1.2 s, s S t T s S t T, α s, s S s s, α(s α(s (2.2 α (injection 4 T t T (coimage

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

III

III III http://www.manabino-academ.com . = k...................................... = k p + q................................. = a + b c + d.................................. 4.4..........................................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp + P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) nkiyono@mail.ecc.u-okyo.ac.jp hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

di-problem.dvi

di-problem.dvi 005/05/05 by. I : : : : : : : : : : : : : : : : : : : : : : : : :. II : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. III : : : : : : : : : : : : : : : : : : : : : : : : 4 4. : : : : : : : : : :

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

( ) ( ) Iverson

( ) ( ) Iverson ( ) ( ) 2012 1 2 1 2 1.1....................................... 2 1.2....................................... 2 1.3 Iverson........................................ 9 1.4.............................................

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

no35.dvi

no35.dvi p.16 1 sin x, cos x, tan x a x a, a>0, a 1 log a x a III 2 II 2 III III [3, p.36] [6] 2 [3, p.16] sin x sin x lim =1 ( ) [3, p.42] x 0 x ( ) sin x e [3, p.42] III [3, p.42] 3 3.1 5 8 *1 [5, pp.48 49] sin

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(2000 )

(2000 ) (000) < > = = = (BC 67» BC 1) 3.14 10 (= ) 18 ( 00 ) ( ¼"½ '"½ &) ¼ 18 ¼ 0 ¼ =3:141596535897933846 ¼ 1 5cm ` ¼ = ` 5 = ` 10 () ` =10¼ (cm) (1) 3cm () r () () (1) r () r 1 4 (3) r, 60 ± 1 < > µ AB ` µ ±

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

1 I p2/30

1 I p2/30 I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information