² ² ² ²

Size: px
Start display at page:

Download "² ² ² ²"

Transcription

1

2 ² ² ² ²

3 n=44 n =44 n=44 n= % 22.7% 13.6% 27.3% 54.5% 25.0% 59.1% 18.2% 70.5% 15.9% 47.7% 25.0% 60% 40% 20% 0% n= % 27.3% 11.4% 6.8% n=44 9.1% 6.8% n=44 6.8% 2.3% 31.8% 45.5% 52.3% 45.5%

4

5 ²

6 ² ² ²

7

8

9

10 n=44 n =44 n=44 n= % 22.7% 13.6% 27.3% 54.5% 25.0% 59.1% 18.2% 70.5% 15.9% 47.7% 25.0%

11 60% 40% 20% n= % 27.3% 11.4% 6.8% 0% n=44 n =44 n=43 9.1% 6.8% 9.1% 13.6% 9.1% 31.8% 31.8% 36.4% 25.0% 52.3% 40.9% 31.8% n=44 2.3% 6.8% n =44 4.5% 6.8% n= % 29.5% 45.5% 45.5% 54.5% 34.1% 31.8% 27.3%

12

13

14

15

16

17

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

, , ,852, ,872, , % 65.6% 11.4% 17.9% 75.4% 17.7% 6.9% 2

, , ,852, ,872, , % 65.6% 11.4% 17.9% 75.4% 17.7% 6.9% 2 100-0004 1-5-5 2003 1 47,449 149 8,800 12.48 12,852,625.49 11,872,195.49 980,430.00 5.1% 65.6% 11.4% 17.9% 75.4% 17.7% 6.9% 2 08 04 02 22 30 28 27 26 24 10 16 32 56 54 46 42 40 34 64 68 69 70 72 60 3 4

More information

薬局におけるインシデント事例の集計・分析結果

薬局におけるインシデント事例の集計・分析結果 13 11 14 31 13 11 14 31 13 11 14 31 10 13 13 e-mail 18 4,000 13 14 H13.4.1 11.17 11.18 H14.3.31 13 14 31-1- 600 400 (18.4 17.7 17.0 16.0 15.2 8.2 1.0 2 11 10 12 15 3 1015203040 69.5 7.8 22.7 4 (42.5) 34.3

More information

untitled

untitled 1 2 3 4 5 a A b A A DO DH df 90 90 190 190 850 850 1180 a 0.15 0.0008df 0.08 0.76 1180 b 0.25 0.0009df 0.08 1.14 6 B RS-CR1RS-CR3 RS-CV1 RS-CV2 RS-CV3 1 2 3 L H B RS-CR1 RS15 50 16.4 20 RS-CR2 RS25 50

More information

44 16 3 25 1 6 3 16 3 25 01 01 02 03 05 05 06 2 07 10 10 10 11 13 13 14 17 17 17 18 19 19 20 21 A 21 21 23 B 25 25 26 27 27 28 C 28 28 32 35 41 41 44 32 46 49 50 50 50 54 55 56 59 41 65 76 81 96 3 2 97

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R >

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R > 2 2 http://www.ozawa.phys.waseda.ac.jp/inde2.html But nothing s unconditional, The Bravery > (, ( > (, f, g > f (,, > sup f( ( M f(g( (i > g [, lim g( (ii g > (, ( g ( < ( > f(g( (i g < < f(g( g(

More information

FileList Convert a pdf file!

FileList Convert a pdf file! Tamadaigakufuzokuhijirigaokac yugakukoutougakkoupasocom butamadaigakufuzokuhijirigaok acyugakukoutougakkoupasoco mbutamadaigakufuzokuhijiriga 2009 09 20 21 okacyugakukoutougakkoupaso combutamadaigakufuzokuhijiri

More information

Netscreen (2 ) ( ) Software Subscription,ScreenOS 3 3 / 3 ScreenOS ( +ScreenOS ) +ScreenOS ScreenOS FD NetScreen +ScreenOS / ScreenOS

Netscreen (2 ) ( ) Software Subscription,ScreenOS 3 3 / 3 ScreenOS ( +ScreenOS ) +ScreenOS ScreenOS FD NetScreen +ScreenOS / ScreenOS Netscreen ( 0.0 0. ( Software Subscription,ScreenOS / ScreenOS ( +ScreenOS +ScreenOS ScreenOS FD NetScreen +ScreenOS / ScreenOS 0 http://www.hitachi-system.co.jp/netscreen/sp/0_support/view.htm (anetscreen-/xp/xt/gt

More information

TRENDMICRO AppletTrap edoctor INTERSCAN VIRUSWALL Trend Virus Control System VSAPI emanager PC-cillin Interscan emanager MacroTrap ISVW TVCS InterScan

TRENDMICRO AppletTrap edoctor INTERSCAN VIRUSWALL Trend Virus Control System VSAPI emanager PC-cillin Interscan emanager MacroTrap ISVW TVCS InterScan TRENDMICRO AppletTrap edoctor INTERSCAN VIRUSWALL Trend Virus Control System VSAPI emanager PC-cillin Interscan emanager MacroTrap ISVW TVCS InterScan On-Line Scan GateLock ISWM InterScanWebManager InterScan

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c; 21 1 http://www.ozawa.phys.waseda.ac.jp/index2.html ( ) 1. I = [a, b] R γ : I C γ γ(i) z 0 C \ γ(i) (1) ε > 0 φ : I B(z 0 ; ε) C (i) B(z 0 ; ε) γ(i) = (ii) (t, z) I B(z 0 ; ε) exp(φ(t, z)) = γ(t) z (2)

More information

7_matsumoto.indd

7_matsumoto.indd Gengo Kenkyu 142: 143 154 2012 要 旨 2009 native speaker 1960 1970 80 1990 1960 1970 80 1990 * キーワード 1. 2009 ¹ * ¹ 144 2. 1960 1952 145 1 S 1950 1960 1959 1965 2 6 1947 5 1948 4 1949 3000 3 2000 146 3 4

More information

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1 1 1 1.1 G.Cantor (1845 1918) 1874 Unter eines Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten in unserer Anschauung oder unserers Denkens (welche die Elemente von

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

ユニティ[01-24].indd

ユニティ[01-24].indd 7 8 16 2 7 3 4 5 6 7 8 9 10 11 12 12 13 13 14 15 16 17 18 住宅の新築 購入 リフォーム資金 他金融機関等の 借換資金 教育ローン マイカーローンなど 各種ローンのご相談も承ります マイホーム資金は JAいずも におまかせください 夢広がる家づくり 応援いたします ቛ 住宅ローン相談会 お近くの会場へお出かけください なお 最寄りの支店にて事前のご予約を承っております

More information

AC-A-C1-F1.indd

AC-A-C1-F1.indd F40-40mm 50% 360 46% 0.5MPa 0.3MPa 500L/minN 20-02- 20-02- 20-02 F40-2 New 20-02- 20-02 New New New New F40 75mm 35mm F..L. CT.S40-56 Series New New ohs Series 360 W0 W0- F FM 90g FD W 360g F40- F40 450g

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

<5030312D3234955C8E8697A0955C8E862E6169>

<5030312D3234955C8E8697A0955C8E862E6169> 2-16-2 Kugenumakaigan Fujisawa Kanagawa Japan PH:0466-36-9062 FAX:0466-36-2519 www.c4waterman.jp PRODUCT CATALOG CONTENTS Hard Board INFLATABLE BOARD MONSTER SUP RESCUE PADDLE ACCESSORY 4 12 16 17 18 20

More information

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo @phykm 218 7 12 [2] [2] [1] ([4] ) 1 Ω = 2 N {Π n =1 A { 1, 1} N n N, A {{ 1, 1}, { 1}, {1}, }} B : Ω { 1, 1} P (Π n =1 A 2 N ) = 2 #{ A={ 1},{1}} X = j=1 B j B X +k X V[X ] = 1 ( ) 1 1 dt dx W (t) = t/dt

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

S1501-067中野法人会201b

S1501-067中野法人会201b [ Vol. 201 U R L 3ページに写真説明 h t t p : / / w w w. n a k a n o h o u j i n k a i. o r g 1 中 野 法 人 会 報 201号 新年賀詞交歓会 平成27年1月8日 木 於 中野サンプラザ 宮島副会長 26年度納税功労者の皆様 入賞作品 13階ロビー 乾杯 ご来賓の皆様 横山副会長 謝辞 榎本様 木村副会長 税の川柳コンクール入賞者

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

II

II II 2009 1 II Euclid Euclid i 1 1 2 7 3 11 4 18 5 20 6 22 7 26 8 Hausdorff 29 36 1 1 1.1 E n n Euclid E n n R n = {(x 1,..., x n ) x i R} x, y = x 1 y 1 + + x n y n (x, y E n ), x = x, x 1/2 = { (x 1 )

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

total2010.dvi

total2010.dvi Ô ØÖ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÑ Ð Ø ÜØÖ ÔÓÐ Ø ÓÒ ËÓÑÑ Ö º½ ÁÒØ ÖÔÓÐ Ø ÓÒ Ä Ö Ò º º º º º º º º º º º º º º º º º º ¾ º½º½ ÓÖÑÙÐ Ø ÓÒ ÖÝ ÒØÖ ÕÙ º º º º º º º º º º º º º º º º º º º½º¾ ÓÖÑÙÐ Æ ÛØÓÒ º º º º º

More information

P0001-P0003-›ºflÅŠpB5.qxd

P0001-P0003-›ºflÅŠpB5.qxd Series ll in One! EXH SUP 40up 84kPa 240 5.5mm400g / 2 Z ZX ZR ZQ ZH ZU ZL ZY ZF ZP ZCUK MJ MV EP HEP 985 05 07 0 3 5 0.5mm 0.7mm.0mm.3mm.5mm J K B P3 P5 Q3 Q5 N.C. N.C. N.O. N.O. M30.5 M50.8 M30.5 M50.8

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

ORCA (Online Research Control system Architecture)

ORCA (Online Research Control system Architecture) ORCA (Online Research Control system Architecture) ORCA Editor Ver.1.2 1 9 10 ORCA EDITOR 10 10 10 Java 10 11 ORCA Editor Setup 11 ORCA Editor 12 15 15 ORCA EDITOR 16 16 16 16 17 17 ORCA EDITOR 18 ORCA

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information