II

Size: px
Start display at page:

Download "II"

Transcription

1 II

2 II Euclid Euclid

3 i Hausdorff 29 36

4 E n n Euclid E n n R n = {(x 1,..., x n ) x i R} x, y = x 1 y x n y n (x, y E n ), x = x, x 1/2 = { (x 1 ) (x n ) 2} 1/2 (x E n ) 1.2 x 1,..., x k E n λ 1,..., λ k R λ 1 x λ k x k x 1,..., x k A E n A lina A lina A lina { } lina = λ i x i λ i R, x i A k lina ={λx λ R, x A} {λ 1 x 1 + λ 2 x 2 λ 1, λ 2 R, x 1, x 2 A} { 3 } λ i x i λ i R, x i A = k N { } λ i x i λ i R, x i A. { } λ i x i λ i R, x i A k=1 k λ i x i A lina

5 x 1,..., x k E n λ 1 x λ k x k = 0, λ i R λ 1 = = λ k = 0 x 1,..., x k 1.4 E n V x, y V x + y V, α R, x V αx V E n V x 1,..., x k lin{x 1,..., x k } = V x 1,..., x k V k V dim V = k V 1.5 V E m W E n f : V W f(x + y) = f(x) + f(y) (x, y E m ), f(αx) = αf(x) (α R, x R). 1.6 x 1,..., x k E n λ λ k = 1 λ 1,..., λ k R λ 1 x λ k x k x 1,..., x k A E n A affa A 0 0 lin{0} = {0} 0 x E n llin{x} 1 x E n aff{x} 1 x {x} x 0 x 1, x 2 E n lin{x 1, x 2 } 2 λ 1 + λ 2 = 1 λ 1, λ R λ 2 = 1 λ 1 λ 1 x 1 + λ 2 x 2 = λ 1 x 1 + (1 λ 1 )x 2 = λ 1 (x 1 x 2 ) + x 2.

6 3 λ 1 R aff{x 1, x 2 } x 1 x 2 x 1, x 2 x 1, x 2 x 1, x k 2 x 1,..., x k E n x 1,..., x k 1.8 E n k 2 x 1,..., x k E n x 1,..., x k x 1,..., x k x 1, x 2 x 1 x 2 x 1, x 2 2 x 1, x 2 2 x 1, x 2, x 3 x 1 x 2 x 3 x 1, x 2 2 x 1, x 3 2 x 1, x 2, x 3 2 x 1 x 2, x 3 x 1 x 2, x 3 x 1, x 2, x 3 2 x 1, x 2, x 3 3 x 1, x 2, x 3 3 x 1, x 2, x 3, x 4 x 1, x 2, x 3, x k 2 x 1,..., x k E n (1) x 1,..., x k (2) λ i R λ 1 x 1 + +λ k x k = 0, λ 1 + +λ k = 0 λ 1,..., λ k = 0 (3) x 2 x 1,..., x k x 1 (4) τ : E n E n R τ(x) = (x, 1) τ(x 1 ),..., τ(x k )

7 4 1. (1) (2) x 1,..., x k x k x 1,..., x k 1 k 1 x k = µ i x i, k 1 µ i = 1 µ 1,..., µ k k 1 µ i x i x k = 0, k 1 µ i 1 = 0 λ 1 = µ 1,..., λ k 1 = µ k 1, λ k = 1 (2) λ i x i = 0 λ i = 0 0 λ i R λ k 0 x k = k 1 λ i λ k x i, k 1 λ i λ k = 1 x k x 1,..., x k 1 x 1,..., x k (1) (2) (2) (4) τ(x 1 ),..., τ(x k ) λ 1 τ(x 1 ) + + λ k τ(x k ) = 0 (λ i R) τ (λ 1 x λ k x k, λ λ k ) = (0, 0) E n R (2) λ 1 = = λ k = 0. τ(x 1 ),..., τ(x k ) (4) (3) x 2 x 1,..., x k x 1 λ 2 (x 2 x 1 ) + + λ k (x k x 1 ) = 0 (λ i R) x 1,..., x k ( λ 2 λ k )x 1 + λ 2 x λ k x k = 0

8 5 λ 1 = λ 2 λ k λ 1 τ(x 1 ) + + λ k τ(x k ) =(λ 1 x λ k x k, λ λ k ) = (0, 0). (4) λ 1 = = λ k = 0 x 2 x 1,..., x k x 1 (3) (2) (2) λ 1 x λ k x k = 0, λ λ k = 0 2 λ 1 = λ 2 λ k ( λ 2 λ k )x 1 + λ 2 x λ k x k = 0 λ 2 (x 2 x 1 ) + + λ k (x k x 1 ) = 0 (3) λ 2 = = λ k = 0 λ V E n x i V λ i R λ 1 x λ k x k V 1.11 E n A x i V λ λ k = 1 λ i R λ 1 x λ k x k A 1.12 A E n x 0 A A x 0 = {x x 0 x A} E n A x 0 x 0 A dim A = dim(a x 0 )

9 6 1. u, v A x 0 x, y A u = x x 0, v = y x 0 u + v = x x 0 + y x 0 = (x + y x 0 ) x 0 x + y x 0 x, y, x 0 A A A u + v A x 0 λ R λu = λ(x x 0 ) = λx + (1 λ)x 0 x 0 λx + (1 λ)x 0 x, x 0 A A λu A x 0 A x 0 y 0 A u A x 0 x A u = x x 0 u = x x 0 + y 0 y 0 x x 0 + y 0 x, x 0, y 0 A A u A y 0 A x 0 A y 0 A y 0 A x 0 A x 0 = A y 0 A x 0 x 0 A 1.13 V E m W E n f : V W x i V λ i R f(λ 1 x λ k x k ) = λ 1 f(x 1 ) + + λ k f(x k ) 1.14 A E m S E n f : A B x i A λ λ k = 1 λ i R f(λ 1 x λ k x k ) = λ 1 f(x 1 ) + + λ k f(x k )

10 A E m S E n f : A B x 0 A f l (u) = f(u + x 0 ) f(x 0 ) (u A x 0 ) f l : A x 0 B f(x 0 ) f l x 0 A u, v A x 0 x, y A u = x x 0, v = y x 0 λ R f l (u + v) =f(u + v + x 0 ) f(x 0 ) = f(x + y x 0 ) f(x 0 ) (x + y x 0 x, y, x 0 ) =f(x) + f(y) f(x 0 ) f(x 0 ) =f l (u) + f l (v). f l (λu) =f(λu + x 0 ) f(x 0 ) = f(λ(x x 0 ) + x 0 ) f(x 0 ) =f(λx + (1 λ)x 0 ) f(x 0 ) (λx + (1 λ)x 0 x, x 0 A ) =λf(x) + (1 λ)f(x 0 ) f(x 0 ) = λ(f(x) f(x 0 )) =λf l (u). f l : A x 0 B f(x 0 ) x 0 A u A x 0 x A u = x x 0 f(u + y 0 ) f(y 0 ) =f(x x 0 + y 0 ) f(y 0 ) (x x 0 + y 0 x, x 0, y 0 A ) =f(x) f(x 0 ) + f(y 0 ) f(y 0 ) = f(u + x 0 ) f(x 0 ). f l x 0 A 2 E n E n d d(x, y) = x y (x, y E n ). d

11 8 2. (1) x, y E n d(x, y) 0 d(x, y) = 0 x = y (2) x, y E n d(x, y) = d(y, x) (3) x, y, z E n d(x, z) d(x, y) + d(y, z). d(x, y) x, y E n d (1) (3) (1) (3) d 2.1 X d : X X R d X (X, d) (1) x, y X d(x, y) 0 d(x, y) = 0 x = y (2) x, y X d(x, y) = d(y, x) (3) x, y, z X d(x, z) d(x, y) + d(y, z). z X ρ > 0 B(z, ρ) = {x X d(z, x) ρ}, B 0 (z, ρ) = {x X d(z, x) < ρ} z ρ B(z, ρ) B 0 (z, ρ) d E n (E n, d) E n 2.2 (X, d) O X O X z O ρ > 0 B(z, ρ) O C X C 2.3 (X, d) O C O

12 9 (1) X O O (2) O 1, O 2 O O 1 O 2 O (3) O (O λ ) λ Λ λ Λ O λ O C (1) X C C (2) C 1, C 2 C C 1 C 2 C (3) C (C λ ) λ Λ C λ C λ Λ 2.4 (X, d) A A A inta A A cla inta A cla cla inta A bda A E n relinta, relbda (X, d) A 2.2 inta = O, cla = C. O A,O O A C,C C 2.5 (X, d) f f x 0 X ɛ > 0 δ > 0 x X, d(x, x 0 ) δ f(x) f(x 0 ) ɛ f X f R x y x, y (X, d) (X, d ) F F x 0 X ɛ > 0 δ > 0 x X, d(x, x 0 ) δ d (F (x), F (x 0 )) ɛ F X F

13 (X, d) (X, d ) F X O F 1 (O ) X (X, d) (X, d ) F F ɛ > 0 δ > 0 x, y X, d(x, y) δ d (F (x), F (y)) ɛ ɛ δ X L 0 F F L-Lipschitz x, y X d (F (x), F (y)) Ld(x, y). L 0 L-Lipschitz Lipschitz Lipschitz x x 2 [0, ) [0, ) x x 1/2 Lipschitz 2.8 (X, d) A A X (O λ ) λ Λ A λ Λ O λ Λ λ 1, λ 2,..., λ k Λ A k O λi 2.9 (Heine-Borel) E n A A A

14 11 3 x, y E n [x, y] = {(1 λ)x + λy 0 λ 1} [x, y) = {(1 λ)x + λy 0 λ < 1} A, B E n λ R A + B = {a + b a A, b B}, λa = {λa a A} A + B λa ( 1)A A A + ( B) A B x E n A + {x} A + x 3.1 A E n x, y A [x, y] A 3.2 f : E m E n x, y E m 0 λ 1 (1 λ)f(x) + λf(y) = f((1 λ)x + λy) [f(x), f(y)] = f([x, y]) 3.3 A, B A + B λ R λa A λ E n (λ Λ) x, y λ Λ A λ λ Λ x, y A λ [x, y] A λ [x, y] λ Λ A λ λ Λ A λ f : E m E n A E m u, v f(a) E n x, y A u = f(x), v = f(y) 3.2 [u, v] = [f(x), f(y)] = f([x, y]) f(a) f(a) B E n x, y f 1 (B) f(x), f(y) B 3.2 f([x, y]) = [f(x), f(y)] B [x, y] f 1 (B) f 1 (B)

15 12 3. A B E n E n = E 2n (a 1, b 1 ), (a 2, b 2 ) 0 λ 1 (1 λ)(a 1, b 1 ) + λ(a 2, b 2 ) = ((1 λ)a 1 + λa 2, (1 λ)b 1 + λb 2 ) [a 1, a 2 ] [b 1, b 2 ] [(a 1, b 1 ), (a 2, b 2 )] [a 1, a 2 ] [b 1, b 2 ] A B A B f : E n E n E n ; (x, y) x + y f f f A + B = f(a B) A + B 3.4 A E n λ, µ > 0 (λ + µ)a λa + µa A (λ + µ)a = λa + µa x (λ + µ)a x = (λ + µ)a a A x = (λ + µ)a = λa + µa λa + µa (λ + µ)a λa + µa A x λa + µa a, b A x = λa + µb λ, µ > 0 ( λ x = (λ + µ) λ + µ a + µ ) λ + µ b (λ + µ)a (λ + µ)a = λa + µa 3.5 x 1,..., x k E n λ 1,..., λ k R x = λ i x i (λ i 0 (i = 1,..., k)), λ i = 1 x 1,..., x k A E n A conva A 3.6 A E n conva = A A E n conva = {K K, A K} A, B E n conv(a + B) = conva + convb

16 13 A A conva A k A k k = 1 A A k 1 A A k A A x 1,..., x k A λ 1 + +λ k = 1 λ 1,..., λ k 0 x = λ 1 x λ k x k λ k = 1 x = x k A λ k < 1 k 1 λ i x = (1 λ k ) x i + λ k x k 1 λ k k 1 λ i 1 λ k = 1, k 1 λ i 1 λ k 0 λ i 1 λ k x i A. x x A A A conva A conva = A A E n conva x, y conva A ) l l x = λ i a i, y = µ j b j (a i, b j A, λ i, µ j 0, λ i = µ j = 1 j=1 0 λ 1 j=1 l (1 λ)x + λy = (1 λ) λ i a i + λ µ j b j = j=1 l (1 λ)λ i a i + λµ j b j j=1 (1 λ)λ i 0, λµ j 0, l (1 λ)λ i + λµ j = (1 λ) + λ = 1 j=1 (1 λ)x + λy A (1 λ)x + λy conva conva D(A) = {K K, A K}

17 14 3. A conva conva D(A) conva A K K conva convk = K conva D(A) conva = D(A) = {K K, A K} A, B E n x conv(a + B) ( x = λ i (a i + b i ) a i A, b i B, λ i 0, ) λ i = 1 x = λ i a i + λ i b i conva + convb conv(a + B) conva + convb x conva + convb ) l l x = λ i a i + µ j b j (a i A, b j B, λ i, µ j 0, λ i = µ j = 1 j=1 j=1 l λ i µ j (a i + b j ) = j=1 = l l λ i µ j a i + λ i µ j b j j=1 λ i a i + j=1 j=1 l µ j b j = x l λ i µ j = j=1 λ i l µ j = 1 λ i µ j 0 x A+B a i +b j x conv(a+b) conva + convb conv(a + B) j=1 conv(a + B) = conva + convb 3.7 k + 1 k k + 1

18 A E n x inta y cla [x, y) inta 0 < λ < 1 z = (1 λ)y + λx x inta ρ > 0 B(x, ρ) A y A B(z, λρ) A w B(z, λρ) w = (w z) + z = (w z) + (1 λ)y + λx = (1 λ)y + λ (x + 1λ ) (w z) 1 (w z) λ = 1 w z ρ λ x + 1 (w z) B(z, λρ) A. λ A w A B(z, λρ) A z inta [x, y) inta y cla V = B(y, λρ/(1 λ)) y cla A V a A V z = (1 λ)y + λx = (1 λ)(y + (a y)) + λx (1 λ)(a y) ( = (1 λ)a + λ x 1 λ ) (a y) λ 1 λ (a y) λ = 1 λ a y ρ λ x 1 λ (a y) B(x, ρ) A. λ A z A [x, y) A [x, y) inta y 1 [x, y) y 1 y y 2 [x, y) [x, y 1 ) [x, y 2 ) [x, y) A y 2 A [x, y 2 ) inta y 1 inta [x, y) inta 3.9 λ 1,..., λ k B(x 1, ρ 1 ),..., B(x k, ρ k ) ( ) λ i B(x i, ρ i ) = B λ i x i, λ i ρ i.

19 16 3. x E n ρ 0 B(x, ρ) = B(0, ρ) + x. λ R λb(x, ρ) = λ(b(0, ρ) + x) = B(0, λ ρ) + λx. ( ) λ i B(x i, ρ i ) = (B(0, λ i ρ i ) + λ i x i ) = B 0, λ i ρ i + ( = B λ i x i, ) λ i ρ i. λ i x i 3.10 A E n cla = ɛ>0(a + B(0, ɛ)) x cla ɛ > 0 B(x, ɛ) A y B(x, ɛ) A x B(y, ɛ) y A x B(y, ɛ) = y + B(0, ɛ) A + B(0, ɛ). ɛ > 0 x A + B(0, ɛ) cla ɛ>0(a + B(0, ɛ)) x ɛ>0(a + B(0, ɛ)) ɛ > 0 x A + B(0, ɛ) y A x y + B(0, ɛ) = B(y, ɛ) y B(x, ɛ) A B(x, ɛ) A x cla (A + B(0, ɛ)) cla ɛ> A E n inta cla A conva

20 x, y inta [x, y] inta inta 3.10 cla = ɛ>0(a + B(0, ɛ)) A x conva ) x = λ i x i (λ i > 0, λ i = 1, x i A A x i ρ i > 0 B(x i, ρ i ) A 3.9 ( ) B λ i x i, λ i ρ i = λ i B(x i, ρ i ) conva conva 3.12 A E n (1) relinta = relint cla, (2) cla = cl relinta, (3) relbda = relbd cla = relbd relinta. affa A E n inta relinta = inta, relbda = bda (1) A cla inta int cla x int cla x y inta y x x int cla z z cla 3.8 [y, z) inta x [y, z) x inta int cla inta inta = int cla (2) inta A cl inta cla x cla x y inta 3.8 [y, x) inta x cl inta cla cl inta cla = cl inta (3) (1) (2) bd cla = cl cla \ int cla = cla \ inta = bda. bd inta = cl inta \ int inta = cla \ inta = bda E n E n K n

21 A E n 4.1 x E n x z x y (y A) z A ρ > 0 B(x, ρ) A B(x, ρ) A y x y y 0 B(x, ρ) A y A x y 0 x y y 1 A y A x y 1 x y y 0 y 1 A y x y x y 0 = x y 1 z = (y 0 + y 1 )/2 A z A y 0 y 1 z xy 0 y 1 x z < x y 0 y 0 A z x A z = p(a, x) x E n \ A x p(a, x) = d(a, x) u(a, x) = x p(a, x) d(a, x) p(a, x) x R(A, x) = {p(a, x) + λu(a, x) λ 0} p(a, x) u(a, x) 4.3 x E n \ A y R(A, x) p(a, x) = p(a, y) p(a, y) p(a, x) y = p(a, x) y A p(a, y) = y = p(a, x) y R(A, x) \ {p(a, x)} y [x, p(a, x)) p(a, y) p(a, x) A 4.1 y p(a, y) < y p(a, x) x p(a, y) x y + y p(a, y) < x y + y p(a, x) = x p(a, x) p(a, x) x [y, p(a, x)) [p(a, x), p(a, y)] q [x, q] [y, p(a, y)] x q x p(a, x) = y p(a, y) y p(a, x) < 1 x q < x p(a, x) p(a, x) p(a, y) = p(a, x)

22 Lipschitz p(a, x) p(a, y) x y (x, y E n ). v = p(a, x) p(a, y) v 0 ( ) x p(a, x), v 0 x p(a, x), v < 0 x A R(A, x) x p(a, x), v < 0 p(a, y) v R(A, x) z z p(a, y) v z p(a, y) = z p(a, x) 2 v 2 < z p(a, x). z R(A, x) 4.3 p(a, x) = p(a, z) z p(a, y) < z p(a, z) p(a, z) ( ) ( ) x y y p(a, y), p(a, y) p(a, x) 0 y p(a, y), v 0 ( ) p(a, x), p(a, y) [x, y] p(a, x), p(a, y) p(a, x) p(a, y) x y 4.5 S A p(a, S) = bda S A p(a, S) bda bda p(a, S) x bda i N x x i < 1/i A S x i 4.4 x p(a, x i ) = p(a, x) p(a, x i ) x x i < 1/i. R(A, x i ) S y i 4.3 p(a, y i ) = p(a, x i ) x p(a, y i ) < 1/i (y i ) i N S y S (y ij ) j N 4.4 p(a, ) x = lim j p(a, y ij ) = p(a, lim j y ij ) = p(a, y) p(a, S). bda p(a, S) p(a, S) = bda

23 E n u E n \ {0} α R H u,α = {x E n x, u = α} H u,α H u,α = {x E n x, u α}, H + u,α = {x E n x, u α}. 5.1 H E n H +, H A E n x A x A H A H + A H H x A H A x A H A H A H = H u,α A A Hu,α H u,α A u H u,α Hu,α H x A u A x 5.2 A E n x E n \ A p(a, x) u(a, x) A p(a, x) u(a, x) H p(a, x) H A H x H A H y A y H [p(a, x), y] x z y H y, u(a, x) > p(a, x), u(a, x) y p(a, x), u(a, x) > 0 z p(a, x) x z < x p(a, x) [p(a, x), y] A z A p(a, x) y A A H H A 5.3 A E n A A A u E n \ {0} u A x bda A 4.5 x = p(a, y) y E n \ A 5.2 x y x x A A A B(x, 1) x x A B(x, 1) H H x A B(x, 1) A H z A \ H z, x A

24 21 [z, x] A z H x H = bdh [z, x) H [z, x) B(x, 1) A B(x, 1) H A H H x A A u E n \ {0} A x A x, u = sup{ y, u y A} {y E n y, u = x, u } u A 5.4 A, B E n H u,α E n A Hu,α B H u,α + A H+ u,α B H u,α H A B A inthu,α B inth+ u,α A inth u,α + B inth u,α H A B ɛ > 0 H u,α ɛ H u,α+ɛ A B H A B A x A {x} 5.5 A E n x E n \ A A x A A x A 5.2 p(a, x) u(a, x) A A x [p(a, x), x] (p(a, x) + x)/2 A x A x cla cla x A x x cla x A x bda 3.12 bda = bd cla x bd cla 3.11 cla 5.3 x cla cla x A x 5.6 E n A E n A S(A) A A A S(A) A x 5.5 A x A x S(A) A = S(A)

25 R = R {, } ± λ R + = λ + = + λ =, = λ + ( ) = λ = + λ =, (λ > 0), λ = λ = 0 (λ = 0), (λ < 0). 6.1 f : E n R f 1 ( ) = f 1 ( ) E n f((1 λ)x + λy) (1 λ)f(x) + λf(y) (x, y E n, 0 λ 1) f D E n f : D R { f(x) (x D) f(x) = (x E n \ D) f f f f 6.2 III III III III III 6.3 u E n α R f(x) = u, x + α f((1 λ)x + λy) = u, (1 λ)x + λy + α = (1 λ)( u, x + α) + λ( u, y + α) = (1 λ)f(x) + λf(y) 6.4 (Jensen ) f : E n R x 1,..., x k E n λ λ k = 1 λ 1,..., λ k [0, 1] f(λ 1 x λ k x k ) λ 1 f(x 1 ) + + λ k f(x k ) Jensen

26 23 k k = 1 λ 1 = 1 k = 2 k 1 k λ k = 1 λ k < 1 ( ) k 1 λ i f(λ 1 x λ k x k ) = f (1 λ k ) x i + λ k x k 1 λ k ( k 1 ) λ i (1 λ k )f x i + λ k f(x k ) 1 λ k 6.5 f : E n R k 1 λ i (1 λ k ) f(x i ) + λ k f(x k ) 1 λ k = λ 1 f(x 1 ) + + λ k f(x k ). domf = f 1 ((, )) f domf epif = {(x, ζ) E n R f(x) ζ} f epif A E n { 0 (x A) I A (x) = (x E n \ A) A I A 6.6 f : E n R f domf α R f 1 ((, α)) f 1 ((, α]) epif A E n I A x, y domf 0 λ 1 f((1 λ)x + λy) (1 λ)f(x) + λf(y) < (1 λ)x + λy domf domf x, y f 1 ((, α)) 0 λ 1 f((1 λ)x + λy) (1 λ)f(x) + λf(y) < (1 λ)α + λα = α

27 24 6. (1 λ)x + λy f 1 ((, α)) f 1 ((, α)) f 1 ((, α]) (x, ζ), (y, η) epif 0 λ 1 (1 λ)(x, ζ) + λ(y, η) = ((1 λ)x + λy, (1 λ)ζ + λη) f((1 λ)x + λy) (1 λ)f(x) + λf(y) (1 λ)ζ + λη (1 λ)(x, ζ) + λ(y, η) epif epif A E n I A 0 λ 1 x, y A (1 λ)x + λy A I A ((1 λ)x + λy) = 0 = (1 λ)i A (x) + λi A (y). x A y E n \ A 0 < λ λ = 0 x, y E n \ A (1 λ)i A (x) + λi A (y) = I A ((1 λ)x + λy). (1 λ)i A (x) + λi A (y) = I A (x) = I A ((1 λ)x + λy). (1 λ)i A (x) + λi A (y) = I A ((1 λ)x + λy). I A 6.7 f : E n R int domf int domf f Lipschitz x 0 int domf f x 0 ints S int domf S x 0 ints B(x 0, ρ) S ρ > 0 S x 1,..., x n+1 x S ) n+1 n+1 x = λ i x i (λ i 0, λ i = 1 c = max{f(x 1 ),..., f(x n+1 )} Jensen ( 6.4) n+1 f(x) λ i f(x i ) c.

28 25 B(x 0, ρ) y α [0, 1] u = ρ u y = x 0 +αu y x 0 x 0 + u y = (1 α)x 0 + α(x 0 + u) f(y) (1 α)f(x 0 ) + αf(x 0 + u) x 0 + u S 0 α f(y) f(x 0 ) α(f(x 0 + u) f(x 0 )) α(c f(x 0 )). x 0 y x 0 u x 0 = (1 λ)y + λ(x 0 u) x 0 = (1 λ)(x 0 + αu) + λ(x 0 u) = (1 λ)x 0 + (1 λ)αu + λx 0 λu = x 0 + (α λα λ)u = x 0 + (α λ(1 + α))u λ = α/(1 + α) 1 + α x 0 = α y + α 1 + α (x 0 u) f(x 0 ) α f(y) + α 1 + α f(x 0 u) (1 + α)f(x 0 ) f(y) + αf(x 0 u). f(x 0 ) f(y) α(f(x 0 u) f(x 0 )) α(c f(x 0 )). f(y) f(x 0 ) α(c f(x 0 )). y x 0 = αu = αρ α = y x 0 /ρ f(y) f(x 0 ) 1 ρ (c f(x 0)) y x 0 (y B(x 0, ρ)) f x 0 f int domf C int domf f Lipschitz C ρ > 0 C ρ = C + B(0, ρ)

29 26 7. int domf C ρ f C ρ a x, y C (x y) z = y + ρ (y x) y x z C ρ y x z y = (1 λ)x + λz ( y = (1 λ)x + λ y + ρ ) (y x) y x ( y x + ρ = (1 λ)x + λ y ρ ) y x y x x (1 λ) y x λ y x + ρ = x + λ y y x y x y x λ( y x + ρ) y x + ρ = x + λ y. y x y x λ = y = (1 λ)x + λz y x y x + ρ f(y) (1 λ)f(x) + λf(z) y x f(y) f(x) λ(f(z) f(x)) = (f(z) f(x)) y x + ρ y x y x + ρ 2a 2a y x ρ x = y x, y C f(y) f(x) 2a ρ y x C f Lipschitz K E n K h(k, ) = h K h(k, u) = sup{ x, u x K} (u E n )

30 27 u domh(k, ) \ {0} H(K, u) = {x E n x, u = h(k, u)}, H (K, u) = {x E n x, u h(k, u)} H(K, u) K H (K, u) K 7.2 K E n h(k + t, u) = h(k, u) + t, u (t, u E n ), h(k, λu) = h(λk, u) = λh(k, u) (λ 0, u E n ), h(k, u + v) h(k, u) + h(k, v) (u, v E n ) K E n h(k, ) int domh K L E n h K h L K L h(k + t, u) = sup{ x + t, u x K} = sup{ x, u + t, u x K} = h(k, u) + t, u, h(k, λu) = sup{ x, λu x K} = sup{λ x, u x K} = λh(k, u), h(λk, u) = sup{ λx, u x K} = sup{λ x, u x K} = λh(k, u), h(k, u + v) = sup{ x, u + v x K} 0 λ 1 = sup{ x, u + x, v x K} sup{ x, u x K} + sup{ x, v x K} = h(k, u) + h(k, v). h(k, (1 λ)u + λv) h(k, (1 λ)u) + h(k, λv) = (1 λ)h(k, u) + λh(k, v) h(k, ) 6.7 h(k, ) int domh K

31 28 7. K L h K (u) = sup{ x, u x K} sup{ x, u x L} = h L (u) u E n h K (u) h L (u) K L 5.6 K L 7.3 K, L K n 3.3 K + L K n Minkowski K n f f(k + L) = f(k) + f(l) (K, L K n ) f Minkowski 7.4 K, L K n h(k + L, ) = h(k, ) + h(l, ). 0 0 E n \ {0} K, L u E n \{0} x K h(k, u) = x, u y L h(l, u) = y, u h(k, u) + h(l, u) = x + y, u h(k + L, u) z K + L z = x + y x K y L z, u = x, u + y, u h(k, u) + h(l, u) h(k + L, u) h(k, u) + h(l, u) h(k + L, u) = h(k, u) + h(l, u) (u E n ). 7.5 (K n, +) {0} K, L, M K n λ, µ 0 (1) K + M = L + M K = L, (2) λ(k + L) = λk + λl, (3) (λ + µ)k = λk + µk, (4) λ(µk) = (λµ)k, (5) 1K = K.

32 29 (1) K + M = L + M h(k, ) + h(m, ) = h(k + M, ) = h(l + M, ) = h(l, ) + h(m, ) h(k, ) = h(l, ) K L 5.6 K = L (2) (4) (5) (3) 7.2 (1) h((λ + µ)k, ) = (λ + µ)h(k, ) = λh(k, ) + µh(k, ) = h(λk, ) + h(µk, ) = h(λk + µk, ) (λ + µ)k = λk + µk 8 Hausdorff 8.1 E n C n K, L C n δ(k, L) = max{sup{d(x, L) x K}, sup{d(x, K) x L}} Hausdorff 8.2 K, L C n δ(k, L) = min{λ 0 K L + λb n, L K + λb n } δ C n α = min{λ 0 K L + λb n, L K + λb n } x K x L + αb n y L b B n x = y + αb x y = αb α d(x, L) α x K sup{d(x, L) x K} α. L K sup{d(x, K) x L} α. δ(k, L) α 0 < λ < α λ K L + λb n L K + λb n K L + λb n x K x L + λb n y L x y > λ d(x, L) λ δ(k, L) λ L K + λb n δ(k, L) λ 0 < λ < α λ δ(k, L) λ δ(k, L) α δ(k, L) = α

33 30 8. Hausdorff δ K, L C n δ(k, L) = δ(l, K) 0 x K d(x, K) = 0 δ(k, K) = 0 δ(k, L) = 0 x K d(x, L) = 0 x L x L d(x, K) = 0 x K K = L K, L, M C n δ(k, L) = α, δ(l, M) = β K L + αb n L M + βb n K M + αb n + βb n = M + (α + β)b n δ(k, M) α + β = δ(k, L) + δ(l, M). 8.3 (K i ) i N C n i N K i+1 K i C n Hausdorff (K i ) i N K = K i K lim K i K ɛ > 0 m N i δ(k m, K) > ɛ K m K + ɛb n A m = K m \int(k +ɛb n ) A m A = A m m N m=1 A m int(k + ɛb n ) = A int(k + ɛb n ) = A K = A m K m A K A lim i K i = K 8.4 (C n, δ) (K i ) i N C n Cauchy (K i ) i N R > 0 δ(k 1, K i ) R K i K 1 +RB n ( ) i N K i A m = cl K i C n 8.3 lim m A m = A := m=1 i=m A m ɛ > 0 n 0 N m n 0 δ(a, A m ) ɛ

34 31 A m A + ɛb n i n 0 K i A + ɛb n (K i ) i N Cauchy n 1 n 0 i, j n 1 K j K i + ɛb n i, m n 1 K j K i + ɛb n K i + ɛb n A m K i + ɛb n A i n 1 A K i + ɛb n i n 1 δ(k i, A) ɛ K i A (C n, δ) 8.5 C n (Ki 0 ) i N C n i Ki 0 En C γ m N C 2 m C 2 m γ 2 mn K C n K A m (K) (Ki 0 ) i N (Ki 1 ) i N A 1 (Ki 1 ) = T 1 i N (Ki 1 ) i N (Ki 2 ) i N A 2 (Ki 2 ) = T 2 i N m N (Ki m ) i N ( ) A m (Ki m ) = T m (i N) ( ) j=m k < m (K m i ) i N (K k i ) i N ( ) i, j N A m (Ki m ) = A m (Kj m ) = T m T m Ki m Kj m K i m Kj m + 2 m nγb n i, j, m N δ(ki m, Kj m ) 2 m nγ ( ) i, j N k m δ(ki m, Kj k ) 2 m nγ K m = Km m (K m) m N (Ki 0 ) i N δ(k m, K k ) 2 m nγ (k m). (K m ) m N Cauchy K n C n (K n, δ) C n \K n K C n \K n K x, y K 0 < λ < 1 z = (1 λ)x + λy K K ɛ > 0 B(z, ɛ) K = C n K ɛ/2 K K C n δ(k, K ) < ɛ/2 x, y K d(x, K ) < ɛ/2, d(y, K ) < ɛ/2 x x < ɛ/2, y y < ɛ/2 x, y K z = (1 λ)x + λy z z = (1 λ)(x x) + λ(y y) (1 λ) x x + λ y y < ɛ/2.

35 32 8. Hausdorff z K δ(k, K ) < ɛ/2 w z < ɛ/2 w K w z w z + z w < ɛ B(z, ɛ) K = z K K K ɛ/2 C n \ K n C n \ K n K n C n 8.4 C n K n 8.7 E n K n C n K n 8.8 K i, K K n lim i K i = K (1) (2) (1) K i N x i K i (x i ) i N (2) j N x ij K ij (i j ) j N (x ij ) j N (x ij ) j N K lim K i = K lim δ(k, K i ) = 0 i i K x x i = p(k i, x) x i K i x x i = d(x, K i ) δ(k, K i ) x i i x (1) j N x ij K ij (i j ) j N (x ij ) j N x = lim x ij K K j ρ > 0 B(x, ρ) (K + ρb n ) = x = lim x ij j j x ij x < ρ lim δ(k, K i ) = 0 i j δ(k ij, K) < ρ x ij K ij K + ρb n x ij B(x, ρ) (K + ρb n ) x K (2) (1) (2) ɛ > 0 ( ) ( ) i K K i + ɛb n i K i K + ɛb n lim i K i = K ( ) (k j ) K K kj + ɛb n y kj K y kj (K kj + ɛb n ) y kj y kj d(y kj, K kj ) ɛ K (y kj ) y ij y ij i y y K y (1) x i K i x i i y y ij x ij

36 33 j y x ij y ij 0 x ij K ij d(y kj, K kj ) ɛ ( ) ( ) (i j ) K ij K + ɛb n y ij K ij y ij K + ɛb n y ij (1) K K i j x ij K ij x ij K + ɛb n x ij x ij, y ij K ij, x ij K + ɛb n, y ij K + ɛb n x ij y ij z ij K ij bd(k + ɛb n ) z ij bd(k + ɛb n ) z ij bd(k + ɛb n ) (2) K ( ) 8.9 K, L C n δ(convk, convl) δ(k, L) conv : C n K n ; K convk Lipschitz K, K, L, L C n δ(k + K, L + L ) δ(k, L) + δ(k, L ), δ(k K, L L ) max{δ(k, L), δ(k, L )} + : C n C n C n ; (K, K ) K + K, : C n C n C n ; (K, K ) K K C n C n Lipschitz K L + λb n K L + λb n convl + λb n. 3.6 convl + λb n convk convl + λb n L K + λb n convl convk + λb n δ(convk, convl) λ δ(convk, convl) δ(k, L) K L + λb n K L + µb n K + K L + L + λb n + µb n = (L + L ) + (λ + µ)b n, K K (L + λb n ) (L + µb n ) (L L ) + max{λ, µ}b n

37 34 8. Hausdorff L K + λb n L K + µb n L + L (K + K ) + (λ + µ)b n, L L (K K ) + max{λ, µ}b n δ(k + K, L + L ) λ + µ, δ(k K, L L ) max{λ, µ} δ(k + K, L + L ) δ(k, L) + δ(k, L ), δ(k K, L L ) max{δ(k, L), δ(k, L )} 8.10 K, L K n δ(k, L) = sup{ h(k, u) h(l, u) u S n 1 }. δ(k, L) α Hausdorff K L + αb n 7.2 u S n 1 h(k, u) h(l + αb n, u) = h(l, u) + α h(k, u) h(l, u) α δ(k, L) α L K + αb n h(k, u) h(l, u) α δ(k, L) α sup{ h(k, u) h(l, u) u S n 1 } α sup{ h(k, u) h(l, u) u S n 1 } δ(k, L) sup{ h(k, u) h(l, u) u S n 1 } α u S n 1 h(k, u) h(l, u) α h(k, u) h(l, u) α h(k, u) h(l, u) + α = h(l + αb n, u). 7.2 K L + αb n h(l, u) h(k, u) α L K + αb n δ(k, L) α δ(k, L) sup{ h(k, u) h(l, u) u S n 1 } δ(k, L) = sup{ h(k, u) h(l, u) u S n 1 }

38 K 1, K 2 K n K 2 intk 1 η > 0 δ(k 1, K) < η K K n K 2 K K 2 u E n \ {0} x 2 K 2 h(k 2, u) = x 2, u K 2 intk 1 ρ > 0 x 1 = x 2 + ρu/ u 2 intk 1 K 1 x 1, u = x 2 + ρ u u, u = x 2 2, u + ρ = h(k 2, u) + ρ h(k 1, u) x 1, u = h(k 2, u) + ρ > h(k 2, u). E n \{0} h(k 1, ) h(k 2, ) > 0 h(k 1, ), h(k 2, ) h(k 1, ) h(k 2, ) S n 1 η η h(k 1, u) h(k 2, u) (u S n 1 ) δ(k 1, K) < η K K n 8.10 h(k 1, u) h(k, u) < η (u S n 1 ) u S n 1 h(k 2, u) h(k 1, u) η < h(k, u) 7.2 K 2 K 8.12 V n K n K 0 K n V n (K 0 ) = 0 K 0 E n H δ(k 0, K) = α 1 K K 0 + αb n H u I = [ u, u] K 0 + αb n H (K 0 + αb n ) + αi H (K 0 + B n ) + αi Fubini V n (H (K 0 + B n ) + αi) = V n 1 (H (K 0 + B n ))2α. V n (K) 2V n 1 (H (K 0 + B n ))α = 2V n 1 (H (K 0 + B n ))δ(k 0, K)

39 36 8. Hausdorff V n K 0 V n (K 0 ) > 0 K 0 0 intk 0 ρb n intk 0 ρ > 0 ɛ > 0 (λ n 1)λ n V n (K 0 ) < ɛ λ > 1 ρb n intk η > 0 δ(k 0, K) < η K K n ρb n K α = min{η, (λ 1)ρ} δ(k 0, K) < α K K n K 0 K + αb n K + (λ 1)ρB n K + (λ 1)K = λk. 7.5 (3) K λk 0 V n (K 0 ) V n (λk) = λ n V n (K), V n (K) λ n V n (K 0 ) V n (K 0 ) V n (K) (λ n 1)V n (K) (λ n 1)λ n V n (K 0 ) < ɛ. λ > 1 V n (K) V n (K 0 ) (λ n 1)V n (K 0 ) (λ n 1)λ n V n (K 0 ) < ɛ. V n (K 0 ) V n (K) < ɛ V n K 0 [1] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge University Press, [1] Conventions and notation 3 8 [1] 1.1 Convex sets and combinations 1.2 The metric projection 1.3 Support and separation 1.5 Convex functions 1.7 The support function 1.8 The Hausdorff metric 1 Hausdorff

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information

nakata/nakata.html p.1/20

nakata/nakata.html p.1/20 http://www.me.titech.ac.jp/ nakata/nakata.html p.1/20 1-(a). Faybusovich(1997) Linear systems in Jordan algebras and primal-dual interior-point algorithms,, Euclid Jordan p.2/20 Euclid Jordan V Euclid

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ ) 1 8 6 No-tension 1. 1 1.1................................ 1 1............................................ 5.1 - [B].................................. 5................................. 6.3..........................................

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information