² ² ² ²
|
|
|
- きのこ ままだ
- 9 years ago
- Views:
Transcription
1
2 ² ² ² ²
3 n=44 n =44 n=44 n= % 22.7% 13.6% 27.3% 54.5% 25.0% 59.1% 18.2% 70.5% 15.9% 47.7% 25.0% 60% 40% 20% 0% n= % 27.3% 11.4% 6.8% n=44 9.1% 6.8% n=44 6.8% 2.3% 31.8% 45.5% 52.3% 45.5%
4
5 ²
6 ² ² ²
7
8
9
10 n=44 n =44 n=44 n= % 22.7% 13.6% 27.3% 54.5% 25.0% 59.1% 18.2% 70.5% 15.9% 47.7% 25.0%
11 60% 40% 20% n= % 27.3% 11.4% 6.8% 0% n=44 n =44 n=43 9.1% 6.8% 9.1% 13.6% 9.1% 31.8% 31.8% 36.4% 25.0% 52.3% 40.9% 31.8% n=44 2.3% 6.8% n =44 4.5% 6.8% n= % 29.5% 45.5% 45.5% 54.5% 34.1% 31.8% 27.3%
12
13
14
15
16
17
π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1
sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
, , ,852, ,872, , % 65.6% 11.4% 17.9% 75.4% 17.7% 6.9% 2
100-0004 1-5-5 2003 1 47,449 149 8,800 12.48 12,852,625.49 11,872,195.49 980,430.00 5.1% 65.6% 11.4% 17.9% 75.4% 17.7% 6.9% 2 08 04 02 22 30 28 27 26 24 10 16 32 56 54 46 42 40 34 64 68 69 70 72 60 3 4
薬局におけるインシデント事例の集計・分析結果
13 11 14 31 13 11 14 31 13 11 14 31 10 13 13 e-mail 18 4,000 13 14 H13.4.1 11.17 11.18 H14.3.31 13 14 31-1- 600 400 (18.4 17.7 17.0 16.0 15.2 8.2 1.0 2 11 10 12 15 3 1015203040 69.5 7.8 22.7 4 (42.5) 34.3
untitled
1 2 3 4 5 a A b A A DO DH df 90 90 190 190 850 850 1180 a 0.15 0.0008df 0.08 0.76 1180 b 0.25 0.0009df 0.08 1.14 6 B RS-CR1RS-CR3 RS-CV1 RS-CV2 RS-CV3 1 2 3 L H B RS-CR1 RS15 50 16.4 20 RS-CR2 RS25 50
44 16 3 25 1 6 3 16 3 25 01 01 02 03 05 05 06 2 07 10 10 10 11 13 13 14 17 17 17 18 19 19 20 21 A 21 21 23 B 25 25 26 27 27 28 C 28 28 32 35 41 41 44 32 46 49 50 50 50 54 55 56 59 41 65 76 81 96 3 2 97
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1
sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V
(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z
B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r
() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.
() 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >
But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R >
2 2 http://www.ozawa.phys.waseda.ac.jp/inde2.html But nothing s unconditional, The Bravery > (, ( > (, f, g > f (,, > sup f( ( M f(g( (i > g [, lim g( (ii g > (, ( g ( < ( > f(g( (i g < < f(g( g(
FileList Convert a pdf file!
Tamadaigakufuzokuhijirigaokac yugakukoutougakkoupasocom butamadaigakufuzokuhijirigaok acyugakukoutougakkoupasoco mbutamadaigakufuzokuhijiriga 2009 09 20 21 okacyugakukoutougakkoupaso combutamadaigakufuzokuhijiri
Netscreen (2 ) ( ) Software Subscription,ScreenOS 3 3 / 3 ScreenOS ( +ScreenOS ) +ScreenOS ScreenOS FD NetScreen +ScreenOS / ScreenOS
Netscreen ( 0.0 0. ( Software Subscription,ScreenOS / ScreenOS ( +ScreenOS +ScreenOS ScreenOS FD NetScreen +ScreenOS / ScreenOS 0 http://www.hitachi-system.co.jp/netscreen/sp/0_support/view.htm (anetscreen-/xp/xt/gt
TRENDMICRO AppletTrap edoctor INTERSCAN VIRUSWALL Trend Virus Control System VSAPI emanager PC-cillin Interscan emanager MacroTrap ISVW TVCS InterScan
TRENDMICRO AppletTrap edoctor INTERSCAN VIRUSWALL Trend Virus Control System VSAPI emanager PC-cillin Interscan emanager MacroTrap ISVW TVCS InterScan On-Line Scan GateLock ISWM InterScanWebManager InterScan
B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (
. 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1
I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;
21 1 http://www.ozawa.phys.waseda.ac.jp/index2.html ( ) 1. I = [a, b] R γ : I C γ γ(i) z 0 C \ γ(i) (1) ε > 0 φ : I B(z 0 ; ε) C (i) B(z 0 ; ε) γ(i) = (ii) (t, z) I B(z 0 ; ε) exp(φ(t, z)) = γ(t) z (2)
7_matsumoto.indd
Gengo Kenkyu 142: 143 154 2012 要 旨 2009 native speaker 1960 1970 80 1990 1960 1970 80 1990 * キーワード 1. 2009 ¹ * ¹ 144 2. 1960 1952 145 1 S 1950 1960 1959 1965 2 6 1947 5 1948 4 1949 3000 3 2000 146 3 4
1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1
1 1 1.1 G.Cantor (1845 1918) 1874 Unter eines Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten in unserer Anschauung oder unserers Denkens (welche die Elemente von
( ) Loewner SLE 13 February
( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d
= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (
+ + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................
ユニティ[01-24].indd
7 8 16 2 7 3 4 5 6 7 8 9 10 11 12 12 13 13 14 15 16 17 18 住宅の新築 購入 リフォーム資金 他金融機関等の 借換資金 教育ローン マイカーローンなど 各種ローンのご相談も承ります マイホーム資金は JAいずも におまかせください 夢広がる家づくり 応援いたします ቛ 住宅ローン相談会 お近くの会場へお出かけください なお 最寄りの支店にて事前のご予約を承っております
AC-A-C1-F1.indd
F40-40mm 50% 360 46% 0.5MPa 0.3MPa 500L/minN 20-02- 20-02- 20-02 F40-2 New 20-02- 20-02 New New New New F40 75mm 35mm F..L. CT.S40-56 Series New New ohs Series 360 W0 W0- F FM 90g FD W 360g F40- F40 450g
3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................
<5030312D3234955C8E8697A0955C8E862E6169>
2-16-2 Kugenumakaigan Fujisawa Kanagawa Japan PH:0466-36-9062 FAX:0466-36-2519 www.c4waterman.jp PRODUCT CATALOG CONTENTS Hard Board INFLATABLE BOARD MONSTER SUP RESCUE PADDLE ACCESSORY 4 12 16 17 18 20
[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo
@phykm 218 7 12 [2] [2] [1] ([4] ) 1 Ω = 2 N {Π n =1 A { 1, 1} N n N, A {{ 1, 1}, { 1}, {1}, }} B : Ω { 1, 1} P (Π n =1 A 2 N ) = 2 #{ A={ 1},{1}} X = j=1 B j B X +k X V[X ] = 1 ( ) 1 1 dt dx W (t) = t/dt
1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25
.. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)
v er.1/ c /(21)
12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,
S1501-067中野法人会201b
[ Vol. 201 U R L 3ページに写真説明 h t t p : / / w w w. n a k a n o h o u j i n k a i. o r g 1 中 野 法 人 会 報 201号 新年賀詞交歓会 平成27年1月8日 木 於 中野サンプラザ 宮島副会長 26年度納税功労者の皆様 入賞作品 13階ロビー 乾杯 ご来賓の皆様 横山副会長 謝辞 榎本様 木村副会長 税の川柳コンクール入賞者
¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È
2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26
II
II 2009 1 II Euclid Euclid i 1 1 2 7 3 11 4 18 5 20 6 22 7 26 8 Hausdorff 29 36 1 1 1.1 E n n Euclid E n n R n = {(x 1,..., x n ) x i R} x, y = x 1 y 1 + + x n y n (x, y E n ), x = x, x 1/2 = { (x 1 )
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a
total2010.dvi
Ô ØÖ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÑ Ð Ø ÜØÖ ÔÓÐ Ø ÓÒ ËÓÑÑ Ö º½ ÁÒØ ÖÔÓÐ Ø ÓÒ Ä Ö Ò º º º º º º º º º º º º º º º º º º ¾ º½º½ ÓÖÑÙÐ Ø ÓÒ ÖÝ ÒØÖ ÕÙ º º º º º º º º º º º º º º º º º º º½º¾ ÓÖÑÙÐ Æ ÛØÓÒ º º º º º
P0001-P0003-›ºflÅŠpB5.qxd
Series ll in One! EXH SUP 40up 84kPa 240 5.5mm400g / 2 Z ZX ZR ZQ ZH ZU ZL ZY ZF ZP ZCUK MJ MV EP HEP 985 05 07 0 3 5 0.5mm 0.7mm.0mm.3mm.5mm J K B P3 P5 Q3 Q5 N.C. N.C. N.O. N.O. M30.5 M50.8 M30.5 M50.8
A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ
A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)
ORCA (Online Research Control system Architecture)
ORCA (Online Research Control system Architecture) ORCA Editor Ver.1.2 1 9 10 ORCA EDITOR 10 10 10 Java 10 11 ORCA Editor Setup 11 ORCA Editor 12 15 15 ORCA EDITOR 16 16 16 16 17 17 ORCA EDITOR 18 ORCA
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b
1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?
