Size: px
Start display at page:

Download ""

Transcription

1 (ctenry) Newton e e

2 π ( ) l Hopitl Riemnn zet ε δ

3 Riemnn zet n npn p > p > p > Γ B e x

4 4. N R Q C x A x A x A A x A x A, B A B A B B A A B x A x B A B A B A B, A B Λ λ Λ A λ λλ A λ λ Λ A λ λλ A λ Λ N n A n n A n A A A c.

5 .. 5 ( ) : : : s.t., > s.t.,

6 6. A x A x A A x.. {, 4, 6, 8,...}. {n: n N} 3. {3n + 5m: n, m Z} 4. {x: x Z} 5. {(x, y): x, y Z, x + y < } (, ), (, ], (, ]. (, ) {x: < x < }, (, ] {x: < x }, (, ] {x: x } A A A B x A x B A B x A x B A\B x A x B

7 .. 7 A c x A A B x A x B A B A B A B A B A B A B A B x {x} { } λ Λ A λ λ Λ x A λ x {(x, y)} {(x, y): x, y, x + y } x y x λ Λ A λ λ Λ x A λ x {3n + 5m: n, m Z} Z 3. (A B) C (A C) (B C). (A B) C (A C) (B C) 3. (A B) c A c B c 4. (A B) c A c B c 5. (A c ) c A. 4 x (A B) C) x A B x C (x A x B) x C (x A x C) (x B x C) x A C x B C x (A C) (B C)

8 8.: 4 4 [ n n], (, ) n n ( n, + ) n [, ] R, C, N, Z, Q 5 (Russel prdox). S S c S S S S S S A, B A B {(, b): A, b B} R R R. A {, }, B {, } A B {,,, } A B {(, ), (, ), (, ), (, )}

9 .. 9. lim sup A n n lim inf n A n n k n n k n A k A k. f : V W V x f(x) W V W A V f(a) {f(x): x A} W B W f (B) {x V : f(x) B} V.3. f(x) x R R R R + R + R R + R +. f(x) + x + x + g(x) x f x < g R\{} 6 f(x) x (, ) [, ). [, 4) (, ] [, ) 7 f(x, y) x + y f (, ), (, ), (, ), (, ) R [, ]. f(r) [, ] f ([, ]) {(x, y): x + y }( )

10 8 f : (x, y) (r, θ) (, ), (, ), (, ) R. (, ) (/ cos θ, θ) (, π/4) 9 ( ) A, B. y x A. xy B (,, ).. y 3x y x. x y + z x y z ( ) A, B. A xy (, ). B R xy.. R x y z. x + y 4z y x f : V W g : W U (g f)(x) g(f(x)) f g : V U f : V V f(x) x

11 .. R n f(x) x g(x) x 3 + f g f g. f R + g g [, ) f g R.. f : X Y A, A X B, B Y. f(a A ) f(a ) f(a ). f(a A ) f(a ) f(a ) 3. f (B B ) f (B ) f (B ) 4. f (B B ) f (B ) f (B ).. y f(a A ) x A A s.t. f(x) y x A nd x A y f(x) f(a ) nd y f(x) f(a ) y f(a ) f(a ). y f(a A ) x A A s.t. f(x) y x A or x A y f(x) f(a ) or y f(x) f(a ) y f(a ) f(a ) y f(a ) f(a ) y f(a ) or y f(a ) x A or x A, x A A y f(x) f(a A )

12 3. x f (B B ) f(x) B B, f(x) B nd f(x) B x f (B ) nd x f (B ) x f (B ) f (B ) x f (B ) f (B ) x f (B ) nd x f (B ) f(x) B nd f(x) B f(x) B B x f (B B ) 4. x f (B B ) f(x) B B, f(x) B or f(x) B f(x) B B x f (B B ) x f (B ) f (B ) f(x) B or f(x) B f(x) B B x f (B B ) f(a A ) f(a ) f(a ) y f(a ) f(a ) y f(a ) x A s.t. y f(x ) y f(a ) x A s.t. y f(x ) x x f(x ) f(x ) x x x x A A y f(x ) f(x ) f(a A ) f(a A ) f(a ) f(a ) f(a A ) f(a ) f(a )

13 ( ): ( ): f(x) f(x ) x x y f(v ) f ({y}) ( ): f(v ) W 3 sin x, cos x, tn x, e x. sin x: [ π, π ] [, ] cos x: [, π] [, ] tn x: ( π, π ) (, ) e x : R (, ) rcsin x, rccos x, rctn x, log x 4 [, ] [, ] (, ] [, ) (, ] [, ) N Q N Z [, ] (, ] S \{} R 5 f : X Y f : Y X

14 4 V, W to onto #V #W {,,..., n} to onto n N [, ] X #X..3 b.. b b 3. b, b c c X {y X : y x} x X λ Λ A λ. x, y A λ x y. x A λ y A µ λ µ x y A λ x λ A λ 6 R x y x y Z [, ). #X #X X X. #X #Y #Y #X f : X Y f 3. #X #Y #Y #Z #X #Z f : X Y g : Y Z g f : X Z

15 X X X X X A A X {, } N N f : N N N x x x x... yy i i x i j if i j yj i i j nd x i j i j nd x i j y y y y x i x i i x i x i x i x i, Cntor [, ] [, ] [, ] x x x x.. i j yj i xi j i j xi j 9 yy i i y y

16 6. (Cntor ) X X. f : X X X X Y {x X : x f(x)} f(x) Y x X. x Y x Y f(x) Y. x Y x Y f(x) x f(x) x Y ℵ ℵ ℵ i ℵ i+ Gödel) 93.3 f : X Y to onto f : Y X 7 f : R R x, e x, sin x, cos x, tn x 3 rcsin x, rccos x, rctn x 8 rcsin x + rccos x π. X, Y R f f f

17 x < x < x [x, x ] [x, x ] f(x ) f(x ) to f(x ) < f(x ) y (f(x ), f(x ) x < z < x, x < z < x f(z ) f(z ) y to f y n f() f(y n ) > + ε x n f(y n ) x n x + ε f f(x ) f() to 9 f(x) x 3 3x x +. (, ] (, ] (, ) (, 8] [ 9, 8) ( 9, ).3..3 f f () b f() (f ) (b) f () f (f (b)). :f (x) y x f(y) f (y) dy dx :f ε > h > s.t. h h f () f( + h) f() h b + η f( + h) η f (b + η) f (b) η < ε + h f( + h) f() f () + θε η.4 rcsin x: [, ] [ π, π ] rccos x: [, ] [, π]

18 8 rctn x: (, ) ( π, π ) ABC(C AB ) x BC ABC rccos x BAC rcsin x rcsin x + rccos x π y rcsin x sin y x cos y dy dx dy dx x y rccos x cos y x sin y dy dx dy dx x y rctn x tn x y dy cos y dx dy dx + x.5 e x : (, ) (, ) log x: (, ) (, ) y log x e y x e y dy dx dy dx x

19 < b xb x (x ). > xb x (x ) 3. n n! (n ) 4. > log x x (x ) 5. r < lim n n k r n 6. lim x x k e x. x. b x x b. k > b x e x log (x log ) n n! n xk (log ) k k! x b x k! xb k (x ) (log ) k 3. n > n (n ) n 4. x e u (u log x) n ( ) n n n }{{} log x x u e u : log n n (log x x ) x x x x

20 3 5. n n k r n x f + f n+ n ( ) k n + r n n n ( ) n+ k n r < r < n ( n ) n C r n C 6. 5 x n, r /e n f(x) x k e x f (k) f(k) k k e k < x k e x x k+ e k x (k + )k+ x x f(n) g(n) lim n f(n) g(n) f(n) o(f(n)) g(n) f(n) O(f(n)) Lndu n k O(n k ), o(n k ) O() o()

21 g(x) O(x k ) g(x) x x k o(x k g(x) ) lim x x k 3. x π(x) x dt log t + O( x log x)

22 4 4. f x f(x + h) f(x) h f (x) df dx (x) f C f C f f(x + h, y) f(x, y) (x, y) lim x h h f f x y f x f x x f f x y x y f y x f y x f y y k C k f y 4.. (cos x) cos(x + h) cos x lim h h lim sin(x + h h/ )sin h h/ sin x

23 4.. 3 (sin x) sin(x + h) sin x lim h h lim cos(x + h h/ )sin h h/ cos x sin h lim h h h cos h sin h h tn h π π π cos( + b) cos cos b sin sin b cos( b) cos cos b + sin sin b sin( + b) sin cos b + cos sin b sin( b) sin cos b cos sin b cos cos b sin sin b sin cos b cos sin b cos( + b) + cos( b) cos( b) cos( + b) sin( + b) + sin( b) sin( + b) sin( b) e (e x ) e x e h lim e x h h ( e lim + ) n n n

24 4 4 ( e h lim + h ) n n n ( n ( ) k h e h lim nc k n n) k n ( ) k h lim nc k n n k n ( ) k h h + lim nc k n n k (h) n ( k h n ( ) nc k h n) h k nc k n k k k n ( ) h nc k n k h h k n ( ) nc k n k k ( + n) n h e 4.. (ctenry) s s s + s ρ ρ g 3 T s θ(s) T tn θ(s)) T tn θ(s + ) T tn θ(s + ) T tn θ(s) ρ g T d tn θ(s) ρg ds

25 4.. 5 C ρg T tn θ(s) Cs θ(s) rctn Cs s (x, y) (, ) x(s) y(s) s s cos θ(t) dt sin θ(t) dt tn θ(t) Ct dθ C cos θ dt x(s) s C cos θ C z(s) dθ cos θ dz z (z sin θ) (log( + z(s)) log( z(s))) C z(s) sin(θ(s)) cos θ(s) + tn θ(s) + C s Cs + C s ( x(s) C log Cs + ) + C s Cs + + C s sinh y ey e y x sinh(log(x + + x )) sinh Cx(s) Cs

26 6 4 θ y(s) sin θ dθ C cos θ ( ) C cos θ ( + C s C ) C ( + sinh (Cx(s)) ) (cosh(cx(s)) ) C y (cosh x ) C e x cosh x ex + e x x ( + x + + x + x ) + x + y C ( + C x + ) C x + 4. Newton f(x) Mthemtic FindRoot[f,{x,x }] x x f y f (x )(x x ) + f(x ) x x {x n } f(x) x x n+ x n f(x n) f (x n ) x x f(x ) f (x )

27 4.3. e 7 f(x ) (f (x ) ) T x x f(x) f (x) T T x f (x) f(x)f (x) f (x) f(x)f (x) f (x) f C f (x) > δ > f(x) T < 4.3 e 4.3. n + r n + ( + n) n n r n n k n+c k (n + ) k nc k n k ( + ) n+ ( + n n + n) nc k n k r n(n + ) > [ (n + ) (n + k) n (n k) (n + ) (n + ) n n n ( k Jensen : f i n+c k (n + ) k nc k n k n n n λ i f(x i ) f( λ i x i ) (λ i, λ i ) i f(x) log x x x n, x n b n n b ((n ) + b) n i ] k! > ) + (n + ) n+

28 8 4 ( ) n n n ( n + n ) n ( ) n n n ( ) n n + Jensen ) n n + n n + n ( ) 4.3. nc k n k n (n ) n n ( + n) n + (n k + ) n ( + n) n k e x n k k! k! k 3 n k k! e k! k 4.4 e x n k x k k! + eθx n! xn n+ n n +

29 sin x, cos x e iθ cos θ + i sin θ cos x x + x4 4! + sin x x x3 3! + x5 5! + R n (x) n! x n sin x n 4k (sin x) (n) cos x n 4k + sin x n 4k + cos x n 4k + 3 cos x n 4k (cos x) (n) sin x n 4k + cos x n 4k + sin x n 4k + 3 (sin x) cos x (cos x) sin x x > < c < x cos c sin x x cos c sin x x cos cos x + x x sin x (cos t) dt t dt x x x x x3 3! cos t dt ( t ) dt x sin t dt

30 3 4 cos x x x sin t dt x + x4 4! (t t3 3! ) dt x x3 3! sin x x x x cos x + x4 4! x xn n! 4.4. cos x eix + e ix, sin x eix e ix i cosh x ex + e x, sinh x ex e x, tnh x ex e x e x + e x cosh x sinh x e. e e p q e < 3 (+ 6 )6.5 > 5 q > e e q! + eθ (q + )! ( < θ < ) q! q!e eθ q+ < eθ q + < e q + < q q + <

31 Newton 3.. F m N 6N x v dx dt v, mdv dt F F mg ( ) ( ) d x v dt v g (F kx) ( ) d dt x v ( ) ( ) x k v (x, v) 4.5. (x(t), y(t)) r(cos ωt, sin ωt) (v x (t), v y (t)) rω( sin ωt, cos ωt) ( x (t), y (t)) rω cos ωt, sin ωt)

32 : F m mrω F m v r ( ) G mm r v m v r GM g 9.8m/s r F mg G mm r GM r g v rg km/s F U r

33 U U r GmM r U r G mm r dr G mm r.km/s v mv G mm r GM r gr v t F (t) v(t) F (t)v(t) dt m(t)v(t) dt m dv v(t) dt dt v t dv dv dt dt mv dv mv U mv F U x F dv m v dx mv dv dt dt dx m d x dt m

34 F f F (x) f(x) x f(t) dt f(x) dx F (b) F () x x e t dt x b π e x dx X b f f(x) dx

35 ( ) f [, b]. < c < b f(b) f() b. < c < h > c > h f (c) f(x + h) f(x) + f (c)h 3. < θ < f(x + h) f(x) + f (x + θh), f(b) f() + f ( + θ(b )) 5. (Rolle) f [, b] C f() f(b) f (c) < c < b. f f (, b) < c < b x < c < x f(x ) f(c) x c > > f(x ) f(c) x c f x c x, x c f (c) f (c) f (c) 5.3 ( ) F, G [, b] C < c < b F (b) F () G(b) G() F (c) G (c)

36 36 5. Q(x) F (x) F () F (b) F () (G(x) G()) G(b) G() Q() Q(b) < c < b Q (c) Q (c) F (c) F (b) F () G(b) G() G (c) 5.4 ( ) f x C n f(x) n k R n (x) f (k) () (x ) k + R n (x) k! R n (x) f (n) (c) (x ) n n! x c f(x) n k r n f (n) (c) n!. n F (x) f(b) f(x) G(x) (b x) n k f (k) () (x ) k + r n (x ) n k! f (k) n (x) (b x) k f(b) k! k f (k) (x) (b x) k, k! < c < b n F (x) k n k F (b) F () G(b) G() F (c) G (c) f (k+) k! n (b x) k f (k) (x) + (b x)k (k )! k f (k+) n (x) (b x) k + k! k f n) (x) (b x)n (n )! f (k+) (x) (b x) k k!

37 n F (b) F () F () f(b) k f (k) () (b ) k k! (G(b) G()) F (c) G (c) (b ) n f ( n)(c)(b c) n (n )!n(b c) n (b ) n f (n) (c) n! 5. ( ). R n (x) x f(x) f() f (n) (t) (n )! (x t)n dt x R n (x) [f (n ) (x t)n (t) (n )! f (t) dt R (x) ] x + x f (n ) () (n )! (x )n + R n (x) f (n ) (x t)n (t) dt (n )! 5. e x n k x k k! + eθx n! xn n+ n n +

38 sin x, cos x e iθ cos θ + i sin θ cos x x + x4 4! + sin x x x3 3! + x5 5! + R n (x) n! x n sin x n 4k (sin x) (n) cos x n 4k + sin x n 4k + cos x n 4k + 3 cos x n 4k (cos x) (n) sin x n 4k + cos x n 4k + sin x n 4k + 3 (sin x) cos x (cos x) sin x x > < c < x cos c sin x x cos c sin x x cos cos x + x x sin x (cos t) dt t dt x x x x x3 3! cos t dt ( t ) dt x sin t dt

39 cos x x x sin t dt x + x4 4! (t t3 3! ) dt x x3 3! sin x x x x cos x + x4 4! x xn n! 5.. cos x eix + e ix, sin x eix e ix i cosh x ex + e x, sinh x ex e x, tnh x ex e x e x + e x cosh x sinh x 5..3 log( + x) x x + x3 3 (log( + x)) (n) n (n )! ( ) ( + x) n (log( x)) (n) (n )! ( x) n log( x) (x + x + x xn n xn + ( )n n + ( )n n( + θx) n xn ) n( θx) n xn

40 4 5 x x (log( x)) x + x + x + + x n + xn x R n (x) x x < t > R n (x) x t n t dt t n dt x < log + 3 log + 3 ) log( x) (x + x + x3 3 + log( + x) x x + x3 3 n n x n n n xn ( ) log + x x x n+ n + x < +x x ( log ) log n 3 3 +/7 4 4 log 3 log log / log 3 3 log + +/7 log / log log 3 + +/49 log / log 7 log + log 3 + +/97 log /97 n

41 x n+ log(n + ) log n j ( ) j+ j + n + n + + R n log l l+ R n 3 ( j + n + j ( n + j ) j+ ) j+ 3 n(n + )(n + ) < n 3 n l l+ 3l l+ < l ( ) 3 n + (/(n + ) 5.3 d dx ( + x) ( + x) n ( + x) C k x k + R n (x) k R n (x) C n ( + θx) n x n x ( ) ( n + ) ( + t) n (x t) n dt (n )! x + x + x 8 + x3 6 5x4 8 + x + x + 3x 8 5x x4 8 + x n C n ( + t) n (x t) n dt

42 dy. rctn x y x tn y cos y dx (rctn x) cos y +x. rccos x y x cos y sin y dy dx rccos x [, π] (rccos x) sin y x 3. rcsin x y x sin y cos y dy dx rccos x [ π, π ] (rcsin x) cos y x rccos x + rcsin x π 5.4. (rctn x) + x + ( x ) + ( x ) + + ( x ) n + ( x ) n + x rctn x x x3 3 + x5 xn + + ( )n 5 n + x ( t ) n + t dt rccos x π x x3 6 3x5 4 rcsin x x + x x x π ( ) rctn rctn π 4 4 rctn 5 π 4 rctn 39

43 α rctn 5 tn α tn α tn α /5 /5 5 tn 4α tn α tn α 9 tn(4α π tn 4α ) 4 + tn 4α k > ( + c n k )n, n ( + n + c n k )n. log( + x) n log( + c n k ) n + θc/n k c n k n log( + n + c ( n k ) n n + c n k ( + θ(/n + c/n k ) ( n + c ) n k ) ( + c n k )n, ( + n + c n k )n e 3 ( e t/n + e t/n ) n, ( e t/ n + e t/ n ) n n. ( e t/n + e t/n ) n ( ( + t t + eθt/n n n + t n + e θ ) n θt/n t ( + e 4n + e θ t/n t 4n t/n t n ) ) n

44 44 5 ( ) n e t/ n + e t/ n e t / ( ( + t + t n n + t 3 eθt/n 3!n + t + t 3/ n n + e θ ( + t n + t 3 eθt/n + t/n t 3 ) n e θ 3!n3/ 3!n 3/ t/n t 3 3!n 3/ ) ) n 4. K(x) e x sin x x x 3 lim x x e x sin x ( + x + x + ec 3! x3 )(x x3 3! x + x + 3 x3 + x 4 K(x) sin c x 4 ) 4! 5.5. l Hopitl 5. (Cuchy ) f, g [, b] (, b) ξ (, b) f (ξ)(g(b) g()) g (ξ)(f(b) f()). h(x) (f(x) f()(g(b) g()) (f(b) f())(g(x) f()) h() h(b) Rolle ξ (, b) h (ξ) f (ξ)(g(b) g()) (f(b) f())g (ξ)

45 (l Hopitl) f, g [, b] (, b) lim x f (x) g (x) f(x) f() lim x g(x) g() lim f (x) x g (x) 5. lim x f(x) lim x g(x) lim x f (x) g (x). f(x) lim x g(x) lim f (x) x g (x) x ( x > ) g (x) g(x) g() x > Cuchy ξ (, b) g(x) g() f (ξ)(g(x) g()) (f(x) f())g (ξ) f (ξ) f(x) f() g (ξ) g(x) g() x ξ x f g C n f (k) () g (k) () ( k n ) g (n) () f(x) f() + n! f (n) (ξ)(x ) n g(x) g() + n! g(n) (ξ )(x ) n x g (n) (ξ ) f(x) f() g(x) g() f (n) (ξ) g (n) (ξ ) f 5.6 (l Hopitl ) lim x g(x) lim (x) x g (x) f(x) lim x g(x) lim f (x) x g (x). x > N lim x f (x) g (x) c ε > N f (x) g (x) c < ε

46 46 5 M > N x > M mx{ f(n), g(n) } g(x) x > M Cuchy ξ (N, M) ε f(x) f(n) g(x) g(n) f (ξ) g c + θε, ( < θ < ) (ξ) f(x) f(x) f(n) g(x) g(x) g(n) f(n) g(x) g(n) f(x) f(n) g(x) g(x) g(n) f(n) g(x) + g(n) g(x) f(x) f(n) g(x) g(n) ε + ( c + )ε ( c + )ε f(x) g(x) f (ξ) g (ξ) ( c + )ε N x, ξ 5 sin x lim x x lim x lim x lim n lim x cos x x log x x n nα ( R) ( ) x n e x e /x lim x x n ( ) 5.6 f C r f(x + h, y + k) r i i! i i f ic j x j y i j (x, y) hi k i j + R n (x, y) j

47 θ R n (x, y) r! r r f rc j x j y r j (x + θh, y + θk) hj k r j j. g(t) f(x + th, y + tk) g(t) r i t g (i) (t) g (i) () i! t i + g(r) (θt) t r r! i i f ic j x j y i j (x + th, y + tk) hj k i j j r i ( h i! x + k ) i f(x, y) + ( h y r! x + k ) r f(x + θh, y + θk) y 5.7 R n (x) x f(x) n f (n) () (x ) n n! 5. x x < x x. n f (n) () n! ε > n n, m n m k x k < ε kn n x n < ε n x n n x n x x n < ε x x n

48 48 5 m n x n ε < x/x kn n k kx k Cuchy r (r ) k kx k x < r x > r r 5. x < r lim n+ n n r. lim sup n n n r.. ε > n s.t. n n n+ n < r ε n+ x n+ n x n n+ n x x r ε n x n n x n n+x n+ n x n < n x n x r ε ( < n x n x r ε ) n n

49 x x < r ε x < r ε nn n x n ε > n s.t. n n n+ n > r + ε n+ x n+ n x n > x r + ε ( x r ε ) n n nn n x n x > r ε > x > r + ε ( ) n n n x n > n x n x r + ε. x ε ε > n s.t. n n k sup k < k n r ε n n < r ε, nx n < ε > n s.t. n n {k n } k sup k > k n r + ε nk x n k > ( ) nk x r + ε ( ) n x r ε x > r ε x > r + ε

50 f(x) n nx n r x < r f (x) n n x n f(x) dx n n n n + xn+. ˆx ( ˆx < r) < ρ < n nˆx n nˆx n < M M x < ρ ˆx n n x n nˆx n n xˆx n ˆx < M ˆx nρn n nρn < ε > n s.t. nn nρ n < ε x < ρ ˆx n n x n n n n x k n n nx n < ε ˆx, ρ x < r x, x x, x < ρ ˆx m > n m k kx k m k kx k n k kx k n k kx k x x x x m kn+ k k x k k (x k x + θ k (x x ), θ k < ) m kn+ n x k x k x x k x, x ( x < r ) k kx k k kx k x x N k x k x k kn+ k + kx k kn+ kx k x x x x N x ε x x N k k kx k n n x n n

51 5.9. Riemnn zet 5 f ( )F f F (x) f(x) f(x) b n x n n nb n x n n n x n n n (n + )b n+ F (x) n n n xn n n n + xn f(x) n (x ) n b n (x ) n n r f (n) () n! n n b n n b n 5.9 Riemnn zet Riemnn zet ζ(z) n n z

52 5 5 z ζ() n + + ( n n + n ) ( + + n ) n z < n z > n z z < + z + + ( n ) z ( + z + 3 z ) z + + n ( n ) z + ( z ) + + ( z ) n z ( ) ( n ) z + + ( n+ ) z ζ() π sin x x nπ n, ±, ±,...) 6 sin x n Z(x nπ) (x nπ)(x + nπ) sin x x n N(x (nπ) ) sin x x ( ( x )) nπ n N

53 5.9. Riemnn zet 53 sin x x x sin x x ( ( x )) nπ n N sin x x x3 6 + x 3 ζ() π ζ() π 6 zet ϕ(s) ϕ(s) s + 3 s ( + s + ) ( 3 s + s + 4 s + ) 6 s + ζ(s) s ζ(s) ( s) ζ(s) ϕ() ζ(), ϕ( ) 3ζ( ), ϕ( ) 7ζ( ) f(x) + x + x + x f( ) d dx f( ) ( + x + 3x + ) x ( x) x 4 d df (x dx dx )( ) ( + 4x + 9x + ) x + x ( x) 3 x d d f( ) ϕ(), dxf( ) ϕ( ), dx (x f)( ) ϕ( ) ζ(), ζ( ), ζ( ) ζ( n) Riemnn ζ(z) Re z > Re z z Re z ζ(s) p p : prime s

54 54 5 π(x) x π(x) x log x

55 : f x ε > δ > s.t. x < δ f(x) f() < ε : f (x, y) (, b) ε > δ > s.t. d((x, y), (, b)) < δ f(x, y) f(, b) < ε f I I f : X Y 6 solution x ε > δ > s.t. x x < δ f(x) f(x ) f (x ) x x < ε f(x) f(x ) < (ε + f (x ) ) x x δ ε+ f (x ) ε x x < δ f(x) f(x ) < ε 6.3 X, Y O Y f (O) G Y f (G)

56 56 6 x X f(x) U f (U) x V 7 x f [, b] c, d [, b] s.t. f(c) mx x [,b] f(x) f(d) min x [,b] f(x). sup x [,b] f(x) M ε > x(ε) s.t. f(x(ε)) M ε x n x(/n) {x n } f( lim n x n) lim n f(x n) lim n (M n ) M f {f(x) > n: x b} x n [, b] {x n } f(x n ) ( ) f [, b] f() < f(b) f() y f(b) x b s.t. f(x) y. c, d [, b] f(c) min f(x), f(d) mx f(x) c < d c > d sup inf x sup{c < x < d: f(x) < y} x > x f(x) y f f(x ) lim x x f(x) y

57 {x n } s.t. x n x f(x n ) < y f f(x n ) f(x ) f(x ) y f ε > δ > x x < δ f(x) f(x ) < ε n n n x x n < δ f(x n ) f(x ) < ε f(x n ) < y f(x ) < y + ε ε f(x ) y f(x ) y : f I ε > δ > s.t. x x < δ (x, x I) f(x) f() < ε : f I ε > δ > s.t. d((x, y), (x, y )) < δ, ((x, y), (x, y ) I) f(x, y) f(, b) < ε I ε > δ > x x < δ f(x) f(x ) < ε 6.3 [, b]. ε > c [, b] δ c > x c < δ f(x) f(c) < ε {c δ c, c + δ c } [, b] [, b] compct c,... c k δ min δ ci x x < δ f(x) f(x ) < ε. ε δ > x, x s.t. x x < δ f(x) f(x ) ε

58 58 6 δ n x, x x n, x n [, b] {x n } lim n x n x lim n x n x f(x n ) f(x n) ε. ε > x I x δ(ε, x ) > s.t. x x < δ(ε, x ) f(x) f(x ) < ε U x (x δ(ε, x ), x +δ(ε, x )) x U x I I x,..., x n n k U(x k) I δ min k n δ(ε, x k ) δ > x x < δ x i, x j x x i < δ x x j < δ f(x) f(x i ) < ε, f(x ) f(x j ) < ε U xi U xj x f(x i ) f(x ) ε f(x j ) f(x ) < ε f(x) f(x ) < 4ε

59 59 7 ε δ 7. A mx A. b A b. A A sup A. b A b. ε > b A s.t. b > ε A b A {,,...} sup A sup n n A {,,...} sup A lim n n 3 A B sup A sup B sup(a B) sup A, inf(a B) inf A, sup(a B) mx{sup A, sup B} sup λ Λ A λ sup λ Λ (sup A λ ) sup(a B) sup A inf(a B) inf A 3. mx( n + b n ) mx n + mx b n

60 6 7 ε δ. mx( n ) min n 3. mx( n b n ) mx n min b n 33. sup( n + b n ) sup n + sup b n. sup( n b n ) sup n inf b n 34. mx x [,] (f(x) + g(x)) mx f(x) + mx g(x). mx x [,] ( f(x)) min x [,] f(x) 3. mx x [,] (f(x) g(x)) mx x [,] f(x) min x [,] g(x) 35. sup( n + b n ) sup n + sup b n. sup( n ) inf n 3. sup( n b n ) sup n inf b n 36. sup x [,] (f(x) + g(x)) sup f(x) + sup g(x). sup x [,] ( f(x)) inf x [,] f(x) 3. sup x [,] (f(x) g(x)) sup x [,] f(x) inf x [,] g(x) 37 n e /n ( n )n n sin π n cos nπ 4 b n sin n 3 π (lim n b n b) sin n 38 n lim sup( n b n ) (lim n ) (lim sup b n ) 39 n > lim sup n lim n f(a) f (A)

61 lim sup n lim n sup n k n k inf sup k k n lim inf n n lim n inf k n k sup inf k n k A n { n, n+,...} n 7. lim sup n lim inf n lim n lim n lim sup n lim inf n.. lim sup n lim inf n. lim n 7. ( ) f : [, b] R c inf x [,b] f(x) d sup x [,b] f(x) c < y < y f(x) x [, b] 7.3 lim n n ε > n s.t. n n n < ε 4. r n. nr n 3. r n n 4. n!r n 4 lim n n lim n b n b n + b n lim + b n, lim nb n b n

62 6 7 ε δ 7.4 ε > n s.t. n, m n n m < ε I I I n n I n R A B A B A b B < b. mx A min B. mx A min B I I I 3 I n I n [ n, b n ] { n } b {b n } lim n n b lim n b n n < b m b < b I n b b I n n I n {} M I [, M] I I c n I n {} ε > n n n I n ( ε, + ε) I n { n } N n N n I n ( ε, + ε) lim n n A B (A B R, A B ) x A y B I [x, y] x+y A I [ x+y x+y, y] B I [x, x+y ] n I n {} ε > ε A, + ε B A mx A

63 min B B min B mx A A {x: n s.t. x n }, B {x: n s.t. x > n } Dedekind mx A min B ε > ( ε, ] n n lim n n Cuchy {I n } I n { n, n } Cuchy m n m I n m n I n I n { n } n n n I n I n I n Cuchy { n } Cuchy n s.t. m, n n n m < n n n n < I [ n, n + ] n n n I n s.t. m, n n n m < n > n I [ n, n + ] I n n n I 4, 8,... n < n < n < I I I I n In {} ε > n n n I n ( ε, +ε) n n n < ε lim n n 7. { n } Cuchy nk lim n n. Cuchy ε > k s.t. l k nl < ε n s.t. m, n n n m < ε

64 64 7 ε δ n mx{n k, n } n n n n nk + nk < ε 7.3 Cuchy. ) n n n n ε > n n n n < ε n > m n s n s m s n n km+ n k n k n km+ n < ε Cuchy ) {s n } Cuchy {s nk } m, n n k s n s m < k n k > n k s nk s nk+ < k k s nk s nk k (s nk s nk+ ) k k N (s nk s nk+ ) s n s nn+ k {s nn } {s n }

65 { n (t)} n t 7.4 [, b] f n f f. f n ε > n s.t. n n f n (x) f(x) < ε f(x) f(x ) f(x) f n (x) + f n (x) f n (x ) + f n (x ) f(x ) ε f n δ > s.t. x x < δ f n (x) f n (x ) < ε f(x) f(x ) 3ε f [, b] C[, b] f sup f(x) x [,b] 7.5 C[, b]. {f n } Cuchy ε > n s.t. m, n n f n f m < ε x [, b] f n (x) f m (x) < ε {f n (x)} Cuchy f(x) n n f n (x) f(x) < ε f n f f n f f C[, b] C[, b] 7.6 f n [, b] f lim n f n (x) dx f(x) dx

66 66 7 ε δ. ε > n s.t. n n sup f n (x) f(x) < ε f n dx f(x) dx f n (x) f(x) dx ε(b ) 7.7 [, b] f n f f n g f g. (f n f m )(x) (f n f m )(x ) f n f m x x ε > n s.t. n n f n g < ε m, n n f m f m < ε f n (x) f n (x ) f m(x) f m (x ) x x x x < ε m f n (x) f n (x ) f(x) f(x ) x x x x < ε n δ > f n (x) f n (x ) f x x n(x ) < ε g(x ) f(x) f(x ) x x g(x ) f n(x ) + f n(x ) f n(x) f n (x ) x x + f n (x) f n (x ) f m(x) f m (x ) x x x x < 4ε

67 n n s N + + N ε > n s.t.n n s n s < ε ε > n s.t. m, n n s n s m < ε > n s.t. n n n < ε s n n s n n+ < s n s n+ n+ n r n ( r < ) s n rn r r n r 7.8 n n lim n n. lim n n δ > n > δ n {n k } n m n k m kn k > δ 7.9 ( ) n n n b n n b n n n 7. () n n n n

68 68 7 ε δ. b k n k b k ε > n s.t. m, n n m kn+ b k < ε m kn+ k m kn+ k m kn+ b k < ε n k k n n k n k n k. n k k ε > n s.t. m, n n m kn+ k < ε kn+ k ε b + b + n n n n b k (b k n ) k n m, n n m kn+ b k kn + k ε n k b k n n n b k k b k k + k k k k kn + k kn + k ε

69 { mn } lim n mn m lim m m lim m mn b n lim n lim mn lim m lim mn m n. ε > n s.t. n n mn m < ε m s.t. m m m < ε n n m m mn mn m + m < ε n n m b n b n mn + mn < 3ε mn n m mn n m m n mn n mn n m m nm mn 7.7.

70 7 7 ε δ 5 ( ) X X X i + + X i + 5% 5% n S n X + + X n S n r k k r k + (k r) n k n+r n k p r (n) nc k n n + r p r (n) n + r p (n) q n q n n n p n n p n n p q n 4 q 4 4 q p 4 q 4 q n n P (t) t n p n Q(t) n t n q n n

71 p q q n Q(t) t m mc m m (7.) m ( + x) C m x m m C m ( ) ( m + ) m! ( /)( 3/) ( / m + ) m! m 3 (m ) ( ) m m! ( ) m (m)! m m!m! ( ) m mc m m /C m (7.) Q(t) t m ( ) m /C m m m m /C m ( t ) m m t P (t) Q(t) n m n n q n p n + n m p m q n m n p m q n m m p q m n

72 7 7 ε δ Q(t) t n q n n n t n n m m nm m n + Q(t)P (t) p m q n m t n p m q n m t n+m p m q n P (t) Q(t) t (7.) n P () P () (7.) P (t) t P (t) ( t ) / ( t) t( t ) / P (t) n p nt n P (t) n np nt n P () n np n np n P () n

73 ( ) n! n n e n πn b b n n! n q n n C n/ n n n e n πn ((n/) n/ e n/ πn) n πn p n t t n p n / C n/ ( ) n/ ) ( ) ( ( n + ) ( ) n/ (n/)! ( n + ) / C n/ ( ) n/ n ( )n/ nc n/ n ( ) n/ n n C n/ n n πn π n 3/ n n p n

74 74 7 ε δ 7.8 Riemnn zet Riemnn zet ζ(z) n n z z ζ() z < n + + ( n n + n ) ( + + n ) n n z > n z z < + z + + ( n ) z ( + z + 3 z ) z + + n ( n ) z + ( z ) + + ( z ) n z ( ) ( n ) z + + ( n+ ) z ζ() π sin x x nπ n, ±, ±,...) 6 sin x n Z(x nπ)

75 7.8. Riemnn zet 75 (x nπ)(x + nπ) sin x x n N(x (nπ) ) sin x x ( ( x )) nπ n N sin x x sin x x n N x ( ( x )) nπ sin x x x3 6 + x 3 ζ() π ζ() π 6 zet ϕ(s) ϕ(s) s + 3 s ( + s + ) ( 3 s + s + 4 s + ) 6 s + ζ(s) s ζ(s) ( s) ζ(s) ϕ() ζ(), ϕ( ) 3ζ( ), ϕ( ) 7ζ( ) f(x) + x + x + x f( ) d dx f( ) ( + x + 3x + ) x ( x) x 4 d df (x dx dx )( ) ( + 4x + 9x + ) x + x ( x) 3 x d d f( ) ϕ(), dxf( ) ϕ( ), dx (x f)( ) ϕ( ) ζ(), ζ( ), ζ( ) ζ( n)

76 76 7 ε δ Riemnn ζ(z) Re z > Re z z Re z ζ(s) p : prime p s π(x) x π(x) x log x 7.9 n npn n tn p n s n + + n s ε > n s.t. n n s n s < ε 7.9. p lim n n ε > n n n s.t. n ε ε ε ε n n s n s < ε s n s < ε s n s < ε n > ε s n s s n + n s > ε + ε > ε lim n np n

77 7.9. n npn > p p > > < p < n npn x e x log x x (x log ) n n! n x(log ) (x log ) N s.t. x N x x n N n n n N np n n p n (p) n np n n N n np n + nn np n N n np n + nn (p) n > p > np n n np n (n + )p n+ p n (n( p ) p ) p p npn > (n + )p n+

78 f [, b] [, b] : < < < n b S (f) S (f) n sup f(x)( i i ) x [ i, i n sup f(x)( i i ) x [ i, i i i S (f + g) S (f) + S (g) S (f + g) S (f) + S (g). S (αf) αs (f) S (αf) αs (f) 3. f g S (f) S (g), S (f) S (g) 4. S (f) S ( f) 8. S S S S

79 sup( n +b n ) sup n +sup b n inf( n +b n ) inf n +inf b n f(x) dx inf S (f) f(x) dx sup S (f) inf sup 8. δ n S (f) n sup f(x) δ S (f) S (f) S (f) + n sup f(x) δ S (f) S (f). Mδ sup f(x)( i i ) Mδ i x i i b < b < < b m i Mδ m sup f(x)(b j b j ) Mδ b j b j j n S (f) n sup f(x) δ S inf 8.3 (Drboux) f [, b] ε > δ > s.t. δ S (f) f(x) dx < ε S (f) f(x) dx < ε

80 8 8. S (f) ε n n sup f(x) δ < ε δ δ 8. S (f) n sup f(x) δ S (f) S (f) dx + f(x) ε 43.. (f + g) dx f dx + g(x) dx (f + g) dx f(x) dx + αf(x) dx α f(x) dx αf(x) dx α f(x) dx g(x) dx 3. f g 4. f(x) dx g(x) dx,. () S (f) S ( f) f(x) dx S (f + g) S (f) + S (g) g(x) dx sup(a B) sup A + sup B (f + g) dx (f + g) dx S (f) + S (g) ε > f g S f S g f dx + ε g, dx + ε

81 8.. 8 f g (f + g) dx f dx + g dx + ε ε (),(3) (4) sup A inf( A) 8. f f(x) dx { n } x, x [, b] n n n x, x n 8. { n } n : n < < n N n b {ξ n i } ( i ξ n i n i ). f(x) dx lim n i N n f(ξi n )( n i n i ) δ n δ 8.3 ε δ S n S n ε N n S n (f) f(ξi n )( n i n i ) S n (f) i 8., n,... lim n S n (f) lim S n n (f). n S n (f) inf S (f) sup S (f) S n (f)

82 [, b]. f [.b] ε > δ > x x < δ f(x) f(x ) < ε δ n S (f) S (f) ( sup f(x) inf f(x))( i i ) i i x i i x i n ε ( i i ) i ε(b ) f(x) dx f(x) dx < S S < ε(b ) 8.3. f [, b] n n S n (f) n n f( i ), i S n (f) n f( i ) n i S n (f) S n (f) 8.4. (f ± g) dx f dx ±. αf dx α f dx 3. f g f dx g dx 4. b f dx f(x) dx. g dx ( ) f(x) f(x) f(x)

83 f, g fg. f inf x b f(x) > f(x). f(x)g(x) f(x )g(x ) (f(x) f(x ))g(x) + f(x )(g(x) g(x ) M ( f(x) f(x ) + g(x) g(x ) ) M ((sup f(x) inf f(x)) + (sup g(x) inf g(x))) S (fg) S (fg) n (sup fg(x) inf fg(x)) ( i i ) i M n ((sup f(x) inf f(x)) + (sup g(x) inf g(x))) ( i i ) i ( M f dx f dx + g dx δ inf f(x) f(x) f(x ) fx) f(x ) f(x)f(x ) δ f(x) f(x ) g dx ) 8.6 < b < c [, c] c f(x) dx f(x) dx + c b f(x) dx. [, c] b δ sup f(x)δ 44. x, x. e x 3. sin x, cos x

84 ( ) f f(x) dx (b )f(ξ) ( ξ [, b]) 8.3 () f ϕ f(x)ϕ(x) dx f(ξ) ϕ(x) dx ( ξ [, b]). inf f(x) x [,b] ϕ(x) dx inf f(x) x [,b] f(x)ϕ(x) dx sup f(x) x [,b] f(x)ϕ(x) dx ϕ(x) dx sup f(x) x [,b] ϕ(x) dx 8.4 ( ) ϕ f. f(x)ϕ(x) dx ϕ() ξ f(x) dx + ϕ(b) ξ ϕ ϕ() f(x) dx f(x)ϕ(x) dx ϕ(b) f(x) dx f(x) dx ϕ() ξ f(x) dx + ϕ(b) f(x) dx ξ ξ < ξ ξ ϕ() f(x) dx + ϕ(b) f(x) dx ϕ() ξ f(x) dx ϕ(b) ξ ξ ξ ξ ϕ() f(x) dx ϕ(b) f(x) dx ξ ξ ξ (ϕ() ϕ(b)) f(x) dx ξ f(x) dx f M ξ ξ f(x) dx M(ξ ξ)

85 () f [, b]. d dx x f(t) dt f(x) [, x] ε > δ > s.t. x y < δ f(x) f(y) < ε F (x) x h > h < δ F (x + h) F (x) f(x) h f(t) dt h h ε x+h x x+h x (f(t) f(x) dt f(t) f(x) dt 8. f [, b] f (x) dx f(b) f(). d dx x F (x) f (t) dt f (x) x f (t) dt F (x) f (x) F (x) f(x) + C

86 F (x) F. < b F () < F (b) < c < b F (c) F (b) F () b 8. P (x) Q(x) P (x) Q(x). (x ) n+ (x ) n n+ n dx log x n. x (x + ) n dx (n )(x + ) n > n log(x + ) n 3. I n (x + ) n dx ( ) x I n (n )(x + ) + n 3 n n I n n > rctn x n f(x, y), g(x, y) f(sin x, cos x) g(sin x, cos x) x rctn r r tn x tn x r r cos x r + r r sin x r

87 dx dr + r r 3 () x +, (b) x, (c) x () t rctn x, (b) t rccos x, (c) t rcsin x () (b) (c) x + cos t, x tn t, x cos t, dx dt cos t dx dt sin t cos t dx dt cos t 3 8. ( + x 4 dx / x/ ) x / + x/ + x + x + dx x + ( / x/ ) (x /) + / + / + x/ (x + dx /) + / y x / / x/ (x /) + / dx /4 y/ y + / 4 rctn y 4 log(y + /) 4 rctn (x dy ) 4 log(x x + ) + x 4 dx 4 rctn (x ) + 4 rctn (x + ) + 4 log x x + x + x + + x 4 dx π 4 4 (π + π 4 ) + 4 (π π 4 )

88 88 8 R R +z 4 z e πi/4, e 3πi/4 lim z (i±)/ C z i z e 3πi/4, 4 e 9πi/4 i 4, i 4 dz i πi ( + z4 4 + i 4 ) π R R z 4 + dz + x dx z Re iθ π R 4 e 4iθ + Reiθ dθ R R 4 π R π + x 4 dx f [, b) (b ) < c < b f [, c] g b g f g f. b n b (b n ) n m f(x) dx f(x) dx n b m n b m f(x) dx g(x) dx g n g(x) dx n n m ε > n s.t. m, n n g(x) dx g(x) dx < ε n f(x) dx

89 tn x dx log cos x ( π, π ) 8.3 e x dx e x e x (x > ) N lim e x [ dx lim e x ] N N N e 8.4 log x dx log x dx x log x x 8.5 π I I π/ π/ π/ π I π log log(sin x) dx π log π log(sin x) dx + log(sin x) dx + ( ) sin x log dx π/ π/ log(sin x) dx π log log(sin x) dx log(cos x) dx x l Hopitl x log(sin x) log(sin x) dx x x log(sin x) dx

90 Γ Γ(x) t x e t dt (x > ) t t x e t/ t t x e t e t/ for suffciently lrge t < x < t t x e t t x t x dt. Γ() [ ] x tx x. x > Γ(x) (x )Γ(x ) Γ(x) t x e t dt [ t x ( e t ) ] (x )t x ( e t ) dt (x )Γ(x ) 8.6. Γ(n) (n )!. ( ) Γ Γ t / e t dt e x dt ( ) π e x dx π (t x, dt xdx t / dx)

91 8.5. B B B(p, q) x p ( x) q dx (p, q > ) < p < x < q < < x < x p ( x) q x p q x ( p q ) < q < x p dx p [xp ] p < q < x 8.5. e x 8.6 π e x dx. e (x +y ) x +y N ( N e (x +y ) dxdy e dx) x x +y N x r cos θ, y r sin θ ( ) ( ) x x r θ cos θ r sin θ sin θ r cos θ y r y θ r x +y N e (x +y ) dxdy π π/ N N rdr r dθ e e t dt π 4 ( e N ) e (x +y ) dxdy (t r, dt rdr)

92 9 8 e (x +y ) dxdy π 4 : ( ) e x(+y) dy dx I e x ( ( x e x x dx I ) e xy dy dx ) e t dt dx ( y t) e s ds I ( x s) ( ) e x(+y) dx dy + y dy [rctn y] π 8.6 () f [, b] [c, d] C. d dy f(x, y) dx f (x, y) dx y Fubini G(y) g(y) f(x, y) dx f f(x, y) dx y d c g(y) dy d c f (x, y) dydx y (f(x, d) f(x, c)) dx G(d) G(c) d c G (c) g(c)

93 8.5. B : π e x dx. f(t) g(t) ( t ) e x dx e (+x )t dx + x f (t) g (t) t t u tx g (t) e x dx e t ( t( + x ))e (+x )t dx + x t te (+x )t dx e t u du f (t) f(t) + g(t) dx f() + g() + + x π 4 g(t) e (+x )t + x e t e t dx e t (t ) lim t f(t) π B(p, q) Γ(p)Γ(q) Γ(p + q)

94 94 8. N N Γ(p)Γ(q) lim e x y x p y q dxdy N c c c lim e x y x p y q dxdy D D (u x + y, v x x + y ) ( M lim M M lim M lim b Γ(p + q) B(p, q) e u u p+q du lim b e u (uv) p (u uv) q u dv x uv y u uv ( ) ( ) x u u v v u v u y u v v ) v p ( v) q dv u u du 8.9 (. B ( ). Γ π, ) π. ( ( π B ), Γ ( Γ() )) ( ( Γ ) ). ( B ), dx x( x) x x t x +t dx t (+t ) dt ( B, ) + t + t dt + t [ rctn t ] t π t ( + t ) dt

95 8.5. B 95. ( B, ) dx /4 (/ x) dt /4 t /4 dt t [ rcsin t ] π ( π ) π (t x) [ ] rccos t ( π) π 45 π/ sin m x cos n x dx B ( m +, n + ). π/ sin m x cos n x dx t m/ ( t) n/ dt t( t) B ( m + t (m )/ ( t) (n )/ dt, n + ) (sin x t) 46 n. I n (x ) x x dx x x x x I n () n I (x ) x x x n dx n x x n x dx x

96 96 8 I n (x ) c n ( x ) n/ c I n (x ) x x I n (x + x ) dx c n x x ( x x ) (n )/ dx π/ c n ( x ) (n )/ ( sin θ) (n )/ x cos θ dθ (x x sin θ) π/ π/ c n ( x ) n/ cos n θ dθ π/ ( c n ( x ) n/ B, n + ) ( c n c n B, n + ) ( c n B, n ) ( B, n + ) ( c B, 3 ( B ) ), 4 ( B, n + ) Γ(/)Γ(3/) Γ(/)Γ(4/) Γ(/)Γ((n + )/) Γ(4/) Γ(5/) Γ((n + )/) π (n )/ Γ(3/) Γ((n + )/) π n/ Γ((n + )/) 8.6 Newton 3.. F m 3.

97 : N 6N x v dx dt v, mdv dt F F mg ( ) ( ) d x v dt v g (F kx) ( ) d dt x v ( ) ( ) x k v (x, v)

98 (x(t), y(t)) r(cos ωt, sin ωt) (v x (t), v y (t)) rω( sin ωt, cos ωt) ( x (t), y (t)) rω cos ωt, sin ωt) F m mrω F m v r ( ) G mm r v m v r GM g 9.8m/s r F mg G mm r GM r g v rg km/s F U r U U r GmM r

99 U r G mm r dr G mm r.km/s v mv G mm r GM r gr v t F (t) v(t) F (t)v(t) dt m(t)v(t) dt m dv v(t) dt dt v t dv dv dt dt mv dv mv U mv F U x F dv m v dx mv dv dt dt dx m d x dt m

100 8 8.7 C (x(t), y(t)) (t [, b]) x (t) + y (t) dt (x(t), y(t)) (x(t + h), y(t + h)) (x(t + h) x(t)) + (y(t + h) y(t)) x (t + θ h) + y (t + θ h) h ( θ, θ ) t x y f(x) (, f()) (b, f(b)) y (t) dy dt f (x) + f (x) dx 47 Asteroid x cos 3 θ, y sin 3 θ π 6 6 ( 3 cos θ sin θ) + (3 sin θ cos θ) dθ 3 4 π/ sin θ dθ 6 [ ] π/ cos θ π/ cos θ sin θ dθ 48 Crdioid r ( + cos θ) x cos θ( + cos θ), y sin θ( + cos θ) ( ) dx + dt ( ) dy ( + cos θ) dt π ( + cos θ) dθ π θ cos dθ 8

101 f n f [, b] C (f n (x) f(x) f n(x) f (x)) f n () f n (b) f() f(b). f n f + f n (x) dx + f (x) dx 8.7 ( ) ABC AB BC AB,BC AC M,N,P AM,MP,PN,NB AB BC C AC x(u, v) Φ Φ(u, v) y(u, v) L(t) (u(t), v(t)) ( t ) z(u, v) dφ dt dt dφ dt Φ du u dt + Φ v dv dt ( Φ u, Φ v ) ( ) du dt dv dt ( E F ) F G dφ dt dt (( Φ u, Φ ( u Φ u, Φ v ( du dt, dv dt ) ( du dt, dv dt ) E ( du dt ) ( Φ ) ( Φ u, Φ v v, Φ v )) ) ( ) Φ u ( Φ Φ u, Φ v ) v ) ( E F F G ) ( du dt dv dt dt ) + F du dv dt dt + G E, F, G ( ) du dt dt dv dt ( ) dv dt dt

102 8 Φ 3 u Φ(u, v) v Φ u, Φ v ( E F ) ( ) F G

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2 IA September 5, 7 I [, b], f x I < < < m b I prtition S, f x w I k I k k k S, f x I k I k [ k, k ] I I I m I k I j m inf f x w I k x I k k m k sup f x w I k x I k inf f x w I S, f x S, f x sup f x w I

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v I 2 7 4 2 2 6 3 8 4 5 26 6 32 7 47 8 52 A 62 B 66 big O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo I 22 7 9 2 2 5 3 7 4 8 5 2 6 26 7 37 8 4 A 49 B 53 big O f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information